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Abstract: The viticultural sector is facing a significant maturation phase, dealing with environmental
challenges to reduce agrochemical application and energy consumption, while labor shortages
are increasing throughout Europe and beyond. Autonomous collaborative robots are an emerging
technology and an alternative to the scarcity of human labor in agriculture. Additionally, collaborative
robots could provide sustainable solutions to the growing energy demand of the sector due to
their skillful precision and continuous labor. This study presents an impact assessment regarding
energy consumption and greenhouse gas emissions of collaborative robots in four Greek vineyards
implementing a life cycle assessment approach. Eight scenarios were developed in order to assess the
annual production of four Vitis vinifera L. cultivars, namely, Asyrtiko, Cabernet Sauvignon, Merlot,
and Tempranillo, integrating data from two wineries for 3 consecutive years. For each conventional
cultivation scenario, an alternative was developed, substituting conventional viticultural practices
with collaborative robots. The results showed that collaborative robots’ scenarios could achieve a
positive environmental and energy impact compared with conventional strategies. The major reason
for lower impacts is fossil fuel consumption and the efficiency of the selected robots, though there
are limitations regarding their functionality, lifetime, and production. The alternative scenarios have
varying energy demand and environmental impact, potentially impacting agrochemical usage and
requiring new policy adjustments, leading to increased complexity and potential controversy in farm
management. In this context, this study shows the benefits of collaborative robots intended to replace
conventional practices in a number of viticultural operations in order to cope with climate change
impacts and excessive energy consumption.

Keywords: collaborative robots; energy efficiency; GHG emissions; farm management; life cycle
assessment; viticulture

1. Introduction

Climate change is one of the main global challenges for viticulture, since direct (e.g.,
temperature, rainfall distribution, and CO2 concentration) and indirect impacts (e.g., pests’
population, energy efficiency, and invasive species availability of food) affect an assortment
of production factors (yield, quality, etc.). Early flowering and maturity of grapes are
already a worldwide problem [1], while wine-producing regions may face issues related to
land suitability for growing grapevines [2]. Predictions of climate change scenarios have
depicted significant raises in average growing season temperature in several wine-growing
regions over the past 50 years [3], though recent studies have indicated that the barrier is
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surpassed in specific areas in Europe and in the USA [4]. Apart from the abovementioned,
budbreak, flowering, and véraison dates of different grapevine varieties are expected to
differ significantly due to climate change impacts in the 21st century [5].

Spain, France, and Italy are major producers of viticulture, accounting for over 50% of
the wine production worldwide while covering about one-third of the global area under
vines [6]. According to the latest Eurostat data [7], Spain has the largest agricultural
areas under vines in Europe, whereas France is second. Nevertheless, Italy produces
more wine than either Spain or France, holding the lead in Europe since 2017 [8]. The
importance of grape production in the European area is enhanced by an assortment of
studies implementing life cycle assessment (LCA) to evaluate the environmental, societal,
and economic performance of manifold locations and objectives. In this context, the
investigation of energy consumption and environmental sustainability in viticulture is
more crucial than ever.

The energy and environmental evaluation of the current industry should follow a
strict protocol and a credible methodological framework to ensure the homogeneity of
results. LCA is an established tool, integrating the ISO 14040 and 14044 guidelines [9,10]
and defining a standardized methodological framework for the life cycle of a product or a
procedure. Nevertheless, the results’ legitimacy is questionable, since the standards do not
detail a step-by-step procedure, but rather, they describe a broader range of choices that
could lead to dubious assumptions [11].

One the one hand, LCA has been included in environmental legislation around
the world, while recognizing process issues related to recent developments [12], system
boundaries set by researchers [13], consequences of the appropriate impact assessment
method [14], and translation of the functional unit to the real world [15]. On the other hand,
LCA is an integrated methodological framework for the evaluation of the environmental
performance of a system (product or procedure), taking into account all the relevant inputs
and outputs throughout its lifetime [16]. Furthermore, LCA is considered a competent
decision support system incorporating scientific data [17] and a policy decision-making
tool [18]. Consequently, the LCA methodological framework could be used with other
quantitative methods for better data management and validation of results especially to
assess agricultural sustainability [19,20]. The evolution of LCA incorporates an interdis-
ciplinary framework with economic, social, and environmental aspects, formulating an
integrated approach, namely, life cycle sustainability analysis (LCSA) [21]. In this context,
the life cycle methodological framework consists of four interrelated stages, namely, (i) goal
and scope definition, (ii) life cycle inventory (LCI), iii) life cycle impact assessment, and
(iv) interpretation [22].

LCA has also been implemented to assess the environmental impacts of irrigation
systems for vineyard cropping systems in southern Italy [23] and in southern France [24].
In addition, freshwater scarcity and footprint profile for the production of a Portuguese
wine (vinho verde) have been evaluated following four freshwater use LCA methods [25].
Furthermore, water-focused LCA has been used to assess the impacts on water resources
for the production of a typical red Italian wine [26]. Identifying critical life cycle stages and
comparing environmental performance among wine production is another domain of sev-
eral LCA studies in Spain [27–29], in Italy [30,31], and in Portugal [32,33]. Roselli et al. [34]
assessed the environmental impacts of three table grape production schemes related to
harvesting dates in Italy. Moreover, the environmental sustainability of four vineyard pro-
duction scenarios, mixing cultivation techniques (conventional and organic) with training
systems (gobelet and espalier), in a protected designation of origin (PDO) wine-growing
area in Calabria (southern Italy) was investigated by Falcone et al. [35] and extended with
the integration of multicriteria analysis to rank the scenarios’ environmental and economic
sustainability in the same area [36]. In a similar manner, two viticultural management
techniques (integrated and organic) were assessed via LCA in Loire Valley, France [37].

In Greece, the estimation of environmental performance for the wine production
industry is relatively recent and limited to PDO and protected geographical indication
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(PGI) red and white varieties in several areas [38,39]. Greek viticulture is changing and
aligning with EU directives for quality products over quantity, and LCA is considered a
methodological tool for identifying environmental performance and environmental and
energy weak points throughout the production process. Furthermore, Greek viticulture
is characterized by the production of (i) PDO wines, (ii) PGI wines, and (iii) currants.
According to environmental impact assessment studies in the area, Corinthian currant
cultivation is a human-labor-intensive production procedure, and the relevant impacts are
mainly caused by processing [40]. On the other hand, Balafoutis et al. [41] identified field
energy (tractor fuel use and electricity for irrigation) as the most significant activity related
to greenhouse gas (GHG) emissions between conventional and precision viticulture tech-
niques in the region of Eastern Macedonia and Thrace, Greece. In this context, viticulture
management and, more importantly, production techniques related to on-field agricultural
activities play one of the most significant roles in environmental performance in viticulture.

Robots are increasingly being used in the viticulture industry to improve efficiency
and accuracy in tasks, such as vineyard mapping, pruning, and harvesting. The use of
robots in vineyards can provide several advantages, such as continuous work day and
night, reduced labor costs, and task precision, especially in areas where human labor
is scarce or expensive. Replacing conventional labor with robots in order to cope with
labor shortages, especially when the demand for human labor cannot be satisfied, is
a promising solution, though agricultural robots for commercial use focus mainly on
weeding and harvesting operations [42]. The “VineRobot” is another example of a robotic
system used in viticulture, which is equipped with cameras and sensors that allow it
to map the vineyard and identify individual vines. This information is used to prune
the vines with high precision, while also collecting data on the health and growth of the
vines [43]. Therefore, farmers take rational decisions on when and how to prune their
vines, which can lead to improved yields and higher-quality grapes. A similar project
is the “FLEXIGROBOTS”, which integrates precision agriculture operations based on
intelligent automation. Nevertheless, this is an ongoing project, and the first trial regarding
harvesting operations was positive [44]. Robotic systems such as these can also help
to reduce the environmental impact of viticulture. This was the case in studies by the
University of California–Davis (UC Davis), where a robot could simultaneously collect soil
moisture samples and adjust irrigation emitters [45,46]. Furthermore, the use of robots can
reduce the need for pesticides, herbicides, and fungicides, which can be harmful to the
environment [47,48].

Consequences to the environment, GHG emissions, and energy consumption of an
integrated robotic system for agricultural operations are difficult to quantify, and very
few studies have reported on those issues. In particular, some studies address the impact
of autonomous weeding systems [49,50] and autonomous electric tractors [51] or focus
on economic impacts [52]. Therefore, the main aim of the current study is a holistic
environmental and energy assessment of conventional and collaborative robots [53] (cobot)
scenarios in Northeastern Greece following a LCA framework. In particular, on-field
activities during grapevine production by human labor are compared with activities by
cobots regarding energy consumption and overall efficiency in two private vineyards in
the region of Eastern Macedonia and Thrace, Greece. The study highlights for the first time
the potential of cobots in an assortment of agricultural operations against climate change
impacts and excessive energy consumption.

The paper is structured as follows: The methodology section (Section 2) includes eight
subsections describing the methodological framework, the case study area, and the cobot
description. Section 3 includes the results of the study regarding the impacts of cobots
on the environment and the relevant indices. Finally, Sections 4 and 5 summarize the
contribution of this work, including discussions, conclusions, and potential future work.
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2. Materials and Methods
2.1. Case Study Area and Selected Vineyards’ Description

The wine-producing vineyards assessed herein during the 2019–2021 vintages are
located in Northern Greece, regional unit of Drama in the region of Eastern Macedonia and
Thrace, at two different locations that are approximately 30 km apart, with similar terroir
parameters. Note that the wider area of Drama hosts a plethora of wineries and vineyards
producing several PGI-labelled wines. The first location of the current study, denoted as
LOC1, namely, Ktima Pavlidis winery (41.200400 N, 23.953084 E, 200 m elevation), includes
Vitis vinifera L. cvs Tempranillo (grafted onto Berlandieri X Rupestris 110R rootstock) and
Asyrtiko (grafted onto Berlandieri X Rupestris 1103P rootstock), whereas the second location,
denoted as LOC2, namely, Nico Lazaridi winery (41.127832 N, 24.275972 E, 190 m elevation),
includes Vitis vinifera L. cvs Cabernet Sauvignon and Merlot (both grafted onto Berlandieri
X Riparia SO4 rootstock).

The cultivars Tempranillo and Asyrtiko in LOC1 are part of a 40 ha vineyard under
conventional crop management. The planting distance is 2.2 m between rows and 1.2 m
along each row (3780 vines/ha) with planting in both cultivars being NE to SW orientated
following the low slope of the terroir. Likewise, the cultivars Cabernet Sauvignon and
Merlot in LOC2 are part of a 35 ha vineyard under conventional crop management. The
planting distance is 2.5 m between rows and 1.2 m along each row (3330 vines/ha) with
planting for Cabernet Sauvignon being NW to SE and for Merlot N to S orientated (Table 1).
All cultivars in both locations are managed under very similar conventional management
schemes employed by most wineries in the wider area. Those include composite winter
pruning following the bilateral cordon training of the vines, followed by summer pruning
operations, including budding, topping, defoliation, and crop load reduction. All vegeta-
tion and crop load management operations follow the course of the phenological stages
of the vines that may differ between years targeting a relatively low final crop load for
optimum crop quality (in the order of ≈10 t/ha). In addition, the vegetation between rows
is managed mechanically, implementing plant protection practices via targeted sprays for
pests and diseases.

Table 1. Location, cultivars, and vineyard details of the two assessed case studies.

Cultivar/Rootstock Tempranillo/110
Richter Asyrtiko/1103 Paulsen Cabernet

Sauvignon/SO4
Merlot/SO4

Winery LOC1
Ktima Pavlidis winery

LOC1
Ktima Pavlidis winery

LOC2
Nico Lazaridi winery

LOC2
Nico Lazaridi winery

Coordinates
(HGRS87/EGSA87)

(Lat, Lon)
41.200400 N, 23.953084 E 41.127832 N, 24.275972 E

Elevation 200 m 190 m
Planting

distance/orientation 2.2 X 1.2/NE–SW 2.2 X 1.2/NW–SE 2.2 X 1.2/N–S

Vines/ha 3780 3330

2.2. Collaborative Robots in Agriculture

Cobots in agriculture integrate specific equipment and technology, which may include
drones and wheel robots, in order to be effective [54]. Before activating the robots, the
area of interest was mapped by a drone. In particular, the drone captures geographic
data (digital images of the vineyard) and feeds them to the computing base station to
calculate the optimal path for the ground robots within the vineyard [55]. The robots
communicate through the base station, as illustrated by the autonomous mobile robot
“VINBOT” [56]. The novelty of the SVtech project is based on the collaboration among
master and slave robots, as well as on the enhanced number of viticultural operations
by cobots. Each master robot has at least one robotic arm equipped with a robotic hand
attached to it and various electronic sensing instruments, including cameras, while the
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slave robot has up to one robotic arm equipped with a gripper. Note that a gripper is
much less dexterous than a robotic hand, but typically, a gripper can lift more than 2 kg.
A master robot carries out viticultural tasks either alone or cooperatively with the other
master robot in selected viticultural tasks, such as in vine tying, whereas the slave robot is
used to transport materials produced by the master robot, such as grapes (during harvest).
In addition, a master robot can direct the slave robot as needed. The cobot’s technology is
based on the interaction and coordination between robots and humans during production.

A robotic hand can handle a manual viticultural tool per operation, such as prun-
ing/spraying/ tying, thus significantly reducing the cost of using an expensive specialized
robotic arm per operation. Furthermore, a robotic hand can replace the human hand,
such as during harvest. The effective use of robotic hands will be pursued by innovative
artificial intelligence (AI) techniques tackling embodiment issues [57]. The pilot project
SVtech of autonomous cooperative robots is focusing on the following basic viticultural
operations: (i) cutting (see defoliation, pruning, and harvesting), (ii) spraying (precaution-
ary), and (iii) tying. The aforementioned multiple operations and innovations are also
supported using a new AI technology, called “lattice computing” [58–60], toward making
the robots autonomous.

2.3. Selected Cobots’ Description

The current project uses two types of robots: an expert-type robot and a helper-type
robot; both are supplied by Robotnik Automation S.L.L. company in Valencia, Spain RB-
EKEN (helper) is a ragged robot with a weight of 270 kg and a payload of 300 kg, equipped
with a UR10e robotic arm and a payload of 16 kg (Figure 1). The robot moves with 4 motors
(each has a maximum power of 1.2 kW). It can reach a maximum speed of 2 m/s. RB-
EKEN is powered by LiFePO4 (48 V, 60 Ah) batteries with a maximum autonomy of 4 h of
continuous motion. The maximum reachable slope of RB-EKEN is 60%.
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RB-VOGUI (expert) is an autonomous base robot with a weight of 165 kg and a payload
of 150 kg (Figure 2). The robot moves with four traction motors (each has a maximum
power of 500 W) and 2 or 4 steering motors (each has a maximum power of 100 W). It
can reach a maximum speed of 2.5 m/s. RB-VOGUI is powered by LiFePO4 (48 V, 30 Ah)
batteries with a maximum autonomy of 8 h of continuous motion.
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2.4. Goal and Scope Definition

The main goal of the current study is a holistic environmental assessment and the com-
parison of environmental performances between conventional and cobot labor scenarios of
four vineyards in the region of Eastern Macedonia and Thrace, Greece. The process includes
an assortment of operations, namely, harvesting, pruning, spraying, tying, weed control,
and defoliation performed either conventionally or by cobots. More attention is paid to
farming activities and machinery operations in order to highlight core differences between
conventional and cobot labor. System boundaries are depicted in Figure 3, including all the
relevant phases and the respective actions and inputs from annual grape production, while
the transportation of products to the wine processing plant is also included.
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A cradle-to-factory gate variation is selected since the study focuses on the on-field
activities and the integration of robotic labor in the production phase, neglecting the
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planting and disposal phase. A 3-year framework is proposed as a minimum timeline for
GHG accounting, as suggested by the International Organisation of Vine and Wine (OIV),
to minimize uncertainty [63]. Therefore, data from 3 consecutive years were collected, and
the functional unit was set to 1 ha of agricultural land in order to minimize deviations
among grapevine varieties. Furthermore, it is a commonly used functional unit that is
easily transmuted to 1 metric ton of table grapes produced on 1 ha if needed [34,64].

Transportation of all the inputs necessary for the table grapes’ cultivation was set
on trucks for a distance of 200 km. Biomass produced by the pruning and defoliation
activities involved the transportation of grapes to a specified storage area in order to
continue to the processing stage, while biomass residues were used again as fertilizers, as
stated by the two firms. Therefore, four management cultivation schemes were thoroughly
analyzed, comparing GHG emissions, performances, and labor substitutions by cobots
toward sustainable wine growing grape cultivation.

The collected data for the environmental/energy assessment included fertilizers
(kg/ha), fungicides (kg/ha), herbicides (kg/ha), machinery usage (h/ha), human labor
(h/ha), electrical energy (kWh/ha), irrigation needs (m3/ha), other inputs (kg/ha), diesel,
and petrol (l/ha) per management cultivation scheme.

2.5. Inventory Analysis

Formulating an LCI is a crucial stage that involves the development of a directory for
input and output flows for the relevant system [65]. Flows include inputs of agrochemicals,
energy and raw materials, emissions, and primary energy consumption. The inventory
is based on literature analysis, and all the relevant parameters for calculating GHGs and
consumption of primary energy for grapes’ cultivation are given in Table 2. Emissions
from land use change are excluded, and the remarks are focused on the cultivation phase,
since the major goal of the study is the assessment of conventional and cobot’s labor. Data
related to harvested yield, growing area, agrochemical application, number of pesticide
applications, transportation of supplies, and biomass are equal for the respective cobot’s
scenarios. The robots have built-in LiFePO4 technology batteries inside their shell to meet
their needs, namely, the movement in the field, the use of sensors, computing systems, and
the powering of the telecommunication systems with the base station. If batteries reach a
low energy state, the robot should reach the location of recharge in a protected area with a
sufficient supply of energy, ideally within walking distance of the field of work.

Quality and consistency are considered major factors for the inventory analysis, es-
pecially in the primary sector and, hence, in sustainable agricultural production toward
lower GHG emissions. The connection between LCA and agricultural production systems
has grown stronger over the past years [66] and has generated a number of public and
private inventories [67]. The reference system of the present study is based mainly on
the BioGrace-II greenhouse gas (GHG) standard values [68] following European Directive
2018/2001 [69]. The Sixth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) integrates the latest radiative efficiencies and metrics, meaning that global
warming potential (GWP100) in CO2 equivalents has been calculated as follows: CO2 = 1,
CH4 = 27.9, and N2O = 273. The time horizon of 100 years was selected considering short-
term and mid-term implications of agricultural production systems and wide application in
relevant studies as well [6]. Lubricants, biomass, and supplies transportation are estimated
as well, and more specifically, lubricants represent 0.7% of the consumed diesel fuel [70],
while the assumption for the distance travelled in order to acquire the required materials
(lubricants, fertilizers, pesticides, etc.) is set to 200 km. Furthermore, indirect emissions
from nitrogen fertilization are considered as 1% of the N2O direct emissions [71].
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Table 2. Inventory for GHGs and primary energy consumption.

Inputs Unit Energy
Content GHG Unit GHGs Remarks

Agrochemicals
N MJ/kg 48.99 gCO2eq/kg 4524.41 [68]
P MJ/kg 15.23 gCO2eq/kg 541.67 [68]
K MJ/kg 9.68 gCO2eq/kg 416.67 [68]
Olive pomace
res MJ/kg 20.75 gCO2eq/kg 67.00 [72–74]

Poultry
manure MJ/kg 8.40 gCO2eq/kg 148.62 [73,75,76]

Fungicides MJ/kg 99.00 gCO2eq/kg 3,900.00 [77,78]
Herbicides MJ/kg 418.00 gCO2eq/kg 9,100.00 [77,79]

Energy
Lubricants MJ/kg 53.28 gCO2eq/kg 947.00 [68]
Diesel MJ/kg 56.80 gCO2eq/MJ 95.10 [68,80]
Petrol MJ/kg 60.20 gCO2eq/MJ 93.30 [68,80]
Electricity MJ/MJ 2.73 gCO2eq/MJ 243.49 [68]

Operations, maintenance, and manufacturing
Tractor MJ/h 16.42 gCO2eq/h 9800 [81,82]
Human MJ/h 1.80 gCO2eq - [81]
Machinery MJ/h 0.10–35.05 gCO2eq/h 0.10–190 [73,83,84]
RB-EKEN MJ/h 2.59 gCO2eq - -
RB-VOGUI MJ/h 0.65 gCO2eq - -
Irrigation
system MJ/ha 373.7 gCO2eq - [85]

Use of diesel MJ - gCO2eq/MJ 0.9 [68]

Transportation
Supplies MJ/t.km 0.87 gCO2eq/t.km 71 [68,86]
Biomass MJ/t.km 0.81 gCO2eq/t.km 71 [68,86]

2.6. Carbon Footprint and Energy Consumption Impact Assessment

Differences among conventional and cobot practices were assessed in terms of GHG
emissions following the approach of “emission factors” [87]. Although this approach has
been criticized for deficiency of field measurements and background datasets, comparing
similar systems and quantifying GHG fluxes as a function of farming activity could illus-
trate trade-offs among them. The formulation of one unified indicator converting climate
pollutants into CO2 equivalents is based on two factors, namely, the conversion factor and
the respective quantity of each pollutant, as follows [88]:

CFi =
i

∑
n=1

EMi,j × GWP100 (1)

where CFi is the carbon footprint in CO2 equivalents for each scenario i, EMj,i is the
emissions of each pollutant j related to each scenario i, and GWP100 is the global warm-
ing potential conversion factor of each pollutant for a specified time horizon (100 years).
Furthermore, the calculation of consumed energy for each scenario is based on the multipli-
cation of a primary energy factor with the quantity of energy consumed per functional unit,
which is based on the following equation:

ECi =
i

∑
n=1

PEi,j × PEFj (2)

where ECi is the consumed energy for each scenario i, PEj,i is the primary energy of
each action j related to each scenario i, and PEFj is the primary energy factor of each
input to the system. The parameters considered for calculating energy and environmental
impacts include the agricultural practices as described in the goal and scope definition
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section. Furthermore, energy used to produce every piece of machinery, including mining,
manufacture, and transport, is calculated according to embodied energy (EI) equation [83]:

EI = ∑
wi × eci

Lii
× Hopi (3)

where wi represents the machinery’s weight in kilograms, ec is the respective energy
coefficient, Lii is the total hours of each machinery’s lifetime in hours, and Hopi is the hours
of agricultural operations for the on-field cultivation practices. Consequently, indirect
impacts from the machinery used in the agricultural operations are calculated.

2.7. Energy Efficiency and Emission Intensity of the Investigated System

Energy efficiency is of the utmost importance in agriculture, as the primary sector
is vulnerable to energy cost fluctuations, and the depiction of energy consumption per
production unit could elicit important conclusions for farm management strategies [89].
Nevertheless, the concept of energy efficiency is considered a ratio between a sum of
outputs (energy or not) per sum of energy inputs of a process as well [90]. Whichever
energy efficiency indicator is chosen, the energy content of all the relevant inputs should
be determined following a robust protocol. The EU highlights the importance of a life
cycle approach in order to cover gaps toward energy efficiency [91]. As a result, the energy
efficiency (EFi) of the relevant scenarios is calculated as follows:

EFi,j =
ENi
CYj

(4)

where EN is the consumed energy per scenario i in MJ, and CY is the crop yield for each
cultivar j in kg. A similar indicator presenting the efficiency of new technologies and their
impact on the reduction of emissions and costs is GHG emission intensity [92]. Emission
intensity is a parameter that represents the impact of innovative technologies on agricultural
production and their respective effect on climate change. Emission intensity is calculated
by the amount of CO2 equivalents emitted in kg per produce in kg, which could be used for
a broader spectrum of production systems [93]. Nevertheless, for the selected vineyards,
the GHG emission intensity indicator (EIi) is measured as follows:

EIi,j =
GHG emissionsi

CYj
(5)

Calculations for data analysis and illustrations presented in the Results section were
elaborated via RStudio 2022.07.1+554 [94].

3. Results

In the context of our study, the calculation of GHG emissions for each scenario was
carried out based on the inventory and the provided data from the wineries. The two
firms integrate different management strategies for the selected vineyards in relation to the
amount and type of applied agrochemicals, hours of labor, and energy consumption. A
brief description of the management schemes per hectare for the four cultivars is presented
in Table 3.
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Table 3. Management scheme for the selected vineyards.

Inputs Unit Asyrtiko Tempranillo Cabernet
Sauvignon Merlot

Acreage ha 2.9 2.2 2.4 1.9
Crop yield t/ha 9.63 8.02 5.32 5.05
Irrigation
(energy) MJ/ha 884.52 884.52 442.26 442.26

Borehole depth m 180 180 90 90
N-based
fertilizers kg/ha 33 3 15 10.5

P-based
fertilizers kg/ha 3 3 15 10.5

K-based
fertilizers kg/ha 3 3 21.5 14.88

Poultry
manure kg/ha - - 244 940

Olive pomace
res kg/ha - - 1100 -

Fungicides kg/ha 25 25 15.44 8
Herbicides kg/ha - - - 3.5

Diesel lt/ha 255 238 111.8 142
Petrol lt/ha 40 40 20 20

Residues t/ha 4.2 3.9 1.5 1.5
Human labor h/ha 447.5 450 308.66 401.25

Tractor h/ha 32.5 30 23.7 32.75

Factors that significantly alter the GHG totals, expressed in CO2 equivalents, are
classified in separate categories, indicating critical hotspots of each management system.
In this context, five subcategories are created: (i) agrochemicals (fertilizers, fungicides,
and herbicides, (ii) electrical energy, (iii) fossil fuels (petrol and diesel), (iv) machinery
(direct and indirect), and (v) other (transportation of inputs, indirect N2O, lubricants,
etc.). Electrical energy is a discrete category since the cobots are powered by rechargeable
batteries, thus lowering the usage of human and agricultural machinery labor.

All agricultural activities, such as pruning, tying, and harvesting, are connected to
an assortment of impacts and energy consumption, alternating the total needs of energy
and emissions per management scheme. The abbreviations of the scenarios use the first
letter of the respective cultivar (e.g., for Asyrtiko, it is A), followed by the letter C if
the operations are performed conventionally or CB if the operations are performed by
cobots (e.g., AC for conventional practices and ACB for cobot simulation for the Asyrtiko
cultivar). All the relevant scenarios integrating cobots illustrate lower energy consumption
in comparison with their respective conventional scenarios. In Figure 4, a dual Y-axis
bar chart is presented, depicting the consumed energy in MJ ha−1 and the total GHG
emissions in kg CO2-eq ha−1 for each scenario. Verifying the abovementioned, all the
scenarios integrating cobots (namely, ACB, CCB, MCB, and TCB) are less energy demanding
in comparison with their corresponding conventional scenarios(AC, CC, MC, and TC,
respectively). On the one hand, regarding only the conventional scenarios, AC consumes
the highest amount of energy (27,281.79 MJ ha−1), while MC is the least energy intensive
scenario (25,014.93 MJ ha−1). Nevertheless, agricultural activities adopted in CC and
TC systems do not deviate significantly from the lowest energy consumption scenario
(+2.51% and +2.53%, respectively).
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On the other hand, TCB is the least energy-demanding system with 14,703.07 MJ
ha−1, followed by ACB with 16,304.33 MJ ha−1, illustrating the potential positive impact of
cobots in vine-growing systems. Regarding GHG emissions, scenarios under conventional
practices form two groups, one group exceeding the threshold of 2,000 kg CO2eq ha−1 and
the other one below this threshold (Table 4). More specifically, CC and MC emit lower
levels of GHGs with 1,428.75 and 1,678.68 kg CO2eq ha−1, respectively, while the results
for AC and TC are 2,570.57 and 2,308.90 kg CO2eq ha−1, respectively. Cobots performing
agricultural activities could lower the carbon footprint of agriculture, since the results show
GHG emissions under 1,500 kg CO2eq ha−1 for all the relevant scenarios. More specifically,
CCB accounts for only 980.16 kg CO2eq ha−1, which is the lowest value, while ACB emits
1,465.57 kg CO2eq ha−1, which is the highest value among the cobots’ scenarios.

Table 4. Analytical presentations of GHG emissions and consumed energy per hectare.

Scenario Unit AC ACB CC CCB MC MCB TC TCB

Consumed
energy MJ ha−1 27,281.80 16,304.33 25,643.95 21,642.95 25,014.93 18,633.65 25,648.47 14,703.07

GHG
emissions

kg
CO2-eq

ha−1
2570.57 1456.57 1428.74 980.16 1678.68 1125.43 2308.90 1210.23

The differences among the four cultivars are due to the different management practices
implemented by the two wineries. In fact, the main difference is the fossil fuel consumption,
which is higher for the Asyrtiko and Tempranillo cultivars, since the agricultural activities
are performed by the same winery (Figure 4).

Indeed, conventional agricultural practices highlight significant environmental im-
pacts due to fossil fuel consumption ranging from 50.13% for CC to 69.39% for TC, as
shown in Figure 5. The substitution of conventional with cobot’s labor reduces the share
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of fossil fuels for the cobot’s scenarios, especially for the Merlot management scheme in
which the percentage is cut in half (MC—52.38% and MCB—26.64%) (Table 5). Conven-
tional labor techniques consume more fossil fuels due to machinery usage (e.g., tractor)
for some viticultural operations, whereas cobots consume only electrical energy much
more efficiently.
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Table 5. Shares of GHG emissions per scenario.

Scenario Agrochemicals Electric Energy Fossil Fuels Machinery Other

AC 9.71% 8.38% 62.32% 14.60% 4.98%
ACB 17.14% 18.21% 44.13% 12.35% 8.18%
CC 17.85% 7.54% 50.13% 18.87% 5.62%

CCB 26.02% 15.17% 37.97% 12.94% 7.90%
MC 15.62% 6.41% 52.38% 22.15% 3.43%

MCB 23.29% 13.02% 26.64% 32.44% 4.61%
TC 4.94% 9.33% 69.39% 15.05% 1.29%

TCB 9.42% 21.38% 54.01% 13.46% 1.74%

Although the replacement of conventional labor by robots increases the share of
impacts due to the constant need for charging the batteries of the cobots. Electrical energy
accounts for lower GHG emissions since the cobots’ energy consumption is low, though
the share of electrical energy emissions for TCB and ACB is quite significant (21.38% and
18.21%, respectively). On the other hand, the “Other” category, integrating transportation
of inputs, indirect N2O, and lubricants illustrate minimum impact on the environment with
percentages below 10% for each scenario.

Consumed energy is yet another aspect creating an uneven situation and complicating
the decision making between efficiency and environmental protection. The impact of
each category, as a share for each scenario, is depicted in Figure 6. As a matter of fact,
agrochemicals are of the upmost importance especially for the Cabernet Sauvignon and the
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Merlot cultivars, presenting a range of percentages between 43.85% for MC and 64.63% for
CCB (Table 6). Nevertheless, the impact of fossil fuels is approximately the same for AC
and TC in comparison with the shares of GHG emissions (61.92% and 65.86%, respectively).
Regarding the electric energy consumed, the major difference apparently hinges on the
usage of cobots, which is responsible for the high shares of the respective impact category
in the relevant scenarios. Following the same pattern with Figure 5, Machinery and Other
categories illustrate a very low energy impact, under 15%.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

each category, as a share for each scenario, is depicted in Figure 6. As a matter of fact, 
agrochemicals are of the upmost importance especially for the Cabernet Sauvignon and 
the Merlot cultivars, presenting a range of percentages between 43.85% for MC and 
64.63% for CCB (Table 6). Nevertheless, the impact of fossil fuels is approximately the 
same for AC and TC in comparison with the shares of GHG emissions (61.92% and 65.86%, 
respectively). Regarding the electric energy consumed, the major difference apparently 
hinges on the usage of cobots, which is responsible for the high shares of the respective 
impact category in the relevant scenarios. Following the same pattern with Figure 5, Ma-
chinery and Other categories illustrate a very low energy impact, under 15%. 

 
Figure 6. Stacked bars comparing the shares of consumed energy. 

Table 6. Shares of consumed energy per scenario. 

Scenario Agrochemicals Electric Energy Fossil Fuels Machinery Other 
AC 15.27% 8.85% 61.92% 10.14% 3.82% 

ACB 25.55% 18.24% 41.46% 11.48% 3.28% 
CC 54.54% 4.71% 29.46% 8.43% 2.86% 

CCB 64.63% 7.70% 18.08% 6.94% 2.65% 
MC 43.85% 4.83% 37.06% 11.40% 2.86% 

MCB 58.87% 8.82% 16.92% 13.28% 2.11% 
TC 10.51% 9.41% 65.86% 10.34% 3.87% 

TCB 18.34% 19.73% 46.74% 11.83% 3.36% 

The results of the research indicate that agricultural activities performed by cobots 
alter the total GHG and energy consumption pattern, reducing the impact of fossil fuels. 
Nevertheless, the impact of agrochemicals and electric energy differentiate the critical 
points between the conventional and the cobot’s scenarios. Especially in the ACB and TCB 

Figure 6. Stacked bars comparing the shares of consumed energy.

Table 6. Shares of consumed energy per scenario.

Scenario Agrochemicals Electric Energy Fossil Fuels Machinery Other

AC 15.27% 8.85% 61.92% 10.14% 3.82%
ACB 25.55% 18.24% 41.46% 11.48% 3.28%
CC 54.54% 4.71% 29.46% 8.43% 2.86%

CCB 64.63% 7.70% 18.08% 6.94% 2.65%
MC 43.85% 4.83% 37.06% 11.40% 2.86%

MCB 58.87% 8.82% 16.92% 13.28% 2.11%
TC 10.51% 9.41% 65.86% 10.34% 3.87%

TCB 18.34% 19.73% 46.74% 11.83% 3.36%

The results of the research indicate that agricultural activities performed by cobots
alter the total GHG and energy consumption pattern, reducing the impact of fossil fuels.
Nevertheless, the impact of agrochemicals and electric energy differentiate the critical
points between the conventional and the cobot’s scenarios. Especially in the ACB and
TCB scenarios, the proportion of electric energy consumed has increased by over 10% in
comparison with conventional scenarios.

The estimation of energy efficiency and GHG emissions per kg of production could
illustrate the real potential of cobots in agriculture. In particular, Table 7 depicts deviations
between the selected vine-growing systems, indicating the positive impact of cobots regard-
ing energy consumption, as well as GHG emissions. More specifically, the CO2 eq per kg of
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produce indicator could approach a value of 0.151 kg CO2-eq kg−1, achieving 47.58% less
emissions to the environment. Deviations for the Asyrtiko, Merlot, and Cabernet Sauvignon
cultivars are −43.34%, −32.96%, and −31.40%, respectively. Furthermore, deviations in
energy efficiency are effective to a higher degree for the Asyrtiko and Tempranillo cultivars
(−40.24% and −42.67%, respectively) and to a lesser degree for the Merlot and Cabernet
Sauvignon cultivars (−25.51% and −15.60%, respectively).

Table 7. Energy efficiency and GHG emission intensity per vine-growing scenario.

Scenario kg CO2 eq kg−1 Deviation (%) MJ kg−1 Deviation (%)

AC 0.267 −43.34%
2.833 −40.24%ACB 0.151 1.693

CC 0.269 −31.40%
4.820 −15.60%CCB 0.184 4.068

MC 0.332 −32.96%
4.953 −25.51%MCB 0.223 3.690

TC 0.288 −47.58%
3.198 −42.67%TCB 0.151 1.833

In comparison with the Asyrtiko and Tempranillo cultivars, Merlot and Cabernet
Sauvignon present minor discrepancies (especially for energy efficiency). The latter is
explained by the more intensive usage of agrochemicals and particularly by the poultry
manure and olive pomace residue application. As depicted in Figure 6, the shares of
agrochemicals for the two cultivars have a significant impact on the total mixture of energy
needed; thus the cobot scenarios could not alter the efficiency aspect to the same degree as
in the Asyrtiko and Tempranillo scenarios. The same pattern applies for the GHG emission
per kg of produce for the cobot scenarios, although the impact is more meaningful in
comparison with energy efficiency.

4. Discussion

The integration of cobots performing viticultural tasks on the field is not an energy and
environmentally impact-free step toward agricultural sustainability. An LCA approach has
been implemented to investigate the environmental and energy impact of various real-life
and simulated agricultural management scenarios. Furthermore, energy efficiency and
GHG emission intensity indicators have been calculated as well to highlight deviations
between conventional practices and the cobot’s integration to the agricultural practices.
Vineyard planting and disposal stages were neglected in order to focus on the impacts
of annual production and the respective pros and cons of cobots, which could substitute
conventional viticultural practices. Merlot and Cabernet Sauvignon scenarios during
the production phase are heavily affected by the amount and nature of specific inputs
(e.g., poultry manure and olive pomace residues), which usually cause considerable impacts
on the environment [95].

The Merlot and Cabernet Sauvignon cultivars illustrate a better environmental profile
in absolute terms than the Asyrtiko and Tempranillo cultivars, though these latter had
higher yields, better energy efficiency, and GHG emissions intensity. The results for MJ per
hectare fall into the range of Steenwerth et al. [96] with average values of 20,000 MJ. Human-
induced emissions mainly due to soil management and diesel consumption accounted for
0.26 kg CO2-eq kg−1 per kg of grape yield in the south of Sardinia in Italy [97]. This value
is quite similar to the respective emission intensity indicator for the conventional practices
applied to the Asyrtiko, Cabernet Sauvignon, and Tempranillo cultivars of the current
study. Nevertheless, Gierling and Blanke [98] presented higher GHG emissions per hectare,
investigating the difference between steep and flat terrains of vineyards. Their findings for
steeper terrains (2990 kg CO2 ha−1), in which human labor is preferred over mechanical
labor, match to a certain degree with the findings of the GHG emission of AC and TC
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scenarios. In addition, Gierling and Blanke [98] highlight the relationship between lower
emissions due to human labor in steep terrains, though lower productivity of human labor
in comparison with mechanical labor along with scarcity of manual labor when needed,
developing a paradox stalemate for sustainable viticulture.

In relation to fossil fuel production and consumption as the main source of GHG
emissions in viticulture, the findings of the current study are consistent with other sur-
veys [96–99], while this is the case as well for a table grape variety named Soultanina in
Cyprus [100]. Moreover, Balafoutis et al. [41] reported field energy use as the main factor
of GHG emissions for two different cultivars in Greece, while fertilizers are the second
most important factor. Nevertheless, other studies present fertilizer production as the
major contributor to the carbon footprint shares among management practices and more
specifically the Xynisteri and Cabernet Sauvignon varieties in Cyprus [100]. Indeed, GHG
emissions associated with annual production of multiple grape training systems in North
Tajikistan have been linked to impacts mainly due to ammonium nitrate application [101].
Roselli et al. [34] reported agrochemicals as factors of significant environmental impact
as well, especially regarding the cultivation phase, while the same perspective applies for
Gazzula et al. [27].

Inventory parameters, estimation methods for impact assessment, and methodological
options complicate the comparability of the results among LCA studies [32]. Extending the
system boundaries of the cultivation phase in vineyards, by including cobots performing
agricultural operations and substituting human and mechanical labor, is an innovative
approach that should be assessed. Nonetheless, significant hotspots have been identified,
which would not be taken into account otherwise, though there are few available cobot-
related LCA studies focusing on autonomous weed mowing. Weeding management
strategies were assessed by Pradel et al. [49], concluding to overall lower environmental
impacts in comparison with conventional solutions. Autonomous lawn mowing has
illustrated even better performance when the path planning is optimized [50].

However, the implementation of these technologies comes with maintenance costs,
which can include regular check-ups, repairs, and replacement of parts. Despite the
potential benefits, the high cost of purchasing and maintaining agricultural robots remains
a major barrier to their widespread adoption [102]. The investment and annual costs of real-
time kinematics Global Positioning Systems along with the small battery capacity of robots
hinder the economic viability to a significant degree [103]. Autonomy is also a concern
for agricultural robots. These machines are often required to operate in unstructured
environments, which can make it difficult for them to navigate and perform complicated
tasks [104]. Additionally, the use of robots in agriculture often requires them to work in
close proximity to humans, animals, and other equipment, which can increase the risk of
accidents and injuries, creating gray areas in autonomy regulations [105].

Furthermore, the use of robots in agriculture has the potential of significantly impact-
ing the job market, both positively and negatively. On the one hand, the use of robots can
lead to job losses as they automate tasks that were previously performed by human work-
ers, creating key ethical debates [106]. On the other hand, the use of robots can also create
new jobs as they increase productivity and efficiency, leading to growth in the agriculture
industry [107]. Nevertheless, these new jobs could include positions in areas such as robot
design, programming, maintenance, and data analysis. Software maintenance and updates
are crucial for the proper functioning of robots in agriculture. A key aspect of software
maintenance is troubleshooting and resolving any issues that arise, especially for robots in
agriculture [108], thus meaning that the cost of software maintenance and updates can be
another aspect of troubleshooting for farmers and other agricultural operators.

Nonetheless, the present study focuses on the environmental performance and energy
consumption of an assortment of agricultural activities performed for the first time by
cobots [109]; thus the concluding remarks focus on the key parameters never published
before and on suggestions for future research.
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5. Conclusions

This paper examined the energy consumption and GHG emissions of conventional and
cobot agricultural practices of selected vineyards in Northern Greece. The methodological
framework of LCA is implemented to identify main hotspots of four different cultivars and
to highlight the most sustainable and environmentally friendly scenarios. The study implies
that the use of cobots for several agricultural operations in vineyards emits lower GHG
emissions than conventional practices performed by human and conventional mechanical
labor. The reduction of GHG emissions is mainly due to the fossil fuel consumption, which
is significantly decreased when the cobots are used. Furthermore, GHG emission intensity
deviations between scenarios present a greater environmental impact, achieving reductions
of kg CO2 eq kg−1 of grapes from 31.40% to 47.58%. However, the implementation of cobots’
labor in agriculture changes the potential energy and environmental shares of inputs used,
which develops a new mixture of energy demand and GHG emissions. Specifically, all the
cobot’s scenarios demonstrate higher shares of impacts due to agrochemical application
and machinery usage.

Although cobots decrease impacts in absolute terms, at the same time, a new mixture
of energy needs and environmental impacts alternates the perspective of hotspots in
viticultural systems. Therefore, the functionality of cobots should be further investigated,
integrating an actual lifetime period for cobots, as well as all impacts connected to the
manufacturing of electronic components, cables, and motors. Additionally, while cobots
consume less energy than other agricultural machines (e.g., tractors), the results should be
viewed with optimism as the study assumes ideal conditions (e.g., flat terrain, exposure to
fungicides/climatic conditions, and a lack of data on cobot failures). Finally, the results were
evaluated regarding the cultivation phase, neglecting on purpose the planting, training,
and disposal phase; thus impacts regarding these phases could alter the magnitude of the
total positive impacts of cobots.

Future research should integrate economic data to highlight the eco-efficiency manage-
ment philosophy, mitigating simultaneously climate change and economic impacts. Fur-
thermore, additional data for the whole lifecycle of vineyards could be integrated, including
the planting, training, and disposal stages of viticultural operations performed by cobots,
since the environmental impacts of batteries’ production, use, and recycling/disposal could
be significant [110].
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