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Abstract: Environmental hazards vary locally and even street to street resulting in microspatial
inequities, necessitating climate resilience solutions that respond to specific hyperlocal conditions.
This study uses remote sensing data to estimate two environmental hazards that are particularly
relevant to community health: land surface temperature (LST; from LandSat) and air pollution
(AP; from motor vehicle volume via cell phone records). These data are analyzed in conjunction
with land use records in Boston, MA to test (1) the extent to which each hazard concentrates on
specific streets within neighborhoods, (2) the infrastructural elements that drive variation in the
hazards, and (3) how strongly hazards overlap in space. Though these data rely on proxies, they
provide preliminary evidence. Substantial variations in LST and AP existed between streets in the
same neighborhood (40% and 70–80% of variance, respectively). The former were driven by canopy,
impervious surfaces, and albedo. The latter were associated with main streets and zoning with tall
buildings. The correlation between LST and AP was moderate across census tracts (r = 0.4) but
modest across streets within census tracts (r = 0.16). The combination of results confirms not only the
presence of microspatial inequities for both hazards but also their limited coincidence, indicating that
some streets suffer from both hazards, some from neither, and others from only one. There is a need
for more precise, temporally-dynamic data tracking environmental hazards (e.g., from environmental
sensor networks) and strategies for translating them into community-based solutions.

Keywords: environmental justice; climate resilience; environmental sensor networks; microspatial
inequities; neighborhood effects; urban heat island effect

1. Introduction

Climate change is a global phenomenon, but its associated environmental hazards
and their health impacts are experienced locally. Within a single coastal city, for in-
stance, some communities are closer to the shore, exposing them more directly to flooding
(e.g., [1,2]); some have infrastructure that contributes more to urban heat island devel-
opment, making them more vulnerable to extreme heat events and consequent medical
emergencies (e.g., [3–6]); some experience heavier usage of transportation, potentially cre-
ating concentrations of air pollution and thus respiratory disease [7–9]; and so on. Thus,
equitable pathways to sustainability in urban environments will require locally tailored
solutions that incorporate the unique context, conditions, and priorities of each commu-
nity. Arriving at such solutions will require granular data that allow stakeholders and
decision makers to identify and track microspatial inequities in environmental hazards—that
is, disparities in exposure to conditions like extreme heat, air pollution, flooding, and
others that vary at hyperlocal scales, such as street-to-street within communities. Emergent
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technologies, especially networks of environmental sensors, provide the opportunity to
characterize such disparities at high spatial resolution, revealing the landscape of hazards
in a community and providing a literal map for action. To date, however, such systems
are cost-prohibitive, and our limited understanding of microspatial inequities means we
are ill-equipped to unlock their transformative potential. The goal of this paper is to
use existing remote sensing data, which is less precise and more dependent on proxies
than data from local sensor networks, in concert with catalogued information about the
cityscape itself, to present initial evidence for the distribution of microspatial inequities
in heat and air pollution across the communities of Boston, MA, including the extent to
which these two hazards overlap. This will provide a basis for further investigation on
the subject and consequences, including health outcomes, as well as potential guidance
for how sensor networks might be leveraged to improve current limitations to tracking
hazards and informing community-based solutions.

Sensor networks have been lauded by “smart cities” enthusiasts as a technology of
the future, a veritable “fitness tracker for the city” [10]. Environmental sensor networks
consist of nodes (i.e., boxes housing sensor hardware and needed auxiliaries such as power
or communications) placed throughout a community or city to measure environmental
conditions, often in real time. Each node may incorporate multiple types of sensors,
including temperature, wind speed and direction, precipitation, noise, various forms of air
pollution, or solar insolation, among others. Sensor nodes sometimes include a camera that
permits the tabulation of pedestrian, bicycle, and vehicle traffic. As such, sensor nodes have
the capability to estimate the landscape of multiple hazards and at sufficient spatial density
to capture not only disparities between communities but also the microspatial inequities
that occur within communities, even from street to street.

Environmental sensor networks of some type have been rolled out in a few forward-
looking cities, including Chicago, Berkeley, CA, and London [11–13], but they have oth-
erwise gained limited traction. This stands in contrast to the popularity of other uses
of sensors, most notably for tracking or responsively controlling the patterns of transit
and transportation networks. However, the high cost of individual nodes and failure to
date to identify a clear value proposition for local communities have discouraged many
cities from investing in them. This creates a notable paradox. Owing in part to the lack of
environmental sensor networks, there is a lack of evidence of microspatial inequities to
justify the need to build such networks to track them. There is also a lack of guidelines to
leverage typical patterns of hazard distribution to create cost-efficient network designs that
optimize the placement of fewer sensors while still modelling disparities across space in a
transparent and reliable way. All of these technical challenges must be overcome to enable
the possibility of data-driven policymaking, practice, and community conversations.

If we are to develop local climate resilience solutions that counteract microspatial
inequities impacting health and wellbeing, we must first come to understand their extent
and severity in urban environments. Though there have been very few studies on the
subject, microspatial inequities are likely to exist for most environmental hazards given
what we know about their underlying drivers, which are often rooted in geophysical
processes (i.e., air and water movement) that operate hyperlocally and in conjunction with
the structure of the urban canopy (i.e., buildings and vegetation), which often varies from
lot to lot. This is substantially different from social processes that are theorized to operate
broadly at the neighborhood scale, creating consistent dynamics across the spaces of a
community [14–17], though see [18] for a critique. Unfortunately, data availability has
often limited in situ studies of environmental hazards to the examination of neighborhoods
and even regions [19]. Though such work can be broadly informative, its interpretation
may suffer from the ecological fallacy if it assumes that neighborhood-level variation is
in fact the result of neighborhood-level processes. It may instead be that urban planning
decisions partially segregate land use and infrastructure by neighborhood [20–22], giving
the impression that neighborhood-level processes drive environmental hazards when in
fact hyperlocal processes are likely an important factor.
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We might illustrate the role of hyperlocal processes with extreme heat. The urban
heat island effect is driven by the density of pavement, which absorbs heat; lack of trees,
which otherwise would protect from sunlight and cool the air via evapotranspiration;
and few reflective surfaces, which limit additional absorption of light energy (i.e., reflec-
tion of light energy; [23–26]). These features vary substantially between neighborhoods,
creating temperature differences within a single city [27–30]. Of course, there are some
geophysical processes that have the potential to diffuse throughout the neighborhood. For
example, because the vegetative canopy cools the air via evapotranspiration it might lead
to lower temperatures in surrounding areas as well, albeit with a diminishing effect with
distance. Applying the same reasoning to air pollution, vehicular traffic, especially diesel
freight delivery, generates the vast majority of air pollution on city streets, however the
experience of these risk factors depends on whether the pollution is “flushed” into the
upper atmosphere [31] or remains trapped in the boundary layer where humans live and
move. The latter is most likely along narrow streets with tall buildings owing to the “urban
canyon effect”, a regime that can be precisely defined using fluid mechanics framing [32,33].
Additionally, elements of localized heating [32] and tree canopy [34] can also be important
drivers of the precise level of flushing experienced in any street segment.

A second consideration for understanding microspatial inequities is the extent to
which environmental hazards overlap. Neighborhood researchers from various fields,
including sociology, criminology, and public health, have long observed that various
undesirable conditions and outcomes tend to cluster together, from poverty to crime to
mental and physical health to education to economic opportunity [14–17,35]. Advocates
for environmental justice have similarly noted that communities with more resources
leverage money and political power to distance themselves from all types of environmental
hazards—which in turn results in marginalized groups being consistently exposed to more
environmental hazards [19,20,36]. This dynamic is often visible in the placement of airports,
highways, and power plants or the use of banking practices to channel investment in
particular ways [6,37–40]. It is not clear, however, that each such decision will impact
all environmental hazards for all low-income or majority-minority neighborhoods. For
example, an airport will create more air pollution and noise for the surrounding community
but may not have similar implications for heat or flooding. This raises the question of
whether environmental hazards correlate strongly across neighborhoods, an assertion
that has surprisingly almost never been tested (see [41] for a rare example). Meanwhile,
if we return to the idea that environmental hazards are governed at hyperlocal scales
by geophysical processes, the extent to which they overlap within neighborhoods will
depend on the extent to which their underlying drivers coincide. In the case of heat
and air pollution, there appears to be a shared connection to major streets, which have
both pavement and high traffic, but other drivers (e.g., vegetative cover) may disrupt this
correlation. As such, we might expect to see a mosaic of microspatial inequities across the
streets of a neighborhood, some with high heat, others with high air pollution, some with
both, and some with neither.

Here we present a case study evaluating the extent to which (1) heat and air pollution
give rise to microspatial inequities within neighborhoods and (2) these hazards have dis-
tinct or overlapping distributions that result in various combinations of exposure across a
neighborhood’s streets. This moves beyond existing work on these environmental hazards
in cities, which has largely emphasized how neighborhood-level variations for both the
urban heat island effect [6,27–30,42,43] and air pollution [21,44] affect health outcomes.
A sole exception found that extreme heat indeed varied street-to-street within neighbor-
hoods, driven by differences in tree canopy, impervious surfaces, and albedo. Further, they
demonstrated that these variations—not neighborhood-level variations—best explained
geographic disparities in medical emergencies during heat advisories [45]. Meanwhile,
Gately et al. [46] estimated vehicle-generated emissions street-by-street, presenting a se-
ries of maps that offer preliminary evidence for the potential generation of microspatial
inequities. That said, they stopped short of modeling the importance of streets in capturing
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variance and only estimated emissions, which, as noted, drive elevated concentrations only
when they are not flushed by airflow. Meanwhile, as noted, very few studies have examined
the extent to which environmental hazards overlap (i.e., correlate) across neighborhoods,
and none that we know of have done so across streets within neighborhoods.

The current case study specifically examines Boston, MA, owing to (1) documented
evidence of high variability in hazards between the city’s neighborhoods, (2) variability in
urban infrastructure and form throughout the city, increasing the likelihood of microspatial
variability, and (3) a wealth of available data, including GIS inventories of roads, buildings,
and land cover, and resources for estimating both temperature and air pollution. It is
important to note, however, that these latter resources are imperfect substitutes for the
direct measures generated by in-situ studies or environmental sensor networks, which are
not available for Boston. Instead, they are calculated using proxies in conjunction with a
physics-based understanding of the role of urban infrastructure to generate a best-available
estimate of parameter distribution. The results are a first-pass approximation that likely
captures spatial variation while being imprecise in terms of their absolute values. Further,
they fail to capture fluctuations across seasons and weather conditions. While we do not
believe these limitations undermine the analysis and its overarching insights, they do force
us to present only relative comparisons and not to delve into the implications of absolute
measures (e.g., identifying thresholds for health impact concerns). That said, provided
we find support for our hypotheses, the weaknesses of the data highlight the potential
advantages that high resolution environmental data, whether from sensor networks or
other technologies, could provide for communities over such proxy-based data sets. We
return to this in the Section 4.

The study proceeds in two parts. First, we map estimated ambient levels of air
pollution and extreme heat for all streets in the city, quantifying the extent to which
variation is distributed across streets or neighborhoods. Second, we leverage detailed
information on infrastructure to identify the drivers of both hazards at the street and
neighborhood levels. Third, we examine the correlations between estimated air pollution
and heat across neighborhoods and across streets within neighborhoods, conducting the
first test of multihazard exposure at the microspatial scale.

2. Materials and Methods
2.1. Data Sources and Processing

The study leverages three data sources. First, the Urban Heat Island Database [23,47]
documents land surface temperature and associated environmental characteristics derived
from remote sensing data for 30 m × 30 m grid cells across greater Boston. Second,
Gately et al. [46,48] made high resolution estimates of air pollutant emissions from vehicles
available for greater Boston. Third, we coordinated and supplemented these two data sets
of hazards using the Boston Area Research Initiative’s (BARI) Geographical Infrastructure
for Boston (GI) [49], which links all land parcels (i.e., addresses) identified in the City of
Boston’s Tax Assessments to U.S. Census TIGER line street segments (i.e., the undivided
length of street between two intersections or an intersection and a dead end) and nests
them within census tracts. In addition to enabling the coordination of measures from
the two other data sets for all street segments (see below for more), it provided other
descriptors of the land use and structure of the City’s streets and neighborhoods. There
are 24,757 street segments in Boston’s 178 census tracts. Of these, 24,579 had measures
for all components of the Urban Heat Island database’s grid, comprising the sample for
all analyses of the distribution of heat; 12,954 had information sufficient to estimate air
pollution (in 177 census tracts; see below for inclusion criteria), comprising the sample for
all analyses of the distribution of air pollution; all but 18 street segments with measures for
air pollution also had a measure for heat, comprising a sample of 12,936 street segments
in 178 census tracts for analysis of the overlap between the two hazards. See Table 1 for
descriptive characteristics for all variables.
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Table 1. Descriptive statistics for streets in Boston with measures of heat and air pollution and the
containing census tracts.

w/Msr. of Heat w/Msr. of Poll. a

Mean (SD or Range)
or Count (%)

Mean (SD or Range)
or Count (%)

Street Segment Features
Main Street b 9004 (37%) 3591 (28%)
Dead End 1232 (5%) 1131 (9%)
Predominant Zoning

No Parcels 10,785 (44%) −
Three-Family Residential with 1843 (7%) 1840 (14%)Assorted Other Uses
Mix of Two-Family and 2530 (10%) 2523 (19%)Single-Family Residential
Commercial 2375 (10%) 2225 (17%)
Single-Family Residential Only 3333 (14%) 3307 (26%)
Exempt c 1533 (6%) 917 (7%)
Condominiums 1594 (6%) 1578 (12%)
Mixed-Use Commercial 586 (2%) 564 (4%)

Land Surface Temperature 98.6 ◦F (5.5 ◦F) 98.8 ◦F (4.8 ◦F)
Canopy Cover 0.10 (0.14) 0.11 (0.12)
Impervious Surface Cover 0.77 (0.23) 0.76 (0.20)
Albedo 0.13 (0.02) 0.12 (0.02)
Air Pollution Classification d

Low-Risk 7912 (61%) 7918 (61%)
Medium-Risk 3484 (27%) 3491 (27%)
High-Risk 1540 (12%) 1545 (12%)

n = 24,579 n = 12,954
Census Tract Features

Pop. Density 25,336 ppl/mi2

(18,159 ppl/mi2)
25,478 ppl/mi2

(18,110 ppl/mi2)
Predominant Usage

Downtown 12 (7%) 12 (7%)
Industrial/Institutional 31 (17%) 31 (17%)
Park 14 (8%) 13 (8%)
Residential 121 (68%) 121 (68%)

n = 178 n = 177
a—Estimates of pollution limited to streets with at least one parcel with a stated number of floors in tax assessments.
See Methods for more detail. b—As determined by the Commonwealth of Massachusetts’ MassGIS, which
categorizes streets according to their width and thoroughfare status. See Methods for more detail. c—Buildings
owned by government, and non-profits are tax exempt. In addition, Chapter 121A establishes subsidized housing
as tax exempt. d—18 street segments had estimates for air pollution but no values from the urban heat island
database, making for 12,936 segments with measures on both.

2.1.1. Land Surface Temperature and Associated Factors

The Urban Heat Island Database [47] contains four measures for each 30 m × 30 m
grid cell in Boston, drawn from multiple sources. Land surface temperature was estimated by
combining Landsat 5 TM 120 m and Landsat 7 ETM+ 60 m brightness temperature observa-
tions in summer intervals (1 June–31 August) from 2002 to 2008. Brightness temperature
data were screened for clouds [50] and atmospherically corrected for scattering and haze
effects [51]. Brightness temperature was then converted to land surface temperature and
downscaled to 30 m by estimating emissivity values from 30 m surface reflectance data [52].
Landsat data are collected at 10:20 a.m. local time. Note that temperatures are somewhat
higher than one might expect as land surface temperature is typically 5–11 ◦F higher than
the air temperature experienced by people (mean = 98.55 ◦F for streets).

In addition to land surface temperature, the database included three closely related
environmental characteristics. Albedo, or surface reflectivity, was calculated on a scale
from 0–1 (mean = 0.13 for streets) from combined Landsat (30 m) and MODIS (500 m)
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observations in summer intervals (1 June–31 August) from 2003 to 2008 at approximately
10:20 a.m. local time to produce 30 m raster cells [53]. Canopy fraction corresponding
approximately to the year 2010 was obtained from the 30 m National Land Cover Database
(from 0–1; mean = 0.10) [54]. Impervious surface cover fraction was aggregated to 30 m pixels
from a 1 m grid generated by orthophotography data provided by MassGIS for 2015 by
mean value per pixel (from 0–1; mean = 0.77).

2.1.2. Air Pollution Concentration

Gately et al. [48] approximated air pollution emissions across the streets of eastern
Massachusetts by estimating traffic volume and speed drawn from cellphone-generated
mobility data and combining with established relationships between vehicle speed, type,
and emission levels [46]. These were calculated for all street segments and then converted
to rasters with grid cells of approximately 75 m. The many indicators of air pollution are
highly inter-correlated, so we use carbon monoxide (CO) as the proxy for overall vehicle
emissions of airborne pollutants in the generation of the heterogeneity map for estimated
air pollution levels.

Exposure to air pollution depends critically not only on vehicle emissions but also how
local air flow dynamics disperse or trap them. Based on current understandings of the fluid
dynamics of urban canyons [32,33] we approximated the street segment flushing regime
(low, moderate, high) using the average height of buildings of each street (approximated as
4 m per floor) and the street width (based on estimates from Mass Highway department;
see below for more on these measures) to estimate the urban canyon aspect ratio (street
width divided by building height, or W/H). Streets that are wider or have shorter buildings
(or empty lots), i.e., the ratio of street width to building height is higher, have higher
flushing rates (i.e., more air flow and therefore lower pollution concentrations) while streets
that are narrower or have taller buildings have lower flushing rates and therefore higher
potential to concentrate locally-emitted pollution. Cutoff between regimes is dictated by
fluid dynamics system properties based on width-to-height ratio (W/H). Specifically, W/H
< 1.54 is low flushing (sheer at top of canyon drives flushing to the atmospheric boundary
layer), 1.54 < W/H < 6.67 is moderate flushing (turbulent eddies in the canyons dominate
flushing), and W/H > 6.67 is high flushing (atmospheric boundary layer essentially reaches
to ground level). Given the limitations of the available data, rather than attempt to estimate
actual ambient air pollution concentrations, we instead classify each street segment based
on likely risk level by combining emissions and flushing estimates. Low risk is indicated by
a below average emissions rate or a high flushing rate. Medium risk falls between the 50th
and 75th percentile in emissions and has moderate flushing or is over the 75th percentile in
emissions but with a high flushing rate. High risk falls between the 50th and 75th percentile
in emissions and has a low flushing rate or is over the 75th percentile in emissions and has
a moderate or low flushing rate. See Land Use for calculation of W/H.

2.1.3. Land Use

The Geographical Infrastructure (GI) provided information on urban form that may be
correlated with both the experience of land surface temperature (i.e., owing to the thermal
properties of buildings and spaces) [55] and air pollution (i.e., by influencing traffic patterns
or airflow). These include its classification as a Main street (i.e., a thoroughfare above a
certain width that is short of a highway; provided by MassGIS), and primary land usage (a
seven-group typology based on a cluster analysis of the representation of each land use;
see Table 1). We calculated width-to-height ratio of a street and its buildings (W/H) by
estimating building heights from the number of floors in each building on a street (from
Boston’s tax assessments; approximating 4 m per floor) and the street width from the
number of lanes (based on classifications from MassGIS (e.g., limited access highway vs.
major arterial vs. minor road) and information from MassHighway on the structure of
these types, with lanes estimated as 6.15 m, shoulders as 4.1 m, and sidewalks as 2–3 m
depending on road type). This calculation was limited to street segments with at least
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one parcel with a stated number of floors, because otherwise we could not account for the
presence of building whose address did not place it officially on that street segment, leaving
12,954 street segments. We excluded 11,059 street segments with no parcels and 878 street
segments with no parcels with a recorded number of floors (638 of which were dominated
by building zoned as exempt, which often contain less information in tax assessments
because they are not formally taxed). Last the GI includes population density for each
census tract (from the US Census Bureau’s American Community Survey) and classifies
each as being primarily residential, downtown, institutional (e.g., industrial, university), or
centered on a large park.

2.1.4. Data Coordination

The Urban Heat Island database and the air pollution data were both provided as
rasters. To extract measures of LST, albedo, canopy, impervious surfaces, and air pollution
for each street segment, we calculated the proportion of each street segment in Boston
contained in each raster grid cell. This was then used to create a weighted average of these
five measures of the environment on each street segment. We followed the same process
for census tracts. For the urban heat island database, rather than average values for all
streets in each census tract, we weighted all grid cells falling within the tract, because we
would otherwise have ignored areas not on streets. This provides a more comprehensive
measure of the census tract environment. This was not relevant for the air pollution data,
which specifically measured emissions on streets and did not have data for other spaces.
These street and tract measures were then merged with the land use descriptors at each
level provided by the GI. Street segments were attributed to the census tract in which the
majority of their land parcels fell, a logic necessary to classify street segments forming the
border between census tracts.

2.2. Analysis

The main analysis occurs in two parts. First, we decomposed variance between streets
and tracts using ANOVAs wherein tracts act as the grouping (i.e., independent) variable.
These estimated the percentage of variance at each level. We then ran multilevel models
that nested street segments within tracts (by the logic described in Data Coordination; see
Data Sources and Processing for sample sizes). The models simultaneously test the effects
of factors at each geographic scale while holding features of the other level constant, taking
the form:

Yjk = β0k + β1k × x(1)jk + · · ·+ βnk × x(n)jk + rjk Street Equation

β0k = γ00 + γ01 × x(01)k + · · ·+ γ0n × x(0n)l + µ0k Tract Equation

where β and γ are parameter estimates for predictors at the street and tract levels, respec-
tively, and r and µ are error terms at the street and tract levels, respectively. Tract-level
parameters quantify the effect of a given factor on all streets in a census tract. Yjk is the value
of the dependent variable for the jth street in the kth census tract. Yjk is either land surface
temperature or air pollution, depending on the model. The first is a normally distributed
variable, permitting the use of an identity link. The latter is a categorical variable, in which
case we predict a street being at either moderate- or high-risk for air pollution exposure
as a dichotomous variable, necessitating a binomial link. These are both run in the lme4
package in R [56].

3. Results
3.1. Descriptive Statistics

The average street had an LST of 98.6 ◦F (as noted in the Methods, land surface
temperature is typically higher than the experienced air temperature by 5–11 ◦F). This
varied substantially, however, from 72.4 ◦F to 116.4 ◦F. Half of streets fell between 95.4 ◦F
and 102.6 ◦F. This distribution is only moderately narrowed when considering census
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tracts, whose average temperatures range from 87.4 ◦F to 106.4 ◦F. Consistent with this, the
average neighborhood had a difference of 15 ◦F between its hottest and coolest streets—
nearly double the difference between the 25th and 75th quartile of streets in the city. In
37 census tracts (21%), this range was over 20 ◦F.

For air pollution exposure, 61% of streets were classified as low risk, 27% as medium
risk, and 12% as high risk. The proportions of street segments at each risk level varied
considerably geographically, however, with neighborhoods ranging from 96% to near 0%
of streets being low-risk (limited to 155 tracts with 20 or more street segments to prevent
outliers.). Approximately half of neighborhoods had between 44% and 79% low-risk streets.
In sum, the initial statistics for LST and air pollution point to considerable variation both
within and between tracts for both hazards, as represented geographically in Figure 1. How
this might look among the streets of a single census tract is also presented in Figure 2a,b.
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Figure 1. Maps of the distribution of hazards across tracts reveal large amounts of variability
across neighborhoods in (a) heat and (b) air pollution, but also large amounts of variability within
neighborhoods, as measured by (c) difference in temperature between the warmest and coolest streets
and (d) the diversity of at-risk and low-risk streets for air pollution (calculated with a Herfindahl
index, 1 − p2 − (1 − p)2). Note: Variability only represented for tracts with 20 or more streets to
avoid outliers.

3.2. Distribution of Hazards across Streets

As noted above, the analysis sought to better understand the distribution of LST and
air pollution in two stages. First, ANOVA models partitioned the variance in each hazard
between the street and tract levels. Second, we ran multilevel models that incorporated
independent predictors at first the street and then the tract level to assess the factors that
most drive the distribution of these hazards. We present the results for heat first and then
for air pollution. See Table 2 for all predictors and parameter estimates.
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3.2.1. Land Surface Temperature

An initial ANOVA found that 39% of the variation in temperature occurs between
streets in the same neighborhood. To explain this variance, we first incorporated the char-
acteristics of streets into multilevel models, focusing on the three infrastructural elements
most often cited as driving the urban heat island effect: tree canopy, impervious surfaces,
and albedo. It is worth noting that each of these components, particularly tree canopy, may
indirectly factor into the way land surface temperature is estimated because of their effect
on emissivity, which is the primary proxy for calculating land surface temperature from
LandSat data.

All three infrastructural elements were major predictors of street temperature (all
p-values < 0.001). An increase in canopy cover by 10% predicted a drop in temperature
by 1.5 ◦F, an increase in impervious surfaces by 10% predicted a temperature that is
0.7 ◦F higher, and an increase in albedo of 1% (approximately practically comparable
to a change of 10% in canopy), equated to an expected drop in temperature of 0.2 ◦F.
Crucially, these predictors not only explained 40% of the variation between streets within
neighborhoods but also accounted for 74% of variation between neighborhoods, meaning
that between-neighborhood variance appears to have been largely a function of streets
with similar features being clustered together. This result is partially illustrated by the
visible relationship between canopy and street temperature in an example neighborhood in
Figure 2.
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Table 2. Parameter estimates from multilevel models predicting the distribution of land surface
temperature and air pollution risk based on street- and tract-level features.

Land Surf. Temp. Moderate- or High-Risk for Air Pollution? (0/1)

Beta (SE) Beta (SE) Beta (SE) Odds Ratio Beta (SE) Odds Ratio

Street-Level Features

Canopy Cover a −14.95 ***
(0.18)

−14.72 ***
(0.18) − − − −

Imperv. Surf. Cover a 6.70 *** (0.13) 6.54 *** (0.13) − − − −

Albedo a −17.32 ***
(1.15)

−17.28 ***
(1.15) − − − −

Main − − 3.68 *** (0.08) 39.65 3.68 *** (0.08) 39.65
Dead End − − 0.12 (0.09) 1.13 0.12 (0.09) 1.13
Predominant Zoning b

Three-Family Res. − − 0.69 *** (0.10) 1.99 0.67 *** (0.10) 1.95
Two- and Single-Family Res. − − 0.23 ** (0.09) 1.26 0.22 * (0.09) 1.25

−0.09
Commercial − − 1.32 *** (0.10) 3.74 1.29 *** (0.10) 3.63
Exempt − − 0.88 *** (0.13) 2.41 0.85 *** (0.13) 2.34
Condos − − 0.61 *** (0.10) 1.84 0.58 *** (0.10) 1.79
Mixed-Use − − 1.75 *** (0.17) 5.75 1.68 *** (0.17) 5.37

Tract-Level Features
Canopy Cover a − −6.67 *** (1.34) − − − −
Imperv. Surf. Cover a − 3.83 *** (1.03) − − − −
Albedo a − −10.11 (9.91) − − − −
Population Density c − − − − 0.21 (0.13) 1.23
Predominant Usage d

Downtown − − − − 1.37 *** (0.39) 3.94
Industrial/Institutional − − − − 0.27 (0.24) 1.31
Park − − − − 0.24 (0.46) 1.27
Street-Level R2 0.4 0.41 − e − e

Tract-Level R2 0.74 0.84 0.14 0.24
Streets/Tracts f 24,523/175 12,721/155

*—p < 0.05, **—p < 0.01, ***—p < 0.001. a—Proportion measured from 0–1. b—Reference category of predominantly
single-family zoning (see Table 1 for more). c—Log-transformed to account for outliers. d—Reference category of
predominantly residential usage. e—Not possible to calculate for binomial model. f—Limited to street segments
with all measures in census tracts with at least 20 street segments.

A final model tested the additional impact of tract-level measures of canopy, pavement,
and albedo, which could occur if such features influence temperatures in nearby spaces.
The level of canopy cover and impervious surfaces were predictive at this higher level
as well, albeit at a more modest scale than at the street level. A 10% increase in canopy
cover predicted an increase of 0.7 ◦F (p < 0.001), and a 10% increase in impervious surfaces
predicted an increase of 0.4 ◦F (p < 0.001). Albedo at the tract level had no independent
effect. These factors accounted for 10% of additional variation between neighborhoods.

3.2.2. Air Pollution

Census tracts accounted for 20% of the variation in the locations of streets we estimated
to be at medium or high risk for air pollution and 28% of the variation in streets we
estimated as high risk. As such, 70–80% of the variation in air pollution risk lies between
streets in the same neighborhood, which is approximately double that seen for LST. To
explain this variation, our models focused on infrastructural elements that might account
for traffic and airflow. At the street level, we tested whether predominant land use (e.g.,
residential) and being a main street or dead end predicted air pollution. Land use was
an especially strong predictor. Streets dominated by single-family housing had the least
risk of having moderate or high pollution. At the other end of the scale, streets dominated
by commercial and mixed-use commercial buildings were 3.74 and 5.75 times as likely
to be at risk for air pollution, respectively (p-values < 0.001). In between were streets
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with higher density housing, like condos, apartment buildings, and three-family houses,
which tended to be about twice as likely to be at risk than streets predominated by single-
family housing. Meanwhile, main streets were nearly 40 times as likely to be at risk for
air pollution, independent of their land use, likely owing to greater traffic flow and taller
buildings (p < 0.001). This effect is illustrated by maps from an example neighborhood in
Figure 2.

We then introduced population density and a four-category classification of neigh-
borhood use as additional predictors. The only significant factor was that “downtown”
neighborhoods had substantially higher risk than other types of neighborhoods, especially
residential neighborhoods (B = 1.37, O.R. = 3.94, p < 0.001), likely owing to a density of
tall buildings.

3.3. Overlaps in Hazards across and within Neighborhoods

An initial examination finds that there is a significant though moderate correlation of
r = 0.41 (p < 0.001) between average temperature and the proportion of streets at risk for air
pollution. This correlation is apparent in Figure 3a, though it is notable that there are many
places high in one that are not high in the other. As we have noted that there are substantial
variations between streets within the same neighborhood for each of these hazards, it is
worth considering whether these within-neighborhood variations correlate across hazards.
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Figure 3. The correlation between land surface temperature and air pollution risk is (a) moderately
strong at the census tract level (R2 = 0.17; represented by trendline) but (b) weak between street
segments in the same tract (R2 = 0.06).

Streets at moderate risk for air pollution were about 3 ◦F warmer than low-risk streets,
and high-risk streets were an additional 0.6◦F warmer on average (97.6 ◦F, 100.6 ◦F, and
101.2 ◦F). This relationship accounts for 10% of the variation in temperature (using an
ANOVA with pollution risk level predicting LST; p < 0.001), which is equivalent to a
correlation of 0.32, or just a bit lower than the correlation across tracts. However, the
relationship weakens if we compare streets only to their neighbors (i.e., using the ANOVA
to predict the LST of a street relative to the temperature of the census tract), with the
correlation dropping to 0.24 (R2 = 0.06, p < 0.001). In fact, although low air pollution streets
are somewhat cooler on average than their neighbors (−0.39 ◦F relative to the neighborhood
average), moderate- and high-risk streets in the same neighborhood are practically identical
to each other (1.16 ◦F and 1.21 ◦F relative to the neighborhood average, respectively).

If we categorize streets by whether they suffer from air pollution, above average heat,
neither, or both, we see an interesting pattern. Streets that are cooler than the average
temperature in their neighborhood have an almost perfectly 50% chance of being at-risk for
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air pollution, but streets that have above-average temperature have over a 70% chance of
being at-risk for air pollution. This implies that factors that drive heat (e.g., impervious
surfaces) tend to be accompanied by vehicles. Though that relationship is not as consistent
in the other direction, it gives us a guide to places that suffer from both hazards.

4. Discussion

The findings demonstrate the presence of microspatial inequities in the distribution
of extreme heat and air pollution in Boston, MA. Just under half of the variation in heat
and approximately 75% of the variation in air pollution occurred within neighborhoods,
indicating that individuals living only a few blocks away from each other might experience
markedly different conditions in their daily lives. For instance, temperature differences
between streets in the same census tract were as great as 20 ◦F. This can be clearly seen
in Figure 1, where tracts vary considerably in their aggregate level of hazards but also in
the range of environments occurring within them. These results run counter to traditional
conceptions of geographic inequities, which assume that such disparities exist primarily
between neighborhoods and are uncommon within neighborhoods (e.g., [15,16]); but they
align well with the understanding of geophysical processes that are known to contribute to
environmental hazards. We confirmed that these hyperlocal features of infrastructure and
urban design were predominantly responsible not only for differences within neighbor-
hoods but also between neighborhoods. That is, even where we see cross-neighborhood
disparities in environmental hazards, they can largely be attributed to the types of streets
comprising each.

Second, we see that the distributions of extreme heat and air pollution overlap in
some areas but not consistently. The two hazards were moderately correlated across
neighborhoods but only modestly correlated across the streets of a given neighborhood. For
example, in the example neighborhood depicted in Figure 2, streets with high air pollution
are not necessarily those with high temperature and vice versa. This again contrasts with
neighborhood-centric models of inequity, which often theorize how a single overarching
process can lead multiple negative conditions and outcomes to cluster together in certain
locations [14–17,35]. It is worth noting, though, that attention to the geophysical processes
underlying environmental hazards would predict the results we saw here. If two hazards
arise from different infrastructural drivers then we would have no reason to expect that
those hazards necessarily overlap with each other except to the extent that their drivers
overlap. Indeed, the correlation that does exist between extreme heat and air pollution is
likely attributable to high-pavement-low-canopy areas with high vehicular traffic. However,
there are ways to have high traffic without low canopy cover (e.g., tree-lined parkways) and
high pavement without high traffic (e.g., industrial zones). To our knowledge this is the first
study to fully test the correlations between multiple hazards at these geographical scales.

The primary implication for sustainability and climate resilience is the need for more
nuance in how we conceptualize spatial inequities. It is easy to rely on tropes about
“high and low pollution” or “high and low heat” communities. Worse, we often fall back
on simplistic definitions of “environmental justice communities”, which are defined by
demographic indices of social vulnerability and rarely if ever differentiated by the hazards
they do and do not experience [57,58]. The results here indicate that there is no single
high-risk neighborhood for any environmental hazard, not to mention their combinations.
Instead, each neighborhood has its unique landscape, wherein some streets have greater
hazards and others less. From there, future research will need to further explore how these
varied contexts impact public health and wellbeing given their combination and levels
of hazards.

We conclude by exploring the technological and conceptual tools that we need to
capitalize on our emergent understanding of the hyperlocal distribution of hazards. First,
developing interventions and action plans for microspatial inequities will require detailed
street-by-street—or even more granular—information for all neighborhoods. One might
argue that the data presented here already begin do that, however Section 2 details the
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acknowledged limitations of these data. In fact, we believe this preliminary work demon-
strates the need for higher spatial resolution in situ data, which could as a first step be used
to verify whether or not the proxies we used here are sufficient to capture true variability
and underlying drivers. These validated results could then (1) assess the benefit of field-
deployed sensor networks as a complement to existing data repositories and (2) improve
utility for and reliability in guiding action. In particular, deployed environmental sensor
networks could be designed to reflect the contours of the local landscape, with more sensors
in areas anticipated to be highly variable, and could uncover distinctive rhythms in hazards
over the course of days and seasons that may otherwise be obscured by annual averages or
even remotely sensed data. That said, the issue of cost remains and many communities
may not have the resources to construct environmental sensor networks. Cost-efficient
solutions might include the use of mobile sensors placed on vehicles, which have been used
for both heat (e.g., [59]) and air pollution (e.g., [60]), or sparser networks that strategically
capitalize on variations and consistencies in the landscape to still produce reliable estimates
across space.

Environmental sensor networks are not silver bullets, however, capable of translating
hazard maps into sustainability, climate resilience, and wellbeing for all. There are many
possible ways that we might address microspatial inequities in hazard exposure, including
modifications of infrastructure (e.g., the implementation of green infrastructure) and the
organization of service delivery (e.g., the optimal placement of cooling centers during heat
waves). That said, these cannot be top-down solutions. Instead, community members
themselves are the best equipped to speak to what microspatial inequities mean for their
daily lives and how they might want to see them alleviated. For instance, what if the intro-
duction of more canopy cover on a hot street could result in less parking? Is that a tradeoff
that the community prefers? Data from sensors must be incorporated into community con-
versations if such questions are to be explored and resolved. There are techniques for doing
so, especially from the burgeoning field of participatory modeling, which develops shared
representations that permit the merger of stakeholder perspectives and scientific data in
the design and testing of solutions to complex community problems [61–63]. Such conver-
sations may help solve the unanswered riddle of how sensor networks realize the promise
of benefitting community and facilitate the development of science-driven, community-led
solutions for locally-based sustainability and climate resilience.
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