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Abstract: In the modern era, urban design and sustainable development are vital topics for megacities,
as they are important for the wellbeing of its residents. One of the effective key performance indices
(KPIs) measuring the city plan’s efficiency in quantity and quality factors is Quality of Life (QOL),
an index that policymakers can use as a critical KPI to measure the quality of urbanscape design.
In the traditional approach, the researchers conduct the questionnaire survey and then analyze the
gathered data to acquire the QOL index. The conventional process is costly and time-consuming,
but the result of the evaluation area is limited. Moreover, it is difficult to embed in an application or
system; we proposed artificial intelligence (AI) approaches to solve the limitation of the traditional
method in Bangkok as a case study. There are two steps for our proposed method. First, in the
knowledge extraction step, we apply deep convolutional neural networks (DCNNs), including
semantic segmentation and object detection, to extract helpful information images. Second, we use a
linear regression model for inferring the QOL score. We conducted various state-of-the-art (SOTA)
models and public datasets to evaluate the performance of our method. The experiment results show
that our novel approach is practical and can be considered for use as an alternative QOL acquisition
method. We also gain some understanding of drivers’ insights from the experiment result.

Keywords: quality of life; Bangkok; semantic segmentation; object detection; deep convolutional
neural networks

1. Introduction

Urban design has recently been an important issue in the sustainable development of
megacities that often suffer from poor urban design due to rapid economic growth [1,2].
Many local dwellers [3] experience traffic congestion and economic loss [4] in terms of their
productivity. In addition, heavy traffic leads to an increasing number of traffic accidents [5].
Many countries are also facing climate change [6], which is negatively affected by carbon
dioxide (CO2) emissions [2,7]. According to all the mentioned issues, policymakers must
consider these problems in implementing sustainable development and eco-friendly and
people-centric urban design. This improved design alleviates severe traffic congestion and
mitigates CO2 emissions, enhancing the long-term benefits to our world [8].

Policymakers can consider the appropriate key performance index (KPI) to improve ur-
banscape design depending on residents’ needs. One of the sustainable KPIs [9] measuring
the city plan’s efficiency in quantity and quality factors is quality of Life (QOL). The QOL
concept [10] was developed to evaluate well-being and happiness, including individual
needs and social interactions as a part of the city based on sustainable development [11–13].
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Many studies employed the QOL framework to measure the quality of policies contribut-
ing to public transportation in the case of megacities, especially in emerging countries.
Bangkok, in Thailand, also suffered poor city planning resulting in heavy traffic congestion
due to car-oriented policies [1,2,14]. Hence, some researchers used Bangkok for the QOL
evaluation case studies. Alonso [15] forecasted land-use public transportation policies
depending on residents’ satisfaction. Hayashi et al. [6] and Banister [16] suggested that
authorities deploy the QOL framework to improve public transport policies and decrease
the problems in road use and public transport demand.

The traditional QOL evaluation method requires a large number of questionnaire
surveys that is expensive and time-consuming [1,2,17]. However, the researcher can use the
gathered data in QOL evaluation and socioeconomic analysis in a short period. As limiting
budget and conducting time are challenging for researchers in the area, some studies have
introduced alternative approaches in QOL evaluation using artificial intelligence (AI). Kan-
tavat et al. [18] proposed using deep convolutional neural networks (DCNNs), including
semantic segmentation and object detection, to extract mobility factors in transportation
from images. Thitisiriwech et al. [19] presented a Bangkok Urbanscapse dataset, which
is the first labeled streetscape dataset in Bangkok, Thailand, and also proposed efficient
models for processing semantic segmentation.

In this work, we propose a QOL evaluation model that predicts the QOL score based
on the interviewees’ satisfaction level for the driving scenes in Bangkok. Our methodology
consists of two steps. Firstly, we apply two image processing techniques, semantic seg-
mentation and object detection, to extract useful information from input images. Secondly,
we use a linear regression model to learn the relationship between the extracted factors
acquired in the first step and the QOL scores gathered from the questionnaire surveys.
Our method can shorten the time and cost consumed by the traditional approach. We can
also use the trained model to evaluate the QOL in the area outside the conducted ques-
tionnaire survey. Moreover, our model can be embedded into other IT systems, helping
the QOL evaluation service to the users’ planning or the system that needs to perform a
QOL simulation.

The original semantic segmentation model was trained using the Europe road dataset,
Cambridge-driving Labeled Database (CamVid) [20], which might not be practical for the
Bangkok road. Hence, we additionally train the model using the Bangkokscape dataset
to customize it for use in Bangkok; then, we evaluate the models using the Mean square
error (MSE) of the predicted QOL scores. The experiment results show that the enhanced
model provides a lower MSE in QOL score prediction. The experiment also indicates that
combining the information from both the semantic segmentation and object detection is
superior to using semantic segmentation alone.

We also use factor correlation analysis to indicate the factor sensitivity for the QOL
evaluation in the driving scenes. The result suggests the amenity factors of residents’ basic
needs for transportation from place to place in Bangkok. We can conclude that the size
of the road and sidewalk are essential factors for passengers. In contrast, the number of
vehicles, i.e., cars and motorcycles, negatively affects the passengers.

This section provides an introduction of this work, while Section 2 will describe
the literature review used as our framework. Our methodology will be provided in
Section 3. Next, the experimental results and discussion will be included in Sections 4 and 5,
respectively. Finally, we provide the conclusion of this work in Section 6.

2. Literature Review
2.1. Semantic Segmentation

We provide the semantic segmentation architectures to classify every pixel of input
images into the semantic classes belonging to the datasets. We provide the details of the
Tiramisu approach in Section 2.1.1 and the detail of the DeepLab-v3+ approach is available
in Section 2.1.2.
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2.1.1. Tiramisu

The Tiramisu [21] architecture was built from the one hundred layers of Densely
Connected Convolutional Networks (DenseNet) [22] image classification model. This
architecture applied five dense blocks, including the blocks of transition down (TD) on
the downsampling path (the encoder side). The dense blocks could extract the dominant
feature maps from the input images using simple components. Each dense block contained
Batch Normalization (BN) [23], 3 × 3 convolution, Rectified Linear Unit (ReLU), and
randomized dropout [24] by 20.00%. The feature maps from the previous dense block
would be concatenated to the previous layer of 3 × 3 convolution. Then, these concatenated
kernels would be extracted on the block of transition down (TD), which contained 1 × 1
convolution, BN, ReLU, 20.00% of dropout, and 2 × 2 max-pooling layers. For the decoder
side, the feature maps from the encoder side would recover information using the blocks of
transition up (TU), which contained a 3 × 3 deconvolution layer with a stride value of 2.
TU and the bilinear upsampling played a crucial role in enlarging the resolution of these
kernels, which are predicted as segmentation masks. Tiramisu reached SOTA with a mean
intersection over union (IoU) rating of 66.90% on the CamVid testing set.

2.1.2. DeepLab-v3+

DeepLab-v3+ [25] was built with a more straightforward encoder–decoder design,
enhancing V3’s layers with Atrous separable convolution and retaining the advantages
of its depth-wise separable convolution. This architecture was also developed with the
novel version of the image classification model as Xception [26]. Those modifications
could enhance the V3+ version to recognize contextual information at multiple scales by
combining low-level and high-level features on its decoder side. On the encoder side of
DeepLab-v3+, the image classification backbone initially generated low-level feature maps.
Then, the outputs of the previous layers were sent to the Atrous Spatial Pyramid Pooling
(ASPP) module, which included dilated convolutions [27] with various configurations
(1 × 1, 3 × 3 rate 6, 3 × 3 rate 12, and 3 × 3 rate 18, respectively). This module was
able to extract high-level features encoding rich information. In the last layer of the
encoder, the 1 × 1 convolution filters were utilized to reduce the dimension of the high-level
feature maps. These low-level features, which were produced from the image classification
backbone, were fed to the decoder side of DeepLab-v3+ to retrieve the spatial information.
Then, the 1 × 1 convolution layer was utilized to reduce the dimensions of the low-level
features and the high-level features from the encoder side were upsampled by a factor
of four. Next, these two adjusted feature maps were concatenated on the decoder side
and the 3 × 3 dilated separable convolution layers recovered the finest details from these
concatenated feature maps. Finally, these outputs were then upsampled by four to produce
the predicted masks. DeepLab-v3+ performed better than its prior (DeepLab-V3 [28]) on
the Pattern Analysis, Statistical Modelling, and Computational Learning Visual Object
Challenge (PASCAL VOC) [29] 2012 testing set, with a mean IoU of 87.80% compared to
87.30% for DeepLab-V3 by 2.30%.

2.2. Object Detection

You Only Look Once version 3 (YOLO-v3) [30] used a variant of DarkNet [31] for
53 layers, which initially had 19 layers of DarkNet on the preliminary version of You Only
Look Once version 2 (YOLO-v2) [32]. The YOLO-v3 had new features and 34 additional
DCNN layers were added. The novel loss functions, such as binary cross-entropy and inde-
pendent logistic classifiers, were configured to enhance the YOLO-v3 architecture’s ability
to detect miniature objects. YOLO-v3 reached a mean Average Precision of 33.00% on the
Common Objects In Context (COCO) testing set using an inference time of 51 milliseconds
(ms). Moreover, we might use the readily accessible official repository of YOLO-v3 to
implement the pre-trained weight of YOLO-v3 on the COCO dataset [33]. These factors
might explain why YOLO-v3 is still the most often used off-the-shelf method.
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3. Methodology

In this part, we will describe our process of predicting the QOL Score using extracted
information from road objects. Our framework with a description is outlined in Section 3.1.
We explain the details of the public dataset in Section 3.2. To conduct our framework, we
provide our dataset in both input images and the QOL Scores as shown in Section 3.3. Next,
we provide the experimental configurations for knowledge extraction methods and QOL
prediction in Section 3.4 and the performance evaluation is outlined in Section 3.5. Finally,
we provide the results extracted information from the source of datasets to predict the QOL
score, as shown in Section 3.6.

3.1. Our Framework

We provide the overview of our framework as shown in Figure 1. We first apply
the semantic segmentation architectures such as DeepLab-v3+ with a residual neural
network for 101 layers (ResNet-101) [34], DeepLab-v3+ with Xception, and Tiramisu on our
dataset. These models can classify every pixel on the input image regarding the classes of its
training set. For example, a pre-trained segmentation model from the Bangkok Urbanscapes
dataset produces the segmentation regions for each input image, where the semantic colors
represent the definitions of vision objects, as shown in Figure 5. When we obtain the output
image from the pre-trained model, we calculate the percentage of pixels for each semantic
class from the predicted image. We then obtain the extracted attributes from the predicted
images, where the percentage of pixels represents the proportion of the visual object that
participates on the road. Next, we employ the pre-trained weight of the object detection
model as YOLO-v3 to extract the number of vehicles on our dataset, where this number
represents how much the vehicle appears on the road. These extracted attributes will be
applied to the linear regression model as part of our QOL prediction model. Our first step
results are shown in Section 3.6 and the further details of hyperparameter configurations
for segmentation methods are shown in Section 3.4.1.

Figure 1. Our methodology consists of two main steps: First, the knowledge extraction employs
semantic segmentation and object detection methods using deep convolutional neural networks.
Second, we predict the QOL score in the driving scenes using knowledge from the first step using
linear regression and measure the error of predicted values in terms of Mean square error (MSE).

Second, we further study the effect of semantic labeling on the QOL scores in this
paper. The percentages of pixels in both fine-tuned models using our label and the pre-
trained model will be employed in the regression model to compare the performance
in terms of MSE. The linear regression approach plays a vital role in learning the linear
relationship between the extracted factors and the QOL score. Our experiment will be
covered in three scenarios from the sources of extracted information: First, we use only the
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object detection model shown in Figure 7. Second, we use only the segmentation model
shown in Figures 8 and 10. Third, we combine two sources of extracted information using
object detection and segmentation methods shown in Figures 9 and 11. The lowest result
of MSE will indicate the best combination to predict the QOL score in the driving scenes.
Further details of our experimental settings of the QOL prediction model are shown in
Section 3.4.2.

3.2. The Public Datasets

In this paper, we apply the segmentation methods in Section 2.1 to these public
datasets [19,20] to extract information of road objects for the prediction of QOL scores. The
detail of the CamVid dataset is in Section 3.2.1. We describe the Bangkok Urbanscapes
dataset in Section 3.2.2.

3.2.1. The CamVid Dataset

The Cambridge-driving Labeled Database (CamVid) [20] was utilized largely for
capturing diverse urban and suburban driving scenarios (including dusty and bright),
especially in the United Kingdom. A Panasonic HVX200 stereo camera collected the driver’s
perspective for two hours and the footage was recorded in high definition at 30 frames per
second (FPS). This video has a resolution of 960 × 720 pixels, which has already calibrated
every video frame using intrinsic and extrinsic techniques. All the driving sequences were
reduced from 2 hours to 22 min to generate this dataset. It consisted of processed video
sequences and ground truth labels. Figure 2 shows an example of input and ground truth
images from the CamVid training set.

CamVid provided 701 pairs of input and annotated images at the pixel level that were
annotated for visual objects as polygons. The hand-crafted labeling procedure required
around from 20 to 25 min per input image and the total duration of this process required
approximately 230 h. The proportions of CamVid dataset were divided into three parts:
367 for training, 101 for validation, and 233 for further testing sets. In addition, as shown in
Figure 3, there are 32 distinguishable semantic classes of visual objects, such as Building,
Wall, Tree, Road, Pedestrian, Car, and Sidewalk.

(a) (b)

Figure 2. The images for the CamVid training set. The input image is displayed in (a), while the
ground truth is displayed in (b).

Figure 3. The semantic coding colors of the CamVid dataset are encoded according to its objects on
the ground truth image.
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3.2.2. The Bangkok Urbanscapes Dataset

The Bangkok Urbanscapes dataset included a variety of urban landscapes along
Sukhumvit Roads in Bangkok, Thailand, in 2020. The street views contained a variety of
features that did not occur in the developed countries such as limited sidewalks, traffic
congestion, and disorganized electric cables. The seventeen video sequences were collected
by driving a Honda VEZEL equipped with a recording system, a Ladybug 5 forward-
looking infrared (FLIR) twin camera system with inertial measurement unit (IMU)m and
global navigation satellite system (GNSS) sensors. Consistent daylight and sunny weather
were included on this dataset as environmental factors. In addition, the illumination factors
were fixed during daylight and sunny conditions.

The Bangkok Urbanscapes dataset provided 701 pairs of input and annotation images
with a resolution of 512 × 544 pixels. This dataset consists of 367 training, 101 validation,
and 233 testing sets; the distribution of this dataset is equivalent to the CamVid dataset.
The sample images of the training set of the Bangkok Urbanscapes dataset are shown in
Figure 4. The corresponding semantic classes for eleven classes (Road, Building, Tree, Car,
Footpath, Motorcycle, Pole, Person, Trash, Crosswalk, and Misc) are shown in Figure 5.

(a) (b)

Figure 4. Sample images for the Bangkok Urbanscapes training set. The input image is displayed in
(a), while the ground truth is displayed in (b).

Figure 5. The semantic coding colors of the Bangkok Urbanscapes dataset are encoded according to
its objects on the ground truth image.

3.3. Our Dataset

We collected the Bangkok driving scenes dataset of 355 images with QOL scores [35]
from one to five representing the interviewees’ satisfaction with driving in that scene. The
sample images on our dataset are shown in Figure 5. Then, we select 100 images of them
to craft labels for 11 segmentation classes, i.e., Road, Building, Tree, Car, Footpath, Mo-
torcycle, Pole, Person, Trash, Crosswalk, and Miscellaneous (Misc). We used the LabelMe
platform [36,37] to annotate labels on these selected images. The semantic colors with
these classes are similar to the Bangkok Urbanscapes dataset, shown in Figure 6. We use
these images to evaluate the semantic segmentation results in terms of mean IoU. This
process took approximately 100 h to accomplish. We also conduct the peer-review process
to control the quality of labels. The segmentation results are provided in Section 4.1.
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We also include these labeled images in the Bangkok Urbanscapes dataset in the QOL-
inferring step to enhance the model fine-tuning and compare the result to the pre-trained
model. The inferred QOL results are provided in Section 4.2.

Figure 6. The sample images of our dataset contain inputs and labels with the QOL scores.

3.4. Experimental Configurations

We first extract the road objects from our dataset by inferring the segmentation and
object detection models. The details of segmentation model settings are available in
Section 3.4.1. Next, we apply this knowledge as the input data with these settings to
conduct the QOL prediction in Section 3.4.2.

3.4.1. Experimental Configurations for Semantic Segmentation Models

We employ the pre-trained weights [19] from the Bangkok Urbanscapes and CamVid
datasets. Three segmentation models, including Tiramisu with DenseNet-100 and the
models of DeepLab-v3+ with ResNet-101 and Xception, are trained on these datasets. We
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used these pre-trained models to extract road data from our dataset. As indicated in
Section 3.6.2, we will apply the pre-trained weights from the CamVid dataset to our dataset.
In addition, we fine-tuned these models trained on the Bangkok Urbanscapes dataset on
our dataset, as shown in Section 3.6.3. The hyper-parameters are the 512 × 512 random
crop, Root Mean Squared propagation (RMSprop) [38] as the primary optimizer, and a
learning rate of 0.0001. The seed and batch size values are fixed at 16 and 8, respectively. In
addition, we have trained these models for 300 epochs and each epoch lasts approximately
2046 s. The training duration took approximately from 100 to 150 h for each dataset. The
TensorFlow [39,40] framework serves as the basis for our implementation.

All the experiments were performed on computer systems with the following specification:

• Intel® XeonTM Silver 4110 Central Processing Unit (8 Cores/16 Threads, up to 2.10 GHz),
128 GB of DDR3 Memory, and two NVIDIA Tesla V100 (32 GB) graphics cards.

• Intel® CoreTM i5-4590S Central Processing Unit (with 6M Cache, up to 3.70 GHz),
32 GB of DDR4 Memory, and three SLI-connected NVIDIA GeForce GTX 1080Ti
(11 GB) graphics cards.

3.4.2. Experimental Configurations for QOL Prediction Model

We employ the linear regression model to predict the QOL score in the driving scenes
on our dataset as shown in Section 3.3. We reduce the observations, including our label
information for 100 observations, because there is a bias in using information from our
labels to fine tune the predicted segmentation masks. The new sample size is configured
for the rest of the 255 observations on our dataset to predict the QOL scores. We also set
this criterion to the extracted knowledge from the CamVid dataset. The sample size of the
extracted attributes on the CamVid dataset also contains 255 observations. We separate
these updated datasets into 60% for training, 20% for validation, 20% for the testing sets,
and the random seed, which is configured at 1234. These settings are fixed for all the
experiments to predict QOL scores.

We provide the source of extracted information within two sources as follows. We
first select the YOLO-v3 knowledge attributes, which contain the number of road objects,
including cars, persons, motorcycles, and trucks, as shown in Section 3.6.1. Second, we will
select the segmentation classes with a percent more than 1% to predict the QOL scores. We
obtain the percentages of segmentation classes in case of not using the labels containing
Building, Car, Column_Pole, Misc_Text, Road, Sidewalk, Sky, Tree, Vegetation, Misc, and
Void, as shown in Section 3.6.2. The percentages of segmentation classes using labels on
our dataset include Road, Misc, Building, Tree, Car, Footpath, Motorcycle, Pole, and Person,
as shown in Section 3.6.3. The experimental results will be presented to compare the effect
data sources in Section 4.2.

3.5. Performance Evaluation

First, we employ the Jaccard index, as the mean Intersection over Union (IoU) to
measure the performance of the semantic segmentation models on our dataset. It can
describe how well the predicted mask overlapped with the ground truth. In addition, the
mean IoU has proven to be the standard measurement on the benchmarking dataset [29].
The mean IoU is shown in Equation (1), where TP (True Positive), TN (True Negative), FP
(False Positive), and FN (False Negative) are the numbers of corresponding pixels. Next,
the mean square error (MSE) describes the loss function for the prediction task in this paper,
as shown in Equation (2).

Mean IoU =
1
n

n

∑
i=1

TP
TP + FP + FN

(1)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)
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3.6. Knowledge Extraction Results

We employ the image recognition techniques to extract roads information on our
dataset. We provide the results of the object detection model using YOLO-v3 in Section 3.6.1.
Next, we provide the segmentation results using pre-trained weights from the CamVid
dataset in Section 3.6.2. Finally, we provide the segmentation results using the fine-tuned
models on our labels in Section 3.6.3.

3.6.1. Predicting the Number of Objects Using the YOLO-v3 Model

We employ the pre-trained weight of YOLO-v3, which is trained from the COCO
dataset. This method can detect the number of road objects on our dataset. The attributes
from YOLO-v3 are represented in terms of the number of road objects. These objects include
cars, persons, motorcycles, and trucks. The YOLO-v3 inference result is shown in Figure 7.

Figure 7. Inferring the pre-trained weight of YOLO-v3 on our dataset to extract number of road objects.

3.6.2. Predicting the Percentage of Pixels from the CamVid Pre-Trained Weight

We will study the effect of using annotation labels on the testing set of our dataset.
First, we will use the pre-trained weights of Tiramisu and DeepLab-v3+ (ResNet-101 and
Xception), which are trained on the CamVid dataset, to be the baseline methods for QOL
prediction, as shown in Figure 8. Then, we infer pre-trained weights on our dataset and
calculate the percentage of pixels for each corresponding class from the CamVid dataset.
Finally, we use the percentage of pixels for each segmentation model and combine the
number of objects from YOLO-v3 to predict the QOL scores, as shown in Figure 9.

3.6.3. Predicting the Percentage of Pixels from the Training Model

We train the segmentation architectures for three models on the Bangkok Urbanscapes
dataset for 300 epochs and the further details of the hyperparameter configurations are
shown in Section 3.4.1. These models are trained on the Bangkok Urbanscapes dataset
and then will be measured in terms of mean IoU on our testing set, as shown in Table 1.
Finally, we will more precisely predict the polygon surfaces on our dataset from these
architectures from the Bangkok Urbanscapes dataset. These models are trained on our
labels for 100 images with 300 training epochs and, after that, the percentage of pixels is
calculated from the fine-tuned segmentation architectures, as shown in Figure 10. Then,
combining the number of objects with the percentages of pixels to predict the QOL scores
in the driving scenes, as shown in Figure 11.
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Figure 8. Inferring the pre-trained weights from the CamVid dataset to extract the percentage of
pixels on our dataset.

Figure 9. Inferring the pre-trained weights from the CamVid dataset to extract the percentage of pixels
on our dataset, as well as combining extracted information from object detection using YOLO-v3.
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Table 1. The semantic segmentation results that measured on our dataset in terms of mean IoU.

Segmentation Model Frontend

Mean IoU

Using Pre-Trained
Model on the

CamVid Dataset

Using Pre-Trained
Model on the

Bangkok
Urbanscapes Dataset

Tiramisu DenseNet-100 15.26% 38.98%

DeepLab-v3+ ResNet-101 11.17% 36.41%
Xception 11.63% 38.26%

Figure 10. Inferring the fine-tuned models on our dataset to extract the percentage of pixels on
our dataset.

Figure 11. Inferring the fine-tuned models on our dataset to extract the percentage of pixels on our
dataset, as well as combining extracted information from object detection using YOLO-v3.
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4. Experimental Results

We provide the benchmarking results for all the segmentation models on our dataset
in Section 4.1. The extracted information in Section 3.6 will be utilized to predict the
QOL score. Furthermore, the predicted results using linear regression will be shown in
Section 4.2.

4.1. Benchmarking Results from Semantic Segmentation Models

Our experiments explore the performances of segmentation architectures on the la-
beled images on the Bangkok roads (including Bangkok Urbanscapes and our datasets). We
make semantic segmentation inferences using the original pre-trained model trained using
the CamVid dataset, including Tiramisu, DeepLab-v3+ with ResNet-101, and DeepLab-
v3+ with Xception, then compare them to the results using the model fine-tuned with
the Bangkok Urbanscapes dataset. The comparison of the segmentation results will be
provided in Figure 12.

The benchmarking results show that the Tiramisu model, which is trained on the
Bangkok Urbanscapes dataset, is the most practical method to recognize the driving scenes
on our dataset. Tiramisu reached a mean IoU of 38.98% on our testing set dataset, as shown
in Table 1. The effect of the semantic labelings with the different road environments shows
that Tiramisu from the CamVid dataset underperformed on our testing set with a mean
IoU of 15.26%. There is a huge difference between using labels and no labels with the same
method, over 23.00%. We can also conclude that the semantic labeling on the target task
plays a vital role in the semantic segmentation task.

Figure 12. The overall prediction results from these segmentation models regarding to the source of
training data.

4.2. QOL Prediction Results

To measure the performance of the QOL evaluation model, we deploy the knowledge-
inferring data from various semantic segmentation models and also an object detection
model into the linear regression model. The models’ performances inputting only semantic
segmentation data or object detection data are shown in Table 2, while the models’ perfor-
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mance inputting both semantic segmentation data and object detection data are shown in
Table 3.

Table 2. The models’ performances inputting only semantic segmentation data or object detection data.

Model Frontend

Mean Square Error (MSE)

Using
Pre-Trained

Model on the
CamVid
Dataset

Using
Pre-Trained

Model on the
Bangkok

Urbanscapes
Dataset and

Fine-Tuned on
Our Dataset

Tiramisu DenseNet-100 0.9117 0.6464
Semantic Segmentation DeepLab-v3+ ResNet-101 0.7105 0.4309

Xception 0.5864 0.3958

Object Detection YOLO-v3 DarkNet-53 1.5640

The results show that the extracted knowledge from segmentation as the percentage
of pixels on the our dataset represents the lower MSE for all methods, as shown in Table 2.
We can conclude that segmentation knowledge plays a vital role in QOL prediction. The
percentage of pixels can represent fine details of the road objects rather than the number
of objects from the YOLO-v3 method. For example, the method using DeepLab-v3+ with
ResNet-101 on our labels reaches the MSE value at almost the lowest point by 0.3958.
Furthermore, the source of predicted attributes is shown in Figure 10. The significant differ-
ence in MSE between this V3+ method with ResNet-101 and YOLO-v3 is approximately
four times.

We can study more sources of data that would affect the performance of the QOL
prediction using the linear regression model in terms of MSE. We compare the results
between Tables 2 and 3. The results show that the combination of two data sources
better performs than the single source of extracted knowledge from the computer vision
techniques. The positive effect of using both percentages of pixels and the number of objects
is shown in Table 3. The results of QOL prediction from DeepLab-v3+ with Xception using
our labels coupled with YOLO-v3 reaches the lowest MSE for all the experiments at 0.3758,
as shown in Table 3. In addition, this combination reaches a lower MSE for 0.0200 than the
DeepLab-v3+ with Xception only using our labels, as shown in Tables 2 and 3, respectively.

Table 3. The models’ performances inputting both semantic segmentation data and object detection data.

Object Detection Semantic Segmentation Frontend

Mean Square Error (MSE)

Using Pre-Trained
Model on the CamVid

Dataset

Using Pre-Trained
Model on the

Bangkok Urbanscapes
Dataset and

Fine-Tuned on Our
Dataset

YOLO-v3 Tiramisu DenseNet-100 0.8300 0.6090
with DeepLab-v3+ ResNet-101 0.6904 0.4135

DarkNet-53 Xception 0.5489 0.3758

We can conclude that the effect of target task labeling on segmentation prediction can
amplify the QOL prediction using a linear regression model. This combination represents
the lowest MSE for 0.3758 in the DeepLab-v3+ with the Xception model using our labels
coupled with YOLO-v3. This source of predicted attributes is shown in Figure 11. We can
explain the linearity relationship for each attribute in Equation (3), which represents the
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coefficient of the linear regression model. This equation can also explain the QOL scores for
78.22% by inferring the adjusted R-square. The prediction results with the regression line
and QOL scores on our testing set using information extracted from DeepLab-v3+ with the
Xception model, which provides the lowest MSE, are shown in Figure 13.

Predicted QOL Score = −0.0156(nocar)− 0.0628(notruck)− 0.0301(noperson)

+0.0250(nomotorcycle)− 10.6826(%Road)− 10.7087(%Misc)

−10.7183(%Building)− 10.7200(%Tree)− 10.8259(%Car)

−10.7191(%Footpath)− 10.7852(%Motorcycle)

−10.9005(%Pole)− 10.7217(%Person) + 1075.6567

(3)

In the regression analysis in Equation (3), we can explain the linear relationship
between the extracted factors and the QOL scores using the correlation heat map shown
in Figure 14. If the color of the extracted attribute is more intensive in the blue tone, the
linear relationship is more positive, corresponding to the QOL scores. On the contrary, the
color of the extracted attribute represents a yellow zone and the linear relationship will
then be negative to the QOL scores. We consider the bottom of the horizontal axis showing
the extracted factors regarding the QOL scores. The green highlighted attributes show
the positively correlated segmentation attributes with a high rate to the QOL Scores as
shown in Figure 14, e.g., 0.76 and 0.28, which are the percentages of roads and footpaths,
respectively. However, the red highlighted attributes are negative segmentation attributes
with a high rate to the QOL scores, containing 0.87 and 0.46 for the percentages of cars and
motorcycles, respectively. We can conclude from the heuristic knowledge that the road and
footpath areas positively affect the interviewee’s sentiment. However, traffic congestion
can cause the interviewee to feel negative about the driving environment.

Figure 13. The predicted regression line shows the relationship between Equation (3) and the QOL
scores using information extracted from DeepLab-v3+ with the Xception model, which provides the
lowest MSE.

We can interpret the performance of linear regression in Equation (3) using the residual
analysis. The residual values are calculated using ytest − ypredict, which represent the error
from the linear regression model. We then plot the histogram for all residual values to
visualize how well our regression can fit our data, as shown in Figure 15. The x-axis shows
the standard deviation of residual values, while the y-axis shows the frequency of residuals
belonging to the interval. If the histogram plots approximate a normal curve, the error will
be the normal distribution, which satisfies the assumption of the regression analysis. We
can conclude that our regression in Equation (3) has the potential to apply to our use case
and it does not violate the regression assumption.
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Figure 14. The correlation heat map shows the relationship between the extracted attributes and
the QOL scores. The positive attributes are Road, Misc, Building, and Footpath, while the negative
attributes are no_car, no_truck, no_person, no_motorcycle, Tree, Car, Motorcycle, Pole, and Person.

Figure 15. The histogram of the residual plot from Equation (3) that displays the normality of the
residuals calculated using ytest − ypredict, which represents the error from the linear regression model.

For inference time analysis, our framework is the end-to-end solution to predict the
QOL scores from input images, as shown in Figure 1. Most running time depends on the
information extraction step using semantic segmentation or object detection with DCNNs
models. The models are very sophisticated with heavy computation, requiring GPUs to
infer each input image. In comparison, the running time of the QOL prediction using
regression is neglectable as it has a simple computation. The computer specifications are
shown in Section 3.4.1. As shown in Table 4, we can explain that the inference time is equal
to the segmentation time + object detection time, in which the average running time is
in milliseconds (ms). The results show that the object detection method using YOLO-v3
is the fastest inference model, while the fine-tuned Tiramisu model from our dataset is
the slowest model. The average inference time of YOLO-v3 is less significant than the
fine-tuned Tiramisu model by about ninefold. In addition, the average inference time of
the same method comparing the different datasets shows that the weight from our dataset
is slower to execute in a range of from 7.13% to 10.38% in terms of ms.
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Table 4. The execution times of the segmentation and the object detection models from input images
on the extracted information step in terms of the average inference time in milliseconds (ms).

Model Frontend

Average Inference Time (ms)

Using Pre-Trained
Model on the CamVid

Dataset

Using Pre-Trained
Model on the

Bangkok Urbanscapes
Dataset and

Fine-Tuned on Our
Dataset

Tiramisu DenseNet-100 195.8168 210.8343
Semantic Segmentation DeepLab-v3+ ResNet-101 56.8238 63.4020

Xception 58.7625 64.1658

Object Detection YOLO-v3 DarkNet-53 22.8197

5. Discussion

Urban design relying on sustainable development KPIs is the suitable approach to
improve city planning. The QOL score is one of the sustainable development KPIs that
can reflect the basic needs of dwellers in Bangkok. If the policymakers include this ap-
proach in their city planning to develop the urbanscapes of Bangkok city, the well-being
and happiness of Bangkok residents will be increased. We propose the QOL evaluation
framework using image recognition techniques and the prediction model, as shown in
Figure 1, coupled with our label dataset, which can reduce the cost of a survey to collect the
questionnaires compared to the traditional approach. We will discuss our findings from
our experimental results and interpretations in this paper.

We employ our frameworks to predict the QOL score by extracting the information
and then using the extracted attributes to indicate the QOL score by the regression. We
also investigate the efficiency of the segmentation models. The results show that the
segmentation model fine-tuned on the Bangkok Urbanscapes dataset outperforms the
original model trained on only the CamVid dataset, which is indicated by the MSE, as shown
in Table 2. The results also show that predicting the QOL score using both information
from semantic segmentation and object detection models yields better accuracy than using
only semantic segmentation. Equation (3) combines two sources of the extracted attributes,
including the DeepLab-v3+ model fine-tuned on our labels and YOLO-v3.

Regarding the inferring time, our strategy spent less time than the Tiramisu model,
approximately 2.42 times, as shown in Table 4. Moreover, our method performs at a
lower MSE rate, as shown in Table 3. In conclusion, our strategy is suitable with the best
prediction performance and reasonable execution time.

For the regression analysis, we obtain the insights of the regression on Equation (3)
using the correlation heatmap visualization shown in Figure 14. The results indicate that
people in Bangkok feel positive when they experience the wider road and footpath widths
in the driving scene, which assumes that the traffic is not congested. In contrast, people
in Bangkok feel negative when they experience obstacles, for example, many cars and
motorcycles on the same road, representing heavy traffic congestion. In addition, we
visualize the histogram of residuals of the regression model on Equation (3), as shown in
Figure 15. The residuals on this plot behave nearly the normal distribution and it does not
violate the regression assumption. Hence, the regression model is applicable.

6. Conclusions

Urban design is an emerging issue that aligns with the sustainable development con-
cept. The QOL evaluation score is one of the key performance indexes used to measure
city planning quality. As the traditional QOL evaluation is costly and time-consuming, we
proposed AI approaches hoping to solve the limitation of the conventional method using
Bangkok as a case study. Our proposed method is also beneficial in the QOL evaluation
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outside the survey-conducting area and can run in the application or QOL simulation
systems. In the knowledge-extraction step, we apply deep convolutional neural networks
(DCNNs), including semantic segmentation and object detection, to extract useful informa-
tion from the driving-scene images. Then, we deploy a linear regression model to make
a QOL prediction in the QOL inference step. We conducted various SOTA models and
public datasets to examine the performance. We adopted the Bangkok driving scenes
dataset consisting of 355 images with QOL scores from one to five, reflecting the passenger
opinions of that scene. We also select 100 out of 355 images to create a craft semantic label
to evaluate the models’ efficiencies in both steps.

The experiment results show that the practical strategy is deploying knowledge-
extraction data from both DeepLab-v3+ with Xception fine-tuning a Bangkok labeled scene
and YOLO-v3 to predict the QOL score using the linear regression model. We also analyze
some passengers’ insights by interpreting data correlations, as shown in Equation (3) and
Figure 14. We conclude that the Bangkokers need wider roads and walkway spaces [17],
referring to positive correlation values of 0.76 for roads and 0.28 for footpaths, as it causes
them to feel more delightful and secure [13] to commute from their residential place to their
workplaces. In contrast, the Bangkokers feel uncomfortable when there are many vehicles
on the same commuting route, referring to the negative correlations of 0.87 for cars and
0.46 for motorcycles. We can infer that heavy traffic congestion reduce drivers’ happiness.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ASPP Atrous Spatial Pyramid Pooling
BN Batch Normalization
CamVid Cambridge-driving Labeled Database
CO2 Carbon dioxide
COCO Common Objects In Context
DCNNs Deep Convolutional Neural Networks
DenseNet Densely Connected Convolutional Network
FLIR Forward Looking Infrared
FN False Negative
FP False Positive
FPS Frames Per Second
GNSS Global Navigation Satellite System
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IMU Inertial Measurement Unit
IoU Intersection over Union
KPI Key Performance Index
KPIs Key Performance Indices
Misc Miscellaneous
ms Milliseconds
MSE Mean Square Error

PACSCAL VOC
Pattern Analysis, Statistical Modelling, and
Computational Learning Visual Object Challenge

QOL Quality of Life
ReLU Rectified Linear Unit
ResNet Residual Neural Network
RMSprop Root Mean Squared propagation
SOTA State-of-the-art
TD Transition Down
TN True Negative
TP True Positive
TU Transition Up
v Version
YOLO You Only Look Once
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