
Citation: Hassan, M.K.; Saha, S.;

Rahnamayiezekavat, P. Behaviour

and Design of Innovative

Connections of Prefabricated CFST

Columns under Tension.

Sustainability 2023, 15, 2846. https://

doi.org/10.3390/su15032846

Academic Editor: Baojie He

Received: 7 January 2023

Revised: 30 January 2023

Accepted: 31 January 2023

Published: 3 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Behaviour and Design of Innovative Connections
of Prefabricated CFST Columns under Tension
Md Kamrul Hassan * , Swapan Saha and Payam Rahnamayiezekavat

School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
* Correspondence: k.hassan@westernsydney.edu.au

Abstract: This paper investigates the tensile behaviour of prefabricated concrete-filled steel tube
(PCFST) columns with bolted connections. Innovative bolted column-column (BCC) connections are
developed using standard structural bolts to simplify the construction process for the connection of
two PCFST columns, especially for the corner, edge, and interior columns. The behaviour of BCC
connections in PCFST columns under tension has been investigated, adopting the finite element
(FE) modelling approach. Parametric studies are carried out to understand the influence of bolt
arrangements (TB = 4, 6, 7, 8), base plate thickness (tbp = 8, 10, 14, and 18 mm), bolt diameters (db = 16,
18, 20, 24 mm), vertical stiffeners (ths = 4, 6, 8, 10 mm), horizontal stiffeners (ths = 10, 12, 13, 15 mm),
and yield strength of steel tube (f y,t = 380, 450, and 550 MPa) on the behaviour of PCFST columns
with developed BCC connections. The results show that the PCFST columns with the developed
BCC connections can attain sufficient tensile strength and satisfy the tensile strength requirements
recommended in AS5100 and the robustness requirements in AS1170. The outcome of this paper
will be useful to practising structural engineers to design prefabricated CFST columns with BCC
connections under tension.

Keywords: prefabricated CFST columns; prefabricated column connections; structural bolts;
steel-concrete composite structure; tension behaviour; numerical analysis

1. Introduction

In practice, prefabricated construction systems are limited to timber, reinforced con-
crete (RC) and steel structures. The prefabricated composite structures using concrete-filled
steel tubular (CFST) columns are limited. However, CFST columns have high merit in the
construction of prefabricated steel-concrete composite structures due to their structural and
constructional benefits [1,2]. CFST columns are fabricated without any additional form-
work, as the hollow steel tube is used as formwork, which reduces the construction cost and
time. Even concrete damage usually observed during the transportation of conventional
prefabricated RC columns can be overcome by utilising the steel tubes in the CFST col-
umn. Steel tubes effectively protect the inner concrete core of CFST columns from damage
during transportation.

Extensive research investigations on CFST columns for on-site construction were con-
ducted experimentally and numerically under different loading conditions, such as compres-
sion [3–17], bending [18–27] and tensions [28–32]. In the conventional construction of CFST
columns, welded connections are widely used to connect one steel tube to another steel tube
of CFST columns, which is assumed to behave similarly to continuous CFST columns without
connections. The tensile behaviour of CFST columns without connections was investigated
by Han et al. [28] and compared with the design code of AIJ [33], AISC [34], and EC4 [35]. In
recent years, grouted sleeve connections [36–39], base plate connections [40–43] and demount-
able connections [44,45] were investigated under either tension or bending. The grouted
sleeve connections were proposed for the construction of prefabricated square CFST columns
under tension [39], and the demountable connections using blind bolts were proposed for the
demountable construction of CFST columns [44].
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The effects of number, spacing and height of the ribs of the sleeve were investigated
in [37,39] to understand the bond and shear behaviour of grouted sleeve connections. It
was reported in [37] that grouted deformed pipe splice (GDPS) sleeve could provide a
good tensile capacity. However, such GDPS sleeve connections require a special fabrication
process and higher installation accuracy, leading to a higher cost than conventional steel
sleeves [38]. To overcome this problem, Sui et al. [38] developed shear key–grouted column
connections with a square hollow section (SHS) for the prefabricated square CFST columns.
The key issues that hindered the use of grouted sleeve connections are the quality control
of sleeve and grouting materials and the shortage of skilled labour [39].

Liu et al. [40,41] developed connection systems using extended cover plates and
bolts to construct prefabricated square hollow steel (SHS) columns, similar to the base
plate bolted connections. The extended cover plates and bolts are used to connect two
prefabricated SHS columns. Similar to the base plate bolted connection, the extended cover
plates are welded to the end of the steel tube and bolted using conventional structural bolts.
It was reported that a large number of bolts is required to make a rigid connection [41]. To
connect two 200× 12 mm square HSS columns, a total of 24 bolts were used. The behaviour
of the proposed connections is investigated based on the beam-column connections under
monotonic static and cyclic loading [40–42]. However, Liu et al. [40–42] did not investigate
the tensile behaviour of prefabricated SHS columns with their proposed connections. When
prefabricated SHS/CFST columns with base plate connections are under tension, the base
plate of the traditional connections is under bending and prying action is observed to be
significant [43]. As a result, the ultimate capacity of the traditional connections decreases
with a lower thickness of the base plate. In order to minimise the prying action, the plate
thickness of the traditional connections needs to be increased [43].

Uy et al. [44] studied the tensile behaviour of CFST columns with demountable connec-
tions and assessed the results with the requirements in Australian Standards AS5100 [37]
and AS1170 [38]. It was concluded in the previous research studies that the tensile load ca-
pacity of the CFST column should be at least equal to the yield strength capacity of the steel
tube [28,44]. Although demountable connections with blind bolts were proposed to connect
two CFST columns, such connections are not suitable for the prefabricated concrete-filled
steel tube (PCFST) columns because of the installation procedure, complicated geometry
and expensive blind bolts [1,2]. The use of blind bolts should be avoided where possible
for the economy, as blind bolts are more costly than conventional bolts [1]. To simplify the
construction process of connection, the authors developed bolted connections using base
plates and standard structural bolts instead of blind bolts [2]. Furthermore, the authors
investigated the behaviour of developed bolted column-column (BCC) connections in
PCFST columns under compression [2]. There is even no research on prefabricated CFST
columns with BCC connections under tension. It is worth mentioning that the tensile
behaviour of developed BCC connections in PCFST columns is significantly different from
the compression behaviour of BCC connections in PCFST columns. When PCFST columns
are under tension, the tensile force is mainly resisted by the steel tube and the tensile force
transfers from one column to another column through the BCC connections. Hence, it is
critical to study the tensile behaviour of PCFST columns with BCC connections before its
wide practical application in the construction industry.

In order to address the above issues, this research mainly investigates the behaviour of
prefabricated CFST columns with BCC connection under tension and compares the results
with the design requirements of AS5100 [46] and robustness requirements of AS1170 [47]
to check the feasibility of Australian Standards for prefabricated CFST columns with BCC
connections under tension. Based on the parametric analysis results, the design details of
BCC connections to connect two prefabricated columns are provided, which will be useful to
practising structural engineers and will promote the use of CFST columns in the prefabricated
construction. It is worth noting that three connections with different bolt arrangements are
developed for corner columns, edge columns, and interior columns, and the tensile behaviour
of PCFST columns with developed connections is investigated through a numerical study



Sustainability 2023, 15, 2846 3 of 27

using ABAQUS 2020 version [48]. A parametric study has been carried out to understand the
effect of key components of connections, including the number (TB = 4, 6, 7, 8) and diameter
(db = 16, 18, 20, 24 mm) of bolts, the thickness of the base plate(tbp = 8, 10, 14, and 18 mm), the
thickness of horizontal (ths = 10, 12, 13, 15 mm) and vertical (ths = 4, 6, 8, 10 mm) stiffeners,
and yield strength of steel tubes on the behaviour of PCFST columns with connections. Finally,
the developed connections are compared with conventional base plate connections.

2. Design Concept of PCFST Columns with BCC Connections

The innovative bolted connections are designed using conventional structural bolts
instead of expensive blind bolts to connect two prefabricated CFST columns, which sim-
plifies the construction process and reduces the construction cost of the connection. Three
bolted column-column (BCC1, BCC2, and BCC3) connections are developed using standard
structural bolts, base plates, and stiffeners. The main differences between these three BCC
connections are the number of bolts and the configuration of the base plate. As shown
in Figure 1, the developed BCC1, BCC2, and BCC3 connections are mainly designed to
connect two PCFST columns for the corner, edge, and interior columns of a prefabricated
composite building. These three columns are selected based on the locations of columns
and their load-resisting requirements.
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Figure 1. Location of PSFT columns with developed BCC connections.

In general, the corner column supports 25% of a load of an interior column. The edge
column supports 50% of a load of an interior column, as shown in Figure 1. In this paper,
column load at different locations is calculated based on the tributary area surrounding
the column and its gravity load (dead load and live load). As the load requirements
and location of the three columns are different, six bolts are used for BCC1 connections
for a corner column (Figure 1a), seven bolts are used for BCC2 connections for an edge
column (Figure 1b), and eight bolts are used for PBCC3 connections for an interior column
(Figure 1c). Although in this paper, six bolts are used to connect two corner columns,
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and seven bolts are used to connect two edge columns, eight bolts can also be used to
connect two edge/corner columns, the same as the interior columns, to resist the higher
load demand from the edge column and corner column.

The fabrication and construction processes of PCFST columns with BCC connection
are similar to the process discussed by the authors in [2]. The bottom end of the upper
PCFST column is placed on the top end of the bottom PCFST column, and then all nuts
and coupler bolts need to be tightened. To install the bolts using an open spanner, total
clearance near the connection plays a key role [2]. Minimum spanner clearance and bolt
edge distance are required to tighten all nuts and coupler bolts.

The details of interior PCFST columns with BCC connection are illustrated in Figure 2
only. It is worth mentioning that the coupling bolts can resist only the compression load,
not the tensile load, as the head of the coupling bolts is not firmly attached to the horizontal
stiffeners (Figure 2). Therefore, the tensile load behaviour of the proposed PCFST columns
with BCC connections is studied without considering the effect of coupling bolts in this
paper using finite element (FE) modelling, as shown in Figure 3a–g. The material properties
of steel tubes, stiffeners, base plates and bolts used in FE analysis are reported in Table 1.
FE modelling details are discussed in Section 3. The results obtained from FE analysis of
PCFST columns with BCC connections for different parameters related to BCC connections
are discussed in Section 4. Experimental investigation on the tensile behaviour of the
proposed PCFST column with BCC connections is considered beyond the scope of this
paper. Furthermore, the cost analysis for manufacturing the connection components is
considered beyond the scope of this paper.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 27 
 

column load at different locations is calculated based on the tributary area surrounding 

the column and its gravity load (dead load and live load). As the load requirements and 

location of the three columns are different, six bolts are used for BCC1 connections for a 

corner column (Figure 1a), seven bolts are used for BCC2 connections for an edge column 

(Figure 1b), and eight bolts are used for PBCC3 connections for an interior column (Figure 

1c). Although in this paper, six bolts are used to connect two corner columns, and seven 

bolts are used to connect two edge columns, eight bolts can also be used to connect two 

edge/corner columns, the same as the interior columns, to resist the higher load demand 

from the edge column and corner column. 

The fabrication and construction processes of PCFST columns with BCC connection 

are similar to the process discussed by the authors in [2]. The bottom end of the upper 

PCFST column is placed on the top end of the bottom PCFST column, and then all nuts 

and coupler bolts need to be tightened. To install the bolts using an open spanner, total 

clearance near the connection plays a key role [2]. Minimum spanner clearance and bolt 

edge distance are required to tighten all nuts and coupler bolts. 

The details of interior PCFST columns with BCC connection are illustrated in Figure 

2 only. It is worth mentioning that the coupling bolts can resist only the compression load, 

not the tensile load, as the head of the coupling bolts is not firmly attached to the horizon-

tal stiffeners (Figure 2). Therefore, the tensile load behaviour of the proposed PCFST col-

umns with BCC connections is studied without considering the effect of coupling bolts in 

this paper using finite element (FE) modelling, as shown in Figure 3a–g. The material 

properties of steel tubes, stiffeners, base plates and bolts used in FE analysis are reported 

in Table 1. FE modelling details are discussed in Section 3. The results obtained from FE 

analysis of PCFST columns with BCC connections for different parameters related to BCC 

connections are discussed in Section 4. Experimental investigation on the tensile behav-

iour of the proposed PCFST column with BCC connections is considered beyond the scope 

of this paper. Furthermore, the cost analysis for manufacturing the connection compo-

nents is considered beyond the scope of this paper. 

 

Figure 2. Details of interior PCFST column with BCC connection. Figure 2. Details of interior PCFST column with BCC connection.



Sustainability 2023, 15, 2846 5 of 27

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 27 
 

 

Figure 3. Details of FE model of PCFST column with developed BCC connections. 

Table 1. Mechanical properties used in FE modelling for different steel elements of PCFST columns 

with BCC connection. 

Material Properties 
Yield Stress, fy 

(MPa) 
Ultimate Stress, fu (MPa) Elastic Modulus, Es (GPa) 

Steel tube 379 473 206 

Stiffeners 388 506 206 

Baseplate 388 506 206 

Normal bolts 640 800 200 

3. Development of Numerical Models 

3.1. Element, Mesh and Contact Modelling 

In this paper, the tensile behaviour of PCFST columns with BCC connections under 

tension is studied using finite element (FE) analysis based on ABAQUS software version 

2020 [48]. It is worth noting that the FE analysis approach has been widely used to over-

come any experimental limitations (expensive and time-consuming). Nonlinear FE anal-

ysis has been widely used to predict the behaviour of CFST columns under compression 

Figure 3. Details of FE model of PCFST column with developed BCC connections.

Table 1. Mechanical properties used in FE modelling for different steel elements of PCFST columns
with BCC connection.

Material Properties Yield Stress, f y
(MPa)

Ultimate Stress, f u
(MPa)

Elastic Modulus, Es
(GPa)

Steel tube 379 473 206
Stiffeners 388 506 206
Baseplate 388 506 206
Normal bolts 640 800 200

3. Development of Numerical Models
3.1. Element, Mesh and Contact Modelling

In this paper, the tensile behaviour of PCFST columns with BCC connections under
tension is studied using finite element (FE) analysis based on ABAQUS software version
2020 [48]. It is worth noting that the FE analysis approach has been widely used to overcome
any experimental limitations (expensive and time-consuming). Nonlinear FE analysis has
been widely used to predict the behaviour of CFST columns under compression [49–54],
bending [55–58], and tension [29,30,44]. The FE models for BCC connections in PCFST
columns under tension have been developed based on the FE modelling details discussed
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by the authors in Ref. [2]. However, for clarity, a brief description of FE models has been
provided herein. The length of PCFST columns, including BCC connections, is used as
450 mm. The concrete, steel tube, base plate stiffeners, and bolts are simulated by using
C3D8I solid elements. The mesh sizes used in the FE modelling of steel tube and core
concrete of PCFST columns are the same as the mesh sizes (B/15 and B/6) used in Ref. [2].
In the connection zone, the base plates, stiffeners, bolts, steel tubes, and concrete are
modelled using the mesh size of B/15 in all directions, as recommended in Ref. [2].

The interactions between different surfaces are assigned using two properties such as
normal interaction and tangential interaction, as per the recommendation in ABAQUS [48].
The normal interaction between the surfaces is defined as a “hard contact”. The contact
pressure–overclosure relationship is used in hard contact to minimise the penetration of
the slave surface into the master surface at the constraint locations. Any contact pressure
can be transmitted between surfaces when they are in contact. If the contact pressure
reduces to zero, surfaces separate, and separated surfaces come into contact when the
clearance between them reduces to zero. The tangential interaction between surfaces is
defined using the Coulomb friction model, where the tangential motion will be zero until
the surface traction reaches a critical shear stress value. This critical shear stress (τ = µP)
can be calculated from the normal contact pressure (P) and friction coefficient (µ). In this
study, friction coefficients are used as 0.25 for the base plate to base plate contact and
bolts to base plate contact [59–61] and 0.6 for steel tube to concrete contacts, base plates to
concrete contact, and stiffeners to concrete contacts [54,61], respectively. The master and
slave surfaces in a contact pair are assigned as per the recommendation in ABAQUS [48].
For example, bolts are assigned as master surfaces, and base plates are assigned as slave
surfaces for the interaction between bolts and base plates, steel tubes, base plates, and
stiffeners are considered as master surfaces, and concrete is considered as slave surfaces for
the interaction between concrete and steel tubes or base plates or stiffeners. Figure 3d,e
shows the hard contact details between bolts and plates and the top base plate and bottom
base plate. Figure 3f,g shows tie constraint details between the base plate and steel tube,
base plate and stiffeners and stiffeners and steel tube. Figure 3c shows a typical FE model
of PCFST columns, including different components of the developed BCC connections. The
Poisson’s ratios of 0.3 for steel and 0.2 for concrete materials are used in this study.

3.2. Stress–Strain Material Models Used in FE Modelling

A linearly elastic-perfectly plastic stress–strain model is generally used to simulate
steel tubes of square CFST columns under compression [2]. In this paper, a linearly elastic–
plastic stress–strain model with strain hardening and softening [61] is used for the steel tube
of square CFST columns under tension. The full-range stress–strain models for structural
steels and bolts, as per Hassan [61], are used in this study to simulate the strain hardening
and softening material behaviour of structural steel and structural bolt materials. It is worth
mentioning that when steel materials are under tension and bending, strain hardening
behaviour is observed. Due to this, strain hardening behaviour is considered in the stress–
strain material models of bolts and steel plates used in prefabricated CFST columns with
BCC connections. A typical full-range stress–strain curve used in FE modelling is given in
Figure 4a and Equation (1) for structural steels (steel tube, base plate, and stiffener) and in
Figure 4b and Equation (2) for structural bolts.

σ =



Es ε 0 ≤ ε < εy
fy εy ≤ ε < εp

fu −
(

fu − fy
)( εu−ε

εu−εp

)p
εp ≤ ε < εu

fu εu ≤ ε < εu1

fu − ( fu − ft)
(

ε−εu1
εt−εu1

)p′
εu1 ≤ ε < εt

ft − ft

(
ε−εt

εu−εt

)
εt ≤ ε ≤ εu1

(1)
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σ =



Es ε 0 ≤ ε < εy

fu −
(

fu − fy
)( εu−ε

εu−εy

)p
εy ≤ ε < εu

fu εu ≤ ε < εu1

fu − ( fu − ft)
(

ε−εu1
εt−εu1

)p′
εu1 ≤ ε < εt

ft − ft

(
ε−εt

εu2−εt

)
εt ≤ ε ≤ εu2

(2)

where σ and ε are engineering stress and strain, respectively, εy is the yield strain
(εy = fy/Es), εp is the strain at the onset of strain hardening, εu is the strain at ulti-
mate strength fu; εu1 is the strain at the onset of strain-softening; εt is the strain at fracture
stress ft; εu2 is the total strain; p is the strain-hardening exponent; and p′ is the strain-
softening exponent. The calculation details of the value of εu, εu1εt, εu2, p, p′ and ft are
discussed in [61].
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In this study, the elastic and plastic behaviour of concrete materials is considered. To
simulate the elastic behaviour of concrete, the modulus of elasticity of unconfined concrete is
used. To simulate the plastic behaviour, the stress–strain model of confined concrete is used.

The elastic modulus used in FE modelling of core concrete is determined as per the
recommendation in ACI 318 [62] using Equation (3).

Ec = 4700
√

f ′c (3)

where f ′c is the compressive strength of unconfined concrete in MPa.
Different studies [50–54,63–68] developed different stress–strain models for confined

concrete by considering the effect of confinement and stress-path dependence. These ma-
terial models were developed based on the research conducted on concrete confined
by steel tube [50–54,67] or fibre-reinforced polymer (FRP) [63–66,68]. The confining
stress was considered in the stress-path history of confinement provided by steel tube or
FRP [54,66]. Although there are different materials for confined concrete, the stress–strain
model proposed by Tao et al. [54] for confined concrete under compression is used in this
study to simulate the behaviour of concrete confined by steel tube in CFST columns, as
this model has been widely used in the literature. The stress–strain model used in the FE
modelling of confined concrete is shown in Figure 5a for compression and Figure 5b for
tension. The details of the full-range stress–strain model for compression and tension are
available in Tao et al. [54] and Hassan [61], respectively. It is well documented that when
CFST columns are under axial compression, there is no or negligible interaction between
the steel tube and concrete in the initial loading stage, as a small gap exists between the
steel tube and concrete due to the differences in the Poisson’s ratio of the steel tube and con-
crete [54]. The interaction between steel tube and concrete starts when axial strain increases,
as the lateral expansion of the concrete gradually becomes greater than the expansion of the
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steel until the two components are in contact. This confining stress has been considered in
Tao et al. [54] model, and any strength increase in concrete due to the confinement has been
captured in the FE modelling through the interaction between the steel tube and concrete.
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3.3. Load and Boundary Conditions

The tensile load and boundary conditions are assigned to reflect the actual conditions
of PCFST columns with developed BCC connections. Before applying the tensile force,
bolt tightening force is applied in the first step, similar to the method reported in Ref. [69],
through the “bolt load” option available in ABAQUS [48], and then tensile force is assigned
in the second step using the displacement control method at the bottom end of PCFST
column. The boundary condition is applied at the top end of PCFST columns and is
restrained in the movement (UX, UY, and UZ) and rotation (RX, RX, and RY and RZ) in
all directions at the top end of columns, see Figure 3a A “dynamic implicit” approach is
used to carry out the nonlinear analysis and to capture the post-peak behaviour when
complex interactions among different components are considered in the BCC connection
zone [2]. The default convergence criteria and threshold in Abaqus have been used in the
FE modelling.

3.4. FE Model Validation
3.4.1. CFST Columns under Tension

Three test data of square CFST columns under tension conducted by Zhou et al. [31]
are collected to verify the FE model. The material and geometry properties of three square
CFST columns (SCFT ST200-6, SCFT ST200-3, and SCFT ST100-3) collected from Zhou
et al. [31] are presented in Table 2. The stress–strain curves of the confined concrete used in
FE modelling of SCFT ST200-6, SCFT ST200-3, and SCFT ST100-3 specimens are determined
according to Tao et al. [53], based on the unconfined concrete compressive strength reported
in Zhou et al. [31]. The stress–strain curves of the steel tube used in the FE modelling are
determined according to Hassan [61]. The yield strength of the steel tube is 389.3 MPa, and
the unconfined concrete compressive strength is 43.3 MPa. The element type, mesh size
and contact between steel and concrete are discussed in Sections 3.1–3.3.

The results of the FE model and test of SCFT ST200-6, SCFT ST200-3, and SCFT
ST100-3 specimens are shown in Figure 6. It can be observed from Figure 6 that the initial
stiffnesses of the specimens obtained from FE models are observed to be the same as their
experimental results. It can also be observed that the FE predicted ultimate tensile strengths
of SCFT ST200-6, SCFT ST200-3, and SCFT ST100-3 specimens are matched to their test
results. In this paper, the FE predicted ultimate tensile strength of each square CFST column
under tension is determined based on the load at 0.01 strain, which is selected based on
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the definition used for the ultimate capacity of CFST columns under compression [53]
when there is a strain hardening behaviour and does not have any softening branch on the
load-strain curve. This definition is well established and accepted by researchers. The FE
predicted ultimate tensile strength capacities of SCFT ST200-6, SCFT ST200-3, and SCFT
ST100-3 columns are 2064.45 kN, 1080.50 kN, and 508.68 kN, respectively. The tested
ultimate tensile strengths of SCFT ST200-6, SCFT ST200-3, and SCFT ST100-3 columns are
2003.53 kN, 1035.30 kN, and 504.50 kN, respectively. The maximum prediction error is
4.3%. As the predicted FE tensile results match reasonably with the experimental results
reported in [31], the verified FE model is considered for the numerical analysis of square
PCFST columns with developed BCC connections.

Table 2. FE and test results of square CFST columns under tension.

Specimens

Cross-Sectional
Dimension
(B × H × t)

(mm)

Length
(mm)

Cubic
Compressive
Strength of

Concrete
(MPa)

Yield
Stress,
(MPa)

Ultimate Tensile Load
(kN) at 0.01 Strain Test/FE

Ratio
Test FE

1. SCFT ST200-6 [31] 200 × 200 × 6 2000 43.3 389.3 2003.53 2064.45 0.971
2. SCFT ST200-3 [31] 200 × 200 × 3 2000 43.3 389.3 1035.30 1080.350 0.958
3. SCFT ST100-3 [31] 100 × 100 × 3 20,000 43.3 389.3 504.50 508.68 0.992
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3.4.2. Bolted T-Stub Connections under Tension

As there are no test data available on the proposed PCFST columns with BCC con-
nections under tension, test data of T-stub connections (i.e., CFST columns joints with bolt
connection under tension) are considered in this study for the validation of the developed
FE model. Furthermore, the behaviour of T-stub connections under tension is similar to
the behaviour of proposed PCFST columns with BCC connections under tension. Four
specimens (JS1, JS2, JS3 and JC4) under tension tested by Li et al. [70] were simulated,
which included the endplate (280 × 200 × 14), blind bolts (M20 Grade 8.8) and binding
bars (φ16). Four binding bars were used in specimen JS2, and eight binding bars were used
in specimen JS3. One of the CFST column joints used passing through bolts (φ20) was intro-
duced as a passing through-bolted (φ20) endplate connection (specimen JS4). The test and
FE model results of specimens JS1, JS2, JS3, and JC4 are reported in Figure 7. Failure modes
obtained from the test and FE model are illustrated in Figure 8. The load–displacement
behaviours obtained from the FE model of each specimen are matched very well with
the experimental results of each specimen. The maximum prediction error is 7.99% for
specimen JS3. Furthermore, the predicted failure mode of JS3 is similar to the test results.
It indicates that the developed FE model can be used to conduct parametric analysis for
PCFST columns with developed BCC connections.
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3.5. Parametric Study

A parametric study has been conducted to investigate the behaviour of PCFST columns
with developed BCC connections. In the parametric analysis, the effect of bolt arrangements
(total bolts (TB) = 4, 6, 7, 8), base plate thickness (tbp = 8, 10, 14, and 18 mm), bolt diameters
(db = 16, 18, 20, 24 mm), vertical stiffeners (ths = 4, 6, 8, 10 mm), horizontal stiffeners
(ths = 10, 12, 13, 15 mm), and yield strength of steel tube (f y,t = 380, 450, and 550 MPa)
are mainly investigated. It is worth mentioning that the compressive strength of concrete
(50 MPa), width-to-thickness ratio (B/t = 38.5) of the steel tube, and maximum outer
dimension (154 mm) of the steel tube are kept constant. The results obtained from the FE
analysis based on the above limits of each parameter are discussed in Section 4.

4. Results and Discussion
4.1. Effect of Bolts Arrangements

The tensile behaviour of four PCFST columns with different bolts arrangement has
been investigated in this section, as shown in Figure 9a–d. In this section, a total of eight
full-scale FE models for PCFST columns (154 × 154 × 4 mm) with BCC connections are
simulated under tensile loading for different numbers of tensile bolts (TB = 4, 6, 7, 8), and
base plate thicknesses (tbp = 8 mm and 18 mm). The dimension (B × t) of the steel tube of
eight square PCFST column is 154 × 4 mm.

The tensile load–elongation curves of PCFST columns with developed BCC connec-
tions are reported in Figure 10a for tbp = 8 mm and in Figure 10b for tbp = 18 mm. In both
cases (tbp = 8 mm and 18 mm), the thickness of steel tube (t = 4 mm), horizontal stiffeners
(ths = 13 mm), vertical stiffeners (tvs = 8 mm), the diameter of bolts (db = 20 mm) and
length of column (L = 550 mm) are kept the same. The material properties of base plate
(f y,bp = 388 MPa), stiffeners (f y,s = 388 MPa), bolts (f y,b = 640 MPa), steel tube
(f y,t = 379 MPa), and concrete ( f ′c = 50 MPa) are kept the same. The elastic modulus,
yield strength, and ultimate tensile strength of steel tubes, base plates, stiffeners, and
bolts are reported in Table 1. The tensile load–elongation curves of PCFST columns with
developed BCC connections vary with the number of bolts, as shown in Figure 10a,b. When
the thickness of the base plate tbp = 8 mm in the developed BCC connections, the initial
stiffness of the PCFST column with developed BCC connections changes with the number
of bolts, as shown in Figure 10a. The higher stiffness is observed for the BCC connections
with eight bolts, and the lower stiffness is observed for the BCC connections with four
bolts. The ultimate tensile load capacity of PCFST columns is observed to be 550.70 kN,
734.11 kN, 831.03 kN, and 929.71 kN, respectively, for BCC connections with four, six, seven,
and eight bolts, as shown in Figure 10a. The tensile load capacity improves significantly
when a larger number of bolts are used in the BCC connection to connect two PCFST
columns. Compared to the four bolts BCC connection, the maximum load improvement is
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33.30% for six bolts BCC connection, 50.90% for seven bolts BCC connection, and 68.82%
for eight bolts BCC connections. In all cases, the failure is due to the failure of bolts and the
yielding of the base plate.
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When an 18 mm thick base plate is used in BCC connections, the ultimate tensile load
capacity is observed to be 892.34 kN, 971.58 kN, 1101.93 kN, 1106.61 kN, respectively, for
the BCC connections with four, six, seven, and eight bolts. The maximum load increase for
eight bolts BCC connections is 24% compared to the four bolts BCC connections. However,
the tensile load capacities of the columns for seven and eight bolts BCC connections are
almost the same. This is due to the failure of the base plate. Therefore, the tensile load
capacity of PCFST columns with 18 mm base plate BCC connections is higher than that of
the PCFST columns with 8 mm base plate BCC connections, as shown in Figure 11.
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4.2. Effect of the Thickness of Base Plate

The base plate is one of the most important parameters of the developed connection. The
effects of the base plate on the tensile load capacity of the PCFST column with connections are
studied in this section by changing the thickness of the base plate (tbp = 8, 10, 14, and 18 mm).
The effect of base plate thickness is also investigated by incorporating different numbers of
tensile bolts (TB = 4, 6, 7, 8) in BCC connections. The tensile load–elongation curves of PCFST
columns for different base plate thicknesses (tbp = 8–18 mm) are shown in Figure 12a–d for the
different numbers of bolts. In all cases, the thickness of the steel tube (t = 4 mm), horizontal
stiffeners (ths = 13 mm), vertical stiffeners (tvs = 8 mm), bolt diameter (db = 20 mm) and length
of the column (L = 550 mm) are kept the same. Even the material properties of base plate
(f y,bp = 388 MPa), stiffeners (f y,s = 388 MPa), bolts (f y,b = 640 MPa), steel tube (f y,t = 379 MPa),
and concrete ( f ′c = 50 MPa) are considered the same.

The tensile load–elongation curves of PCFST columns with four bolted BCC connec-
tions with different base plate thicknesses are reported in Figure 12a–d show the tensile
load–elongation curves of PCFST columns for four bolted BCC connections, six bolted
BCC connections, seven bolted BCC connections, and eight bolted BCC connections. When
the thickness of the base plate is changed from 8 mm to 18 mm, the initial stiffness of the
PCFST column changes for all cases, as shown in Figure 12a–d. The higher initial stiffness
is observed for 18 mm base plate BCC connections, and the lower stiffness is observed for
8 mm base plate BCC connections. The ultimate tensile load capacity of PCFST columns
improves significantly with an increase in the thickness of the base plate for four bolted
BCC connections (Figure 12a) and six bolted BCC connections (Figure 12b). However,
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the ultimate capacity of PCFST columns with seven or eight bolted BCC connections is
observed to be almost the same for 14 mm and 18 mm thick base plates. The failure mode
of PCFST columns with BCC connections mainly depends on the number of bolts and
thickness of the base plate. The failure is observed on the base plates and bolts when
thinner base plates (<10 mm) are used in BCC connections with 4–8 bolts. When thicker
base plates (≥10 mm) are used, failure is observed due to the combined failure of the steel
tubes, base plates, stiffeners, and bolts.
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4.3. Effect of Bolt Diameter

The effects of bolts diameter are analysed in this section by changing the diameter
of bolts, while the other connecting parameters (vertical stiffeners = 8 mm, horizontal
stiffeners =13 mm, base plate = 18 mm) of BCC connections are kept the same. The concrete
compressive strength and yield strength of steel tube and connecting components of
developed BCC connections used in FE modelling are reported in Table 1 and in Section 4.1.
Figure 13 describes the tensile load–elongation behaviour of PCFST columns with different
diameters of bolts (db = 16, 18, 20, 24 mm) used in BCC connections. The results of the
six bolted BCC connections s are described in Figure 13a. Figure 13b,c show the tensile
load–elongation curves of PCFST columns for seven bolted connections and eight bolted
connections, respectively. For six bolted connections, the ultimate tensile load capacity of
PCFST columns increases significantly with an increase in the diameter of bolts, as shown
in Figure 13a. Even the failure mode also changes from the failure of bolts to the combined
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failure of steel tubes, base plates, and bolts. For seven bolted connections, there is no
significant change in the ultimate tensile load capacity of PCFST columns when the bolt
diameter is considered 20 mm or higher, as shown in Figure 13b. In this case, the failure is
also observed to be the combined failure, i.e., yielding of steel tube, base plate, stiffeners,
and bolts. However, the load capacity is reduced when a 16 or 18 mm diameter of bolts is
used. Even the failure is observed to be due to the failure of bolts. For eight bolted BCC
connections, the ultimate tensile load capacity of PCFST columns is found to be the same,
although the diameter of the bolts is increased from 16 mm to 24 mm. In all cases, the
failure is also observed to be the combined failure (yielding of steel tube, base plate, and
bolts). It can be noted that the smaller diameter (16 mm) bolts can be used for eight bolted
BCC connections, whereas 20 mm and 24 mm diameter bolts (larger bolts) can be used for
seven bolted BCC connections and six bolted BCC connections, respectively, to achieve the
same tensile load capacity.
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4.4. Effect of Vertical Stiffener

Four different thicknesses of vertical stiffeners (ths = 4, 6, 8, 10 mm) of BCC connections
with six bolts are considered to investigate their effect on the tensile load capacity of PCFST
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columns. The thickness of horizontal stiffeners (ths = 13mm), base plate (tbp = 18 mm),
and steel tube (t = 4 mm) are kept constant in this analysis. The diameter of bolts is used
as db = 20 mm. The material properties of the column components, including connecting
components of developed BCC connections (base plates, horizontal and vertical stiffeners,
bolts), are also kept constant.

Figure 14 shows the tensile load–elongation curves of PCFST columns for different
base plate thicknesses used in connections. It can be noted that the initial stiffness of the
column is almost the same for all cases, although the value of ths is varied from 4 to 10 mm.
However, the yield and ultimate tensile load of the columns are increased. When 4 mm
thick vertical stiffeners are used in eight bolted BCC connections, the tensile load of the
PCFST column is reduced compared to the same column with 10 mm vertical stiffeners.
The failure of the prefabricated column is due to the yielding of 4 mm vertical stiffeners.
When the thickness of vertical stiffeners is 8 mm or above, the failure of the column is due
to the combined failure of the steel tube, base plate, stiffeners, and bolts.
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4.5. Effect of Horizontal Stiffener

Similar to the vertical stiffeners, four different thicknesses (ths = 10, 12, 13, 15 mm) of
horizontal stiffeners of BCC connections are considered to investigate their effects on the
tensile load capacity of PCFST columns. The other connecting components such as vertical
stiffeners (tvs = 8 mm), base plate (tbp = 18 mm), steel tube (t = 4 mm) and bolt (db = 20 mm)
and material mechanical properties of column components and connecting components
of connections are kept the same. The yield strength of all steel materials and concrete
compressive strength are reported in Table 1.

Figure 15 illustrates the effect of horizontal stiffeners on the tensile load–elongation
behaviour of PCFST columns with eight bolted BCC connections. In all cases, the tensile
load–elongation curves of columns are observed to be almost the same as before the
yielding. Only the tensile load capacity at the yielding stage differs. The tensile load
capacity for 10 mm and 12 mm thick horizontal stiffeners is lower than that for 13 mm
and 15 mm horizontal stiffeners. However, there is no significant effect on the ultimate
tensile load due to changing the thickness of horizontal stiffeners from 10 mm to 15 mm.
Therefore, it can be concluded from the overall behaviour that the 13 mm thick horizontal
stiffener can be considered as the optimal thickness for horizontal stiffeners.
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4.6. Effect of Yield Strength of Steel Tube

The influence of connecting components of BCC connections (base plate, vertical
stiffeners, horizontal stiffeners, and bolts) is investigated in the previous sections. In this
section, the behaviour of eight bolted BCC connections is investigated by varying the yield
strengths (f y,t) of hollow steel tubes of (f y,t = 380, 450, and 550 MPa) where the connecting
components of eight bolted BCC connections (base plates: tbp = 18 mm, vertical stiffeners:
tvs = 8 mm, horizontal stiffeners: ths = 13 mm, and bolts: db = 24 mm) are kept constant.
The yield strength of all connecting components except bolts is considered the same as
the value of f y,t. The concrete compressive strength and yield strength of bolts are used as
50 MPa and 640 MPa, respectively, for all cases.

The effect of f y,t of steel tube on the tensile load–elongation curves of PCFST columns
with eight BCC connections are shown in Figure 16. The initial stiffness of all PCFST
columns is observed to be the same, although different f y,t of steel tube is considered. This
is well expected as the modulus of elasticity of steel tube, and connecting components are
used the same for all cases. However, the ultimate tensile load capacity of columns increases
with an increase in the value of f y,t of steel tubes. It means that the tensile behaviour of
prefabricated columns depends not only on the connecting components of BCC connections
but also on the steel tube. In all cases, the failure is observed due to the value of f y,t of the
steel tube, base plate, and bolts.
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4.7. Comparison with Conventional Base Plate Connections

The behaviour of PCFST columns with developed BCC connections is compared with
the same column with conventional base plate connections, as shown in Figure 17. In both
cases, a total of eight bolts (db = 20 mm) are used to connect one base to another one. Three
different base plate thicknesses (tbp = 10, 14, 18 mm) are considered in both cases for the
parametric analysis to evaluate differences in their behaviours. As reported in Section 4.1,
the material properties are kept constant for both cases. In the parametric analysis of
prefabricated columns with developed BCC connections, the connecting components of
BCC connections such as vertical stiffeners (tvs = 8 mm), horizontal stiffeners (ths = 13 mm),
steel tube (t = 4 mm) and bolt (db = 20 mm) are kept constant.
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Figure 17. PCFST columns with developed and existing base plate connections.

Figure 18 shows the tensile load–elongation curves of PCFST columns with developed
BCC connections and conventional connections. Figure 18a reports the tensile behaviour
for the 10 mm base plate used in the BCC connections and conventional connections.
Figure 18b,c shows the tensile load–elongation curves of PCFST columns for the 14 mm
base plate and 18 mm base plate, respectively. It can be noted from Figure 18a–c that the
tensile behaviour of PCFST columns with conventional base plate connections is different
from that of PCFST columns with developed BCC connections.

It can be seen that for a thinner base plate (10 mm), the initial stiffness and ultimate
tensile load capacity of columns with conventional connections are lower than those of the
columns with developed BCC connections, as shown in Figure 18a. However, the initial
stiffness and tensile load capacity of the column for conventional connections increases
with an increase in the thickness of the base plate, as shown in Figure 18b,c. It is clear
that thicker base plates are required for conventional base plate connections to achieve the
higher tensile load capacity of the PCFST column. Although the tensile load–elongation
behaviour of columns with conventional connections mainly depends on the thickness of
the base plate, the tensile load–elongation behaviour of PCFST columns with developed
BCC connections is not influenced significantly by the thickness of the base plate. This could
be due to the more prying action developed on the conventional base plate connections [43]
compared to the developed BCC connections under tension. However, there is no difference
in the compression capacity of prefabricated CFST columns with conventional base plate
connections and the developed BCC connections under compression.
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For example, in conventional base plate connections, the base plate (tbp = 10 mm),
as shown in Figure 19b, is mainly subjected to a larger bending deformation compared
to the base plate of developed BCC connections having a 10 mm base plate, as shown in
Figure 19a. It can be seen that the maximum gap between two base plates of prefabricated
CFST columns is observed for conventional connections (5.9 mm), which can be minimised
by around 61% by using proposed BCC connections. This benefit can be achieved by proper
bolt arrangements, i.e., the location of the bolts. For developed BCC connections, four bolts
are used at four corners, which help to mitigate the bending deformation introduced at the
corner of the base plate, as shown in Figure 19a. In order to demonstrate this further, the
stress vector symbol is used to understand the internal stress distribution of base plates,
bolts and steel tubes.



Sustainability 2023, 15, 2846 20 of 27

Sustainability 2023, 15, x FOR PEER REVIEW 20 of 27 
 

19a. It can be seen that the maximum gap between two base plates of prefabricated CFST 

columns is observed for conventional connections (5.9 mm), which can be minimised by 

around 61% by using proposed BCC connections. This benefit can be achieved by proper 

bolt arrangements, i.e., the location of the bolts. For developed BCC connections, four 

bolts are used at four corners, which help to mitigate the bending deformation introduced 

at the corner of the base plate, as shown in Figure 19a. In order to demonstrate this further, 

the stress vector symbol is used to understand the internal stress distribution of base 

plates, bolts and steel tubes. 

 

Figure 19. Failure modes of PCFST columns with proposed and conventional base plate connections 

at 0.01 strain of steel tube. (a) Proposed BCC connections. (b) Conventional base plate connections. 

Both types of connections are studied, as shown in Figure 20a for BCC connections 

and Figure 20b for connectional connections. The maximum tensile and compressive 

stresses (S, SS) are shown in red and blue colours, respectively. The magnitude of the ten-

sile and compressive stresses is represented by the length of the vector symbol. It can be 

seen from Figure 20a,b that the maximum tensile (374.6 MPa) and compressive stresses 

(705.1 MPa) are observed on the base plate of conventional connections and are higher 

than the maximum tensile stresses (321.1 MPa) and compressive stresses (508.1 MPa) of 

BCC connections, respectively. It is worth mentioning that the stresses are determined at 

the strain of 0.01 of the steel tube. It means that the failure occurred early on the conven-

tional base plate connection at a lower load capacity compared to the BCC connections at 

the same tensile strain of the steel tube. 

Figure 19. Failure modes of PCFST columns with proposed and conventional base plate connections
at 0.01 strain of steel tube. (a) Proposed BCC connections. (b) Conventional base plate connections.

Both types of connections are studied, as shown in Figure 20a for BCC connections
and Figure 20b for connectional connections. The maximum tensile and compressive
stresses (S, SS) are shown in red and blue colours, respectively. The magnitude of the
tensile and compressive stresses is represented by the length of the vector symbol. It can
be seen from Figure 20a,b that the maximum tensile (374.6 MPa) and compressive stresses
(705.1 MPa) are observed on the base plate of conventional connections and are higher than
the maximum tensile stresses (321.1 MPa) and compressive stresses (508.1 MPa) of BCC
connections, respectively. It is worth mentioning that the stresses are determined at the
strain of 0.01 of the steel tube. It means that the failure occurred early on the conventional
base plate connection at a lower load capacity compared to the BCC connections at the
same tensile strain of the steel tube.
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5. Design Calculations for Axial Tension
5.1. Design Requirement According to AS1170 and AS5100

When steel tubes are infilled with concrete to make PCFST columns, the tensile load
capacity of such columns increases compared to the hollow steel tube [28]. Although
the tensile load capacity of the PCFST column is increased compared to the tensile load
capacity of hollow steel tubes [28], the contribution of the steel tube is mainly considered
in the design tensile load capacity of CFST columns [45]. The design tensile load capacity
of the PCFST column is recommended as Tc = 0.9 fyt Ast in the Australian Standard
AS5100 [46], where Ast is the cross-sectional area of steel tube and fyt is the yield stress of
steel tube. In AS1170 [47], the design tensile load capacity of PCFST columns based on the
robustness consideration is recommended as Tc = ηNc, where Nc represents the ultimate
axial compressive strength of PCFST column and η reflects the factor which accounts for
the accidental damage. Li et al. [45] recommended the value of η to be 0.5. It means that
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the design tensile load capacity of PCFST column with column-column connection should
be at least half of the ultimate compressive strength (Nc) of PCFST column without column-
column connections. The ultimate compressive capacity of square PCFST column can be
determined using Nc = fyt Ast + f ′c Ac as per recommendation of the Australian Standard
AS5100 [46], where Ac is the cross-sectional area of concrete and f ′c is the compressive
strength of concrete core of PCFST column.

5.2. Evaluation of PCFST Columns Design Equations

The tensile strength capacity of PCFST columns with developed BCC connections is
compared with robustness and design strength equations, as shown in Figure 21. It can
be seen from Figure 21a that the ultimate tensile load capacity of the PCFST column with
developed connections is higher compared to the design capacity calculated according to
the AS5100 [46] and AS1170 [47]. It means that the tensile strength of the PCFST columns
with developed BCC connections can satisfy the design requirements of AS5100 [46] and
the robustness requirement of AS1170 [47].
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When the confinement factor, ξc =
Ast fy,t
Ac f ′c

< 1, as shown in Figure 21a, the design
tensile strength capacity of the PCFST column calculated based on the robustness require-
ment of AS1170 [47] is higher than that of the value determined according to AS5100.
However, it is the opposite for ξc > 1, as shown in Figure 21c. When the confinement factor,
ξc ∼= 1, as shown in Figure 21b, the design tensile strength capacity of the PCFST column
calculated based on the robustness requirement of AS1170 [47] is almost equal to the tensile
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strength capacity determined according to AS5100 [46]. It can be observed from the anal-
ysed results that AS5100 [46] is more conservative for lower confinement factors (ξc < 1)
and AS1170 [47] is more conservative for higher confinement factors (ξc > 1). There-
fore, the design tensile strength capacity of PCFST columns with developed connections
should satisfy both the design requirements of AS5100 [46] and the robustness requirement
of AS1170 [47].

5.3. Design Recommendations for BCC Connections

As the design tensile strength of the PCFST columns with BCC connections mainly
depends on bolts and base plates, the tension capacity of the bolts and bending capacity
of the base plate should be higher than the tensile capacity of the steel tube. In order to
ensure this, the diameter and base plate thickness should be determined based on the
yield strength of the steel tube according to the following recommendation. The main
implication of this design recommendation research is that the proposed theoretical design
recommendation will help the practicing structural engineers.

(1) The bolt diameter can be determined based on the assumption that the total tensile
capacity of bolts is equal to the total tensile capacity of the steel tube. The total tensile
capacity (Tb = NAb fp,b) of bolts mainly depends on the total number (N) of bolts used in
BCC connections and the proof strength of the bolt ( fp,b = 0.85 fy,b), where fy,b is the yield
strength of the bolt, Ab(=

π
4 d2

b) is the cross-sectional area of a bolt and db is the diameter of
the bolt. The total tensile capacity (Tt = Ast fy,t) of steel tube depends on the cross-sectional
area (Ast) of steel tube and the yield stress ( fy,t) of steel tube. From equilibrium, Tb is equal
to Tt, as shown in Figure 22. It means that NAb fp,b = Ast fy,t or N π

4 d2
b fp,b = Ast fy,t After

simplification, the diameter of the bolt (db) can be determined as of db =

√
4Ast fy,t
π N fp,b

.
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(2) The plate thickness can be designed according to the yielding limit state at the
tension interface [71]. The bending moment of the plate per unit length due to the generated
bolt tensile force can be determined as Mbp = Tb1l

bbp
, where Tb1

(
= Ab fp,b

)
is the tensile force

subjected to one corner bolt, l is the critical base plate cantilever dimension from the centre
of the bolt to the steel tube, bbp is the width of the base plate, as shown in Figure 22.
Mbp can also be calculated from the thickness of the base plate (tbp) and the yield stress of
the base plate ( fy,bp) as Mbp = fy,bpt2

bp By simplifying these two relationships, Mbp can be
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rewritten as Mbp = fy,bpt2
bp =

Ab fp,b l
bbp

. Further simplifying this relationship, the minimum

required thickness of the base plate (tbp) can be determined as tbp =

√
Ab fp,b l
bbp fy,bp

.

6. Conclusions

Prefabricated column-column connections are designed for corner columns, edge
columns and interior columns to connect two PCFST columns. The tensile load–elongation
behaviour of PCFST columns with developed BCC connections is studied numerically.
The tensile strength capacity of PCFST columns with developed BCC connections mainly
depends on the number of bolts and the configuration of base plates. Six bolted BCC
connections can be used for the corner column, whereas seven bolted BCC connections can
be used for an edge column, and eight bolted BCC connections can be used for an interior
column. The tensile load capacity of PCFST columns with six bolted BCC connections is
slightly lower than that of seven and eight bolted BCC connections. The tensile behaviour
of PCFST columns with eight bolted BCC connections is compared against the same column
with the conventional base plate connections with eight bolts. The initial stiffness and
ultimate tensile load capacity of PCFST columns with developed BCC connections are
higher than that of the corresponding columns with conventional base plate connections.
The thicker base plates are required for conventional base plate connections to connect
two PCFST columns, compared to developed BCC connections. It means that the material
cost of BCC connections can be minimised compared to the cost of conventional base plate
connections. The tensile strength capacity of PCFST columns with developed connections is
also compared with the design requirements of AS5100 [46] and the robustness requirement
of AS 1170 [38]. The tensile strength of the PCFST columns with developed BCC connections
can satisfy both the design requirement of AS5100 [46] and the robustness requirement of
AS1170 [47]. The design recommendation is provided to determine the diameter of bolts
and thickness of base plates.

The numerical results presented in this paper suggest a few important theoretical and
practical implications of this study for future research. First, the theoretical implication of
this study is that the design tensile strength capacity of PCFST columns with developed
connections needs to check both the design requirements of AS5100 [46] and the robustness
requirement of AS1170 [47] as more conservative results are observed in AS5100 [46] for
lower confinement factors and AS1170 [47] for higher confinement factors. Second, the
practical implication of this study is that the proposed design recommendation for bolts
and plates will guide practising structural engineers to design the connection components
of prefabricated CFST columns.

The limitation of this study is that only finite element analysis is used to investigate
the behaviour of the CFST columns with developed BCC connections under tension, not
an experimental study. Therefore, further experimental studies are required to examine
the behaviour of proposed connections by considering different parameters to develop the
design guidelines for the design capacity and construction procedures for prefabricated
CFST columns with BCC connections under tensions. In addition, the stiffness and ultimate
capacity of PCFST columns with BCC connection under bending can be investigated in
future research studies. Further research can be performed to determine the design capacity
of prefabricated columns with proper safety factors.
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