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Abstract: Mechanical cooling of the entire mining tunnel, widely used in deep coal mines, has a
significant energy-intensive consumption, particularly for intelligent mining tunnels. Therefore,
localized cooling would benefit the intelligent mining industry. Current studies on the temperature,
relative humidity, and air velocity under localized cooling for working protection are still unclear. A
modified predicted heat strain model that is appropriate for warm and humid conditions is presented
in this article and calculated using MATLAB. Results reveal that air temperature was the primary
factor affecting underground miners’ safety. Increasing air velocity would improve the working
environment when the thermal humidity index is lower than 32. Reducing total working time and wet
bulb temperature would benefit underground miners’ security. For the cooling of intelligent mining
tunnels, the recommended air velocity would be 2 m/s, and the maximum wet bulb temperature
would be 28 ◦C for the 6-h working period and 26 ◦C for the 8-h working period. Results would be
beneficial to the cooling of intelligent mining in China.

Keywords: intelligent mining; exposure duration; PHS model; warm and humid environment;
localized cooling

1. Introduction

The Chinese mining industry is dominated by deep underground mining [1,2]. Intelli-
gent mining technology based on automatic mining methods was developed to respond
to excessive energy consumption, low productivity, and high safety risks associated with
traditional mining in China. Over 900 fully automated coal extraction faces are currently in
operation [3]. Intelligent mining entails fewer underground workers and a lower metabolic
rate, as shown in Tables 1 and 2.

Mechanical cooling systems have been most frequently used in the thermal environ-
ment due to deep mining [2,4]. However, cooling an entire tunnel would be a significant
energy-intensive process, accounting for up to 25% of total electricity consumption [4].
Moreover, the reduction in the number of workers and decreased physical work intensity
suggest that localized cooling is widespread in the intelligent mining industry. Conse-
quently, the climatic conditions under localized cooling will be studied.

Nations worldwide have focused on controlling the thermal environment under deep
mines, as shown in Table 3. Vosloo et al. [5] reported that underground working areas re-
quire WBT below 27.5 ◦C. Twort et al. [6] determined that ET 28.8 ◦C was the upper climatic
design limit. Belle et al. [7] recommended lowering WBT below 27 ◦C to reduce the risk of
heat stroke. Han et al. [8] showed that when the relative humidity is reduced to 60%, even
the DBT of 30 ◦C satisfies the workers in the entire tunnel. Rohanchi et al. [9] found that a ve-
locity of 1–2 m/s is ideal for guaranteeing the workers’ thermal comfort. Haiqiao et al. [10]
stated that reducing RH would improve thermal comfort in deep mines. Shugang et al. [11]
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reported that the DBT in deep mines could be extended up to 28 ◦C. Saunders et al. [12]
presented that 33 ◦C and 60% RH would be acceptable. Paloma Lazaro et al. [13] proposed
a modified PHS model for deep mines. Sasmito et al. [14] found that DBT significantly
impacts temperature distribution throughout the tunnel. Xingxin et al. [15] suggest that
miners are most comfortable when temperatures are below 27 ◦C, humidity is between 60%
and 70%, and wind speeds are at least 0.5 m/s. Telebi et al. [16] found that increasing cloth-
ing insulation lowers the maximum exposure time. Kalkowsky et al. [17] measured miners’
heart rates and rectal temperatures. Jinggang et al. [18] determined that the critical tolera-
ble temperature and relative humidity were 37 ◦C and 80%, respectively. Chao et al. [19]
demonstrated that it is necessary to stop working under heavy and cumbersome loads
under WBGT over 35 ◦C. Jiasong et al. [20] found that increasing air velocity (less than
2 m/s) would increase miners’ exposure. Chenqiu et al. [21] proposed modifying inputs to
improve the prediction of the PHS model underground. Sunkpal et al. [22] determined that
the optimal air velocity for thermal comfort was 1.5 m/s. Zhaoxiang et al. [23] presented
a classification criterion for assessing underground airway heat hazards. Zijun et al. [24]
found that the temperature of the surrounding rock is the most significant factor in the
release of latent heat and sensible heat. Jiuzhu et al. [25] report that ventilation temperature
influences DBT the most. Dingyi et al. [26] studied heat stress with nine evaluation indexes.
Ji et al. [27] concluded that the maximum safe working time is 4 h at 32 ◦C and 90% RH.
According to Qianming et al. [28], workers in deep mines should be protected from high
temperatures by a DBT of 27 ◦C.

Table 1. Mining workers in a work shift.

Intelligent Mining Faces

Workers (People/8 h)

Traditional Mining Intelligent
Mining

1306 mining face, Licun Coal mine 28 16
1001 mining face, Huangling 1# Coal mine 11 3

1008 mining face, Fumei Coal mine 12 5
5# Xiangshan Coal mine 25 10

214,201 mining face, Hanjiawan Coal mine 15 6
7302 mining face, Yanzhou Coal mine 25 7

74,104 mining face, Zhangshuanglou Coal mine 16 5

Table 2. Metabolic rate of the mining workers.

Occupations Metabolic Rate
(W/m2) Traditional Mining Intelligent

Mining

Inspector 160
√ √

Driver 160
√ √

Maintenance engineer 160
√ √

Coal cleanup workers 300
√

×
Workers at the head

and tail of coal-cutter 250
√

×

Workers for the
hydraulic supports 250

√
×

The experts have agreed that the thermal environment under the deep mine needs
to be improved. Unfortunately, the thermal environment-controlling conditions proposed
did not agree with each other due to inconsistent heat stress indicators. Considering the
safety and health of mining workers, a modified PHS model for a warm and humid climate
would be more suitable for evaluating underground mines during intelligent mining. This
paper presents and calculates a modified PHS model for a warm and humid climate using
the MATLAB program. The impact of environmental parameters on maximum exposure
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duration was then examined. Lastly, raise the parameters for localized cooling at Jiahe
Coal Mine.

Table 3. Thermal environment controlling measures.

Country Environmental Conditions

China When the DBT exceeds 30 ◦C, production must be stopped.

United States Upper WBT of 30 ◦C for unimpaired performance on sedentary tasks and 28 ◦C for moderate levels of
physical work.

Australia WBT ≤ 28 ◦C
France Synthesizing temperature < 28 ◦C

Germany

1. When DBT > 28 ◦C or ET > 25 ◦C

• ET of 25–29 ◦C lasts for 3 h a day, working time should not exceed 6 h;
• ET of 29–30 ◦C lasts for 2.5 h a day, working time should not exceed 5 h;
• People would not be allowed to work when ET exceeds 30 ◦C.

2. Staff members aged under 21 or over 50 would be prohibited from working at the environment with
ET exceeding 29 ◦C.

Great Britain When the ET exceeds 28 ◦C, the working time would be no longer than 1.5 h.
Semi-mechanization working face: ET ≤ 27.2 ◦C; Mechanized working face: ET ≤ 28.3 ◦C
ET ≤ 30.0 ◦C: light levels of physical work; ET ≤ 28.0 ◦C: moderate levels of physical work;
ET ≤ 26.5 ◦C: heavy levels of physical work.

Poland When DBT > 26 ◦C, the workload should be reduced by 4%; DBT > 28 ◦C, working time should be no
longer than 6 h; DBT > 33 ◦C, only ambulance work is allowed.

India, Italy DBT ≤ 32 ◦C
Japan DBT ≤ 30 ◦C in the mining face and 31 ◦C for heading face.

South Africa WBT ≤ 27.5 ◦C

Former Soviet Union When RH ≥ 90%, the allowable DBT was 25 ◦C if air velocity was larger than 2 m/s and no more than
24 ◦C if the air velocity was smaller than 1 m/s.

2. Materials and Methods

DBT, RH, clothing insulation, exposure duration, and metabolic rates determine the
heat effect on a mining worker. Heat illness occurs when heat stress exceeds the resultant
heat strain. As a result, it is becoming increasingly significant to assess underground
environmental conditions according to the allowable heat stress for the security of miners.

Heat gains and losses by the human body are expressed in the heat balance equa-
tion [29]. Figure 1 and Equation (1) illustrate that heat storage (S), which accumulates in
the body, is the metabolic rate’s (M) less adequate mechanical power (W), as well as heat
exchanges due to conduction (K), convection (C), radiation (R) and evaporation (E).

S = M−W − K− C− R− E (1)

People would be comfortable when S equals zero. When S > 0, heat accumulates in
the body, leading to a rising rectal temperature and water loss. Rectal temperature and
water loss have been calculated using the PHS model in ISO 7933. ISO 7933 suggests that
the maximum rectal temperature for workers is 38 ◦C and the maximum water loss is
7.5% of body mass. Mining companies and experts agree that the PHS index is a handy
tool for evaluating and managing occupational heat exposures [13]. Most coal miners
suffer from high temperatures and high humidity working under mine tunnels, where
DBT is over 30 ◦C and RH is close to 100% [2,10]. Enzymatic activity increases when
the body is exposed to a 30–45 ◦C environment, and chemical reactions accelerate [30].
During sweating, some sweat is absorbed into the clothes, causing a change of the clothes’
insulation, and the evaporated one causes a change in evaporation heat resistance. ISO 7933
simplifies metabolic rate, clothing insulation, and evaporation heat resistance as constants,
resulting in inaccurate predictions of human heat tolerance under deep hot and humid
conditions. The schematic diagram can be found in Figure 2.
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2.1. Metabolic Rate of the Miners under Hot and Humid Mine

Metabolism measures the energetic cost of muscular load and is used as an activity
indicator because it converts chemical energy to mechanical and thermal energy. Enzy-
matic activity increases when the body is exposed to 30–45 ◦C, and chemical reactions
accelerate [30,31]. As a result, the empirical values provided by ISO 8996 cannot be applied
to hot and humid conditions. Xiaoli et al. [32] found that a maximum increase of 5 to
10 W/m2 would be expected in the hot climate due to increased heart rate and sweating.
Werner et al. [33] demonstrated that M is a function of time and local coordinates in three
dimensions. Experiments collected from previous studies [34–36] in a warm and humid
environment (heart rate, respiratory quotient, oxygen consumption rate, carbon dioxide
production, etc.) were used to calculate the actual metabolic rate (Ma) in a hot and humid
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environment utilizing Equations (2)–(5). Comparing the Ma and ISO8996 (Mexp), we found
that the ∆M should be 20–30%.

M =
HR− HR0

RM
+ M0 (2)

RQ =

.
VCO2

.
VO2

(3)

EE = 5.88 · (0.23 · RQ + 0.77) (4)

M = EE×
.

VO2 ×
1

ADu
(5)

∆M =
Ma −Mexp

Mexp
(6)

M0—metabolic rate at rest, W/m2;
HR—heart rate, in beats per minute;
HR0—heart rate, in beats per minute;
RM—increase in heart rate per unit of metabolic rate;
RQ—respiratory quotient;
.

VO2 —oxygen consumption rate, L/h;
.

VCO2—carbon dioxide production, L/h;
ADu—body surface area, m2.

2.2. Modified Clothing Insulation (Icl) and Evaporation HEAT resistance (Rt)

Thermal balance is achieved by transferring sweat from the skin surface to the air in
liquid and gaseous forms. Sweat is absorbed in clothes as a liquid; then, the insulation
changes, and some evaporates, altering the evaporation heat resistance. Accordingly,
we proposed:

(1) No sweat remains on the skin’s surface;
(2) Fabric volume was constant;
(3) Heat conduction occurs when heat is transferred from the inside to the outside fabric;
(4) The clothing fabric is made of 100% cotton.

Cotton fiber diameter increases when cotton fibers absorb water. Moisture regain is
calculated when it exceeds the maximum water capacity (Cm).

ε = 1− ρt

ρs
(7)

Cm =
ρw

ρs

εd
1− εd

(8)

where ρt, ρw and ρs, respectively, indicated the density of fabric, water and fiber, g/cm3.
εd represents the porosity factor when the clothing was completely dry.

As the fabric is porous, heat transfer in the clothing (Q) is divided into conduction
through the air in the pores (Qa), sweat in the pores (Qw), and fibers (Qs).

Q = Qa + Qw + Qs (9)

Fourier’s law states:

Qj =
λj Aj∆t

δ
(10)

where subscript j represents air, fiber and sweat; λ, λs, λa and λw, respectively, indicate
the thermal conductivity of clothing, fiber, air and water, J/m· ◦C. ∆t was the temperature
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difference between the inside and outside of the clothing, ◦C. δ was the thickness of
the clothing.

If water mass (mw) ratio to fiber mass (ms) in clothing is less than Cm, that is, mw
ms

< Cm,
water volume fraction in the fabric was supposed as x; otherwise, the moisture content of
the clothing (µ) would be a constant value Cm.

Total weight of the clothing at the i moment (mi) was expressed as in Equation (11).

mwi + ms = mi (11)

mi+1 = (swti+1 −mzi −msi) · ∆t + mi (12)

swti = mzi + msi + mli (13)

where,

mi—Total weight of the clothing at the i moment, kg;
swti—Total sweat at the i moment, kg/s;
mzi—Sweat that enters the air as a gas through a fabric, kg/s;
msi—Sweat evaporating from the outer surface of the garment, kg/s;
mli—Sweat remaining in the fabric;
∆t—Iteration interval, 60 s.

mwi = µmi (14)

The simultaneous Equations (9)–(14) were derived and the following results were obtained:

λ = (1− ε)λs + (ε− x)λa + xλw (15)

x =
µ(1− ε)ρs

ρw(1− µ)
(16)

Equation (17) specifies the clothing insulation (Icl), whereas Icl0 refers to the initial
clothing insulation, Clo.

Icl = 0.155 · δ

λ
(17)

Icl0 = 0.161 + 0.835∑ Iclu0 (18)

ISO 9920 suggests mining clothing parameters in Table 4. Iclu0 of mining cloth was
given in Table 5, and the Icl0 calculated as in Equation (18) was 0.57 clo. Figure 3 shows the
results of several studies that have verified the model’s reliability [37,38].

Table 4. Mining clothing parameters.

Material Fabric Insulation
(m2·KW−1)

Fabric Surface Density
(g/m2) Thickness/mm

Denim/twill weave 0.023 206 0.8

Table 5. Insulation for typical clothing ensembles (ISO 9920).

Clothing Ensemble Iclu/clo

Briefs 0.04
Long sleeves 0.16
Work pants 0.24

Socks 0.02
shoes 0.02
Cap 0.01
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Icl = Icl0 ·
(

0.41 + 0.29e−
mli

885.73 + 0.31 · e−
mli

162.88

)
(19)

According to the assumption, sweat equals the mass of water remaining in the clothing
plus water evaporated from the skin and outer surface of the dress. As a consequence of the
mass transfer process and the ideal gas state equation, mzi would be expressed as follows.

mzi =
hm

Rw · Tcl
(Pa − Pcl) · Ai =

(Pcl − Psk)

Rzi
(20)

Rzi = Rw ·Tsk
hm ·Ai

· (Pcl−Psk)
(Pa−Pcl)

= Rw ·Tsk
hm
· δ

εi ·V ·
(Pcl−Psk)
(Pa−Pcl)

(21)

Rti =
Rzi
r

(22)

and because of
εi = ε0 − xi (23)

Then,

msi =
hm

Rw · Tcl
(Pa − Pcl) ·

(
V
δ
− Ai

)
(24)

Imagine the human body as a cylindrical shape; the Re, Sc were calculated using
Equations (25) and (26).

hm =
Sh · Da

d
(25)

Sh = 0.26Re0.6Sc0.38(
Sc∞

Sccl
)

0.25
(26)

where

hm—Mass transfer coefficient, m/s;
Tcl—Water vapor saturation temperature of a garment’s outer surface, K;
Rw—Constant of water vapor gas, 461.89 J/(kg·K);
Pcl—Water vapor pressure on the outer surface of the garment, Pa;
Pa—Water vapor pressure in roadway air, Pa;
Psk—Water vapor pressure on the surface of the skin, Pa;
Ai—effective evaporation area, m2;
Rzi—Moisture vapor resistance at i moment, Pa·s/kg;
Rti—Evaporative resistance of clothing at i moment, kPa·m2/W;
r—latent heat of vaporization, J/kg;
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d—the diameter of the bottom surface, 0.3 m;
D0—Coefficient of diffusion, cm2/s; u-air velocity, m/s.

2.3. Model Verification

Previous experiments have validated the modified PHS model [39–41]. The experiment
results and predictions are listed in Tables 6–8. The error rate between the experiment
results and predictions was significantly lower than 10%, implying an acceptable amount
of error in the theoretical calculation.

Table 6. Model validation with study of Shapiro et al. [39].

Clothing Walking Speed
(m/s)

Treadmill Grade
(%)

Sweat Loss
(g/(m2·h))

Predicted Sweat
Loss (g/(m2·h)) Error Rate (%)

Fatigue Rest - 198 ± 15 193.94 2.05%
Fatigue 1.34 0 580 ± 31 540.44 6.82%
Fatigue 1.34 5 691 ± 41 644.76 6.69%
Shorts Rest - 164 ± 16 156.69 4.46%
Shorts 1.34 0 386 ± 43 415.89 7.74%
Shorts 1.34 5 556 ± 23 594.58 6.94%

Table 7. Model validation with study of Qingqing et al. [40].

Clothing
Walking

Speed
(m/s)

Sweat
Loss

(g/(m2·h))

Predicted Sweat
Loss (g/(m2·h)) Error Rate (%)

Still conditions 0.56 0 28 30.45 8.76%
0.6 0 35 38.45 9.86%

0.68 0 50 50.65 1.29%
Activity 1 0.56 0.8 38 41.69 9.72%

0.6 0.8 43 43.04 0.10%
0.68 0.8 52 54.62 5.04%

Activity 2 0.56 1.2 53 57.69 8.86%
0.6 1.2 59 58.96 0.06%

0.68 1.2 70 69.60 0.58%

Table 8. Model validation with study of Mehnert et al. [41].

Parameters Experiment 1 Experiment 2

Number of subjects 58 56
Ta (◦C) 32 25
RH (%) 50–55 50–55

Icl 0.6 0.85
Total sweat loss (g/m2) 261 232

Predicted sweat loss (g/m2) 264 221
Error rate (%) 1.2% 4.7%

An experiment by Shapiro et al. [39] involved 34 male soldiers dressed in T-shirts,
shorts, socks, and indoor shoes. The average age of volunteers was 22.1 years old, weighing
71.3 kg and 176.4 cm tall. Each exposure lasted 120 min: 10 min of walking, followed by
10 min of rest, followed by a 50-minute walk or 120 min of continuous rest for the resting
group. The ambient temperature was 35 ◦C, and the relative humidity was 75%.

Twenty college students (mean values: age: 23.5 years; height: 167.7 cm; weight:
57.6 kg) were recruited for the experiments of Qingqing et al. [40]. The maximum metabolic
rates of activities 1 and 2 were, respectively, 1.8 and 2.6 met. DBT was 30 ◦C and RH was
52% during the investigation.

According to Mehnert et al. [41], subjects sat in a wire chair in a reclining position in
experiment 1 and a standard car seat with a four-point seat belt in experiment 2.
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3. Results and Discussion

The modified PHS model was calculated using MATLAB, and the parameters are
listed in Table 9. Resting times would affect the maximum exposure duration and cooling
parameters. However, the resting time at the coal mines we considered for cooling, for
example, the Zhangshuanglou Coal Mine [8], Jiahe Coal Mine, and Zhangxiaolou Coal
Mine [42], was irregular. People would take a break between jobs or when they felt fatigue.
Moreover, we investigated additional coal mines in China for resting time and found the
same results, as shown in Table 10. As a result, resting time should have been included in
our article.

Table 9. Calculating parameters.

Calculating Parameters Values

Weight/kg 65
Height/m 1.72

Mexp/W/m2 160
Icl0/clo 0.57

DBT/◦C 16–50
RH/% 60–95

Air speed u/m/s 1–4
Walking Speed Wa/m/s 1

Duration/minutes 480

Table 10. Resting time of underground mining workers at coal mines in China.

Coal Mine Work Shift Resting Time/Minutes

Hongyang 3# Coal Mine Three eight-hour shifts 30
Dongqu Coal Mine Four six-hour shifts 0
Jinggong Coal Mine Three eight-hour shifts 20–30

Longwanggou Coal Mine Three eight-hour shifts 30
Liuyuanzi Coal Mine Three eight-hour shifts ≤25
Hecaogou Coal Mine Three eight-hour shifts 30

Zhangshuanglou Coal Mine Three eight-hour shifts almost 30
Jiahe Coal Mine Three eight-hour shifts almost 30

Zhangxiaolou Coal Mine Three eight-hour shifts almost 30
Sanhejian Coal Mine Three eight-hour shifts almost 30
Zhangji Coal Mine Three eight-hour shifts almost 30

Zhouyuanshan Coal Mine Three eight-hour shifts almost 30

3.1. Exposure Duration of Miners in the Hot and Humid Mine

Thermal humidity index (THI) [43] is used for the evalution of the thermal environment.

THI = Ta − 0.55 · (1− RH) · (Ta − 14.5) (27)

When the THI is more than 32 (Figure 4(5),(6)), S will increase, and the critical phys-
iological index will shortly be reached; therefore, workers will not be able to have heat
blown away by increasing wind speeds. When the THI is lower than 32, increasing air
velocity will improve the working environment, but the action becomes insignificant when
the wind speed increases above 2 m/s. Moreover, our previous study [44] estimated that
an air speed of 2 m/s would be the most negligible wind speed capable of dispersing the
haze. Consequently, a 2 m/s air velocity should be recommended while localized cooling
occurs in the tunnel.

DBT and RH have a negative impact on exposure duration, as seen in Figure 4. A vari-
ance analysis was conducted using SPSS22.0 software to assess the effect of environmental
factors on exposure duration. Exposure duration was analyzed as a dependent variable,
while environmental conditions were analyzed as an independent variable. Results in
Table 11 indicate that exposure duration is most affected by DBT.
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Figure 4. Exposure time of miners under different environmental conditions.

Table 11. Variance analysis of the effects of environmental factors.

Source Type III Sum of Squares Degrees of Freedom Mean Square F Salience

Corrected model 5197 20 259.8 230 0.000
Intercept 29,256 1 29,256 25,921 0.000

DBT 4816 6 802.7 713.5 0.000
RH 625 4 156.3 139.5 0.000

Wind speed 798 5 159.6 145.4 0.000
Error 995 911 1.1
Total 41,687 895

Corrected total 7145 893

Green and pink shaded areas in Figure 4 indicate the comfort temperature zone and
the safety zone at 2 m/s, respectively. In Figure 4, it appears that RH has little impact on
the size of the tolerance zone and comfort zone when RH is above 70%.

3.2. Economic Analysis of Localized Cooling under Deep Mine

Using Jiahe Mine’s 9435 working face as an example, as seen in Figure 5, the localized
cooling of working faces was evaluated for economic feasibility. Located at a depth of
−1000 m, the 9435 working face with a tunnel perimeter of 8.6 m has a rock temperature
of 34 ◦C and an inlet DBT of 37.4 ◦C. The thermoregulation device is an air–water heat
exchanger installed on one side of the tunnel, cooling the working area. According to
Figure 6, hot and humid air (point W) partially enters the thermoregulation device and is
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refrigerated by cold water circulating in the pipes. The cooled air (point O) mixes with the
hot and humid air (point N), with N being the appropriate state for workers.
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Six miners worked in a tunnel measuring 300 m in length that required cooling in this
area. The operating cost would be predicted by Equations (27) and (28). Calculations of
sensible and latent heat are presented in Tables 12 and 13.

Table 12. Sensible heat loads when the DBT is 26~31 ◦C and RH is 80%.

DBT (◦C) Equipment Load
(W)

Staff Load
(kW)

Ventilation Load
(kW)

Surrounding
Rock Heat

Dissipation (W)

Total Sensible
Heat Load (kW)

26 1200 1.2 253.10 11,022.88 264.57
27 1200 1.2 230.90 9795.02 241.30
28 1200 1.2 208.70 8567.16 217.63
29 1200 1.2 186.49 7339.30 194.20
30 1200 1.2 164.29 6111.44 170.77
31 1200 1.2 142.09 4883.58 147.34
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Table 13. Latent heat loads when DBT is 29 ◦C.

RH (%)
Personnel

Loose Moisture
(W)

Ventilation
Latent Heat
Load (kW)

Moisture Loss
of Surrounding

Rock (kW)

Total Latent
Heat Load

(kW)

60 0.26 129.61 3.97 136.51
65 0.26 113.73 3.47 119.80
70 0.26 97.76 2.98 103.00
75 0.26 81.70 2.48 86.10
80 0.26 65.54 1.98 69.11
85 0.26 49.29 1.49 52.03
90 0.26 32.94 0.99 34.86
95 0.26 16.50 0.50 17.58

Ew =
Lod

COPR
(28)

Ew—Theoretical power consumption of refrigeration unit, kW;
Lod—Total sensible heat load of the system, kW;
COPR—Coefficient of performance of refrigerator, multi-purpose screw refrigerator, take 4.7;

Then, obtain the annual cooling cost per ton of coal according to the electricity fee.

Fw =
n · Ew · Fd

Dt
(29)

Fw—Annual cooling cost per ton of coal, RMB/t;
Fd—electricity price, RMB/kW·h;
n—annual operating time, h;
Dt—The annual coal mining volume of the working face, t;

Figures 7 and 8 show that the cooling operation cost and the maximum WBT for the
6- and 8-hour working periods can be calculated. The article suggested that the cost and
WBT would have changed little when the air velocity exceeded 2 m/s. Consequently, the
recommendation for air velocity would be 2 m/s, with the maximum WBT being 28 ◦C for
six hours and 26 ◦C for eight hours.
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4. Conclusions

Due to deep mining, mechanical cooling systems have been most frequently used
to control thermal environments. However, cooling an entire mining tunnel would be a
significant energy-intensive process. A reduction in workers and a decline in physical
work intensity indicate that localized cooling will be widespread in the future intelligent
mining industry. Therefore, the climatic conditions under localized cooling will be studied
to protect mining workers. A modified PHS model for a warm and humid climate was
presented in the article, along with reasonable and secure environmental parameters.
Furthermore, the results are listed as follows.

(1) The article modified the PHS model to account for warm and humid conditions
based on human factors. The metabolic rate, clothing insulation, and evaporation heat
resistance of clothing were modified for warm and humid underground environments.
Based on the modified PHS model, the duration of miners’ exposure was calculated
using MATLAB.

(2) Air temperature was the primary factor affecting underground miners’ safety, fol-
lowed by relative humidity and air velocity. The improvement of the thermal envi-
ronment by increasing air velocity is directly related to the thermal humidity index;
when the thermal humidity index is lower than 32, increased air velocity will achieve
a significant cooling effect.

(3) The recommended air velocity would be 2 m/s, and the maximum temperature of
the wet bulb would be 28 ◦C for a 6-hour working period and 26 ◦C for an 8-hour
working period, taking into account the security of mining workers and the economic
efficiency of the cooling system.

This study may contribute to the cooling of intelligent mining and the formulation of
cooling standards in China.
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