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Abstract: Developing rooftop photovoltaic (PV) has become an important initiative for achieving
carbon neutrality in China, but the carbon reduction potential assessment has not properly considered
the spatial and temporal variability of PV generation and the curtailment in electricity dispatch. In this
study, we propose a technical framework to fill the gap in assessing carbon reduction potential through
remote sensing data-driven simulations. The spatio-temporal variations in rooftop PV generations
were simulated on an hourly basis, and a dispatch analysis was then performed in combination with
hourly load profiles to quantify the PV curtailment in different scenarios. Our results showed that the
total rooftop PV potential in China reached 6.5 PWh yr−1, mainly concentrated in the eastern region
where PV generation showed high variability. The carbon reduction from 100% flexible grids with
12 h of storage capacity is close to the theoretical maximum, while without storage, the potential may
be halved. To maximize the carbon reduction potential, rooftop PV development should consider grid
characteristics and regional differences. This study has important implications for the development
of rooftop PV and the design of carbon-neutral pathways based on it.

Keywords: rooftop PV; carbon emission reduction; dispatch modeling; remote sensing

1. Introduction

Solar photovoltaics (PV) has become an important pathway for achieving carbon
emission reduction around the world [1,2]. Globally installed PV capacity has grown more
than eightfold in the last 10 years, providing about 3.6% of the world’s total electricity
consumption in 2021 [3]. Various forms of PVs are proposed for extensive and widespread
development, such as floating PV [4], agricultural PV [5], building-integrated PV [6],
rooftop PV [7], etc. Compared to ground-mounted PVs, rooftop PV has unique advantages,
such as proximity to consumers [8] and no need for additional land [9], making it highly
favored in recent years. In China, the government is implementing a county-based strategy
to promote rooftop PV development to reduce carbon emissions [10].

Several studies have proposed methods to assess rooftop PV potential, which can be
broadly classified into geographic information system (GIS)-based methods and remote
sensing (RS)-based methods [11]. GIS-based methods are used for energy planning at city
scales that involve building structures (e.g., roof slope and façade orientation) [12] and
building interrelationships (e.g., shading and lighting) [13]. They are typically based on
a series of spatial or non-spatial data on available solar radiation and building features,
and combine GIS technology with machine learning, physical modeling, geostatistics,
and sampling methods for analysis [14–16]. GIS technology plays the role in capturing,
storing, manipulating, analyzing, managing, and presenting all types of data. For example,
Bergamasco and Asinari [17] proposed a method integrating GIS and solar radiation
maps to estimate the power generation of rooftop PV in Piedmont, northwestern Italy.
Assouline et al. [18] combined support vector regression and GIS to estimate the electricity
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generation potential of rooftop PV in Switzerland. GIS-based methods are usually suitable
for fine-scale spatio-temporal assessments, and the results can be employed to design effective
policies for rooftop PV development in built environments [11]. However, the intensive
computational demand is a main obstacle to their application on a large scale [13,16].

The typical RS-based approach integrates multi-source remote sensing data to assess
the regional potential of rooftop PV, and the main work usually consists of two aspects,
namely, building footprint extraction and solar resource estimation [7,19]. Mapping the
building footprints from very high-resolution images has attracted a lot of attention be-
cause high-resolution images contain more spatial-detailed contexts on ground objects [20].
For example, Guo et al. [21] proposed a coarse-to-fine boundary refinement network to
extract building footprints from aerial imagery and addressed the challenge of extracting
sharp building boundaries caused by obstructions from nearby shadows or trees, diver-
sity of roof shapes, and variation in building scales. Guo et al. [22] further developed a
model for automatic building footprint updates using bi-temporal remote sensing images.
Regarding solar resource estimation, geostationary meteorological satellites are widely
used to retrieve the total solar radiation and the direct/diffuse fraction at high spatial and
temporal resolutions [23–25]. For example, Jiang et al. [24] introduced a convolutional
neural network to extract spatial patterns from satellite imagery to deal with the spatial
proximity effects in solar radiation inversion. Li et al. [26] applied transfer learning for
global estimates of surface solar radiation, which combines the advantage of radiative
transfer simulations and ground measurements. Compared to GIS-based methods, remote
sensing makes large-scale assessment a reality, and the integration of deep learning signifi-
cantly improves computational efficiency [7,11]. Therefore, RS-based methods are typically
applied to large-scale resource estimation and spatial planning but are not applicable to the
design and integration of individual rooftop PV systems [19,27].

In parallel, light detection and ranging (LiDAR) technology has contributed to the
accurate simulation of PV electricity generations at urban scales [28,29]. The LiDAR-based
method allows for consideration of the shading effects of local topography on PV generation.
LiDAR can be combined with GIS tools to enrich the services, such as optimizing the PV
installations, balance-of-system costs, return on investment, payback time, and potential
carbon reductions [12,14]. For example, Jacques et al. [30] presented a methodology that
combines roof segmentation algorithms with LiDAR data to estimate potential PV capacity
for buildings in Leeds, UK. Gagnon et al. [31] integrated GIS with a regression statistical
approach and LiDAR dataset to determine the potential electricity generation of rooftop PV
across the United States. This kind of solution possesses the advantages of both RS-based
and GIS-based ones, while the high cost of LiDAR is the main reason why they are not yet
widely used [28,31].

In contrast to the refined assessment of PV power generation potential, the estimation
of PV carbon reduction capacity is relatively crude [32]. Typically, the estimated potential
is regarded as the activity level and multiplied by the grid emission factors published
by government departments to calculate carbon reduction potential [32,33]. There are
two main problems associated with such an approach. First, the fine-scale spatial and
temporal variability of PV power generation is not considered. The variability leads
to a mismatch between PV generation and user-side demand, and thus, a portion of PV
electricity is to be curtailed during dispatching; that is, not all PV electricity can be delivered
to the grid and then consumed by end users [34,35]. Second, the impact of the grid’s own
characteristics is ignored. It is known that the grid’s ability to absorb variable generations
varies with different system flexibility and energy storage capacity [36,37]. In addition,
since clean energy already exists in the grid [2,38], it is unlikely that one unit of rooftop PV
electricity will replace an equivalent amount of power in the current grid.

In this study, we attempted to solve the above problems by simulating fine-scale
variability in rooftop PV power generation using multi-source remote sensing data and
performing dispatch analysis by combining hourly PV generation with the hourly customer-
side load. In this way, the portion of rooftop PV generation that was actually consumed was
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calculated to correct for the overestimation of carbon reduction. The main contributions of
this study embody three aspects:

(1) The high-resolution mapping of the distribution of China’s rooftop PV potential.
An empirical relationship was established to estimate the rooftop area from the
settlement area. Multi-source remote sensing data were integrated to simulate the
spatio-temporal variation in rooftop PV electricity generation.

(2) The technical framework for calibrating the overestimation of carbon emission reduc-
tion. Rooftop PV generation curves and customer-side load profiles were combined
to obtain the PV curtailment rates during electricity dispatch. Current PV penetration
rates were used to calibrate the grid emission factors for PV-specific ones.

(3) The quantification of carbon reductions in China’s rooftop PV. We designed twelve
scenarios with 80%, 90%, and 100% flexibility and 0, 4, 8, and 12 h of storage capacity
to reflect the differences in the grid’s ability to absorb intermittent PV electricity.

The paper is organized as follows. Section 2 describes the remote sensing data,
including settlement footprints, building footprints, solar radiation, and air temperature, as
well as the models used for PV generation simulation and dispatch analysis. Section 3 shows
the results for rooftop PV potential and carbon reduction potential. Further discussion is
presented in Section 4, and conclusions are drawn in Section 5.

2. Materials and Methods

The workflow for assessing the carbon reduction potential of rooftop PV through
remote sensing data-driven simulations is shown in Figure 1.

Sustainability 2023, 15, x FOR PEER REVIEW 3 of 17 
 

since clean energy already exists in the grid [2,38], it is unlikely that one unit of rooftop 

PV electricity will replace an equivalent amount of power in the current grid. 

In this study, we attempted to solve the above problems by simulating fine-scale 

variability in rooftop PV power generation using multi-source remote sensing data and 

performing dispatch analysis by combining hourly PV generation with the hourly 

customer-side load. In this way, the portion of rooftop PV generation that was actually 

consumed was calculated to correct for the overestimation of carbon reduction. The main 

contributions of this study embody three aspects: 

(1) The high-resolution mapping of the distribution of China’s rooftop PV potential. An 

empirical relationship was established to estimate the rooftop area from the 

settlement area. Multi-source remote sensing data were integrated to simulate the 

spatio-temporal variation in rooftop PV electricity generation. 

(2) The technical framework for calibrating the overestimation of carbon emission 

reduction. Rooftop PV generation curves and customer-side load profiles were 

combined to obtain the PV curtailment rates during electricity dispatch. Current PV 

penetration rates were used to calibrate the grid emission factors for PV-specific ones. 

(3) The quantification of carbon reductions in China’s rooftop PV. We designed twelve 

scenarios with 80%, 90%, and 100% flexibility and 0, 4, 8, and 12 h of storage capacity 

to reflect the differences in the grid’s ability to absorb intermittent PV electricity. 

The paper is organized as follows. Section 2 describes the remote sensing data, 

including settlement footprints, building footprints, solar radiation, and air temperature, 

as well as the models used for PV generation simulation and dispatch analysis. Section 3 

shows the results for rooftop PV potential and carbon reduction potential. Further 

discussion is presented in Section 4, and conclusions are drawn in Section 5. 

2. Materials and Methods 

The workflow for assessing the carbon reduction potential of rooftop PV through 

remote sensing data-driven simulations is shown in Figure 1. 

 

Figure 1. Workflow for assessing the carbon reduction potential of rooftop PV.

First, an empirical relationship between settlement footprints and building footprints
was built to map the national rooftop area and its distribution. Second, remote sensing
data on total solar radiation, diffuse fraction, and air temperature, as well as PV system
parameters, were fed into the Global Solar Energy Estimator (GSEE) [39] to simulate the PV
system’s electricity generation efficiency, which is measured by the capacity factor (CF) de-
fined as the ratio of a PV system’s actual output over a given period to the maximum output
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under standard test conditions over that period. Third, the Renewable Energy Flexibility
(REFLEX) [40] model was used for dispatch modeling based on hourly PV generations and
load profiles, given grid flexibility, storage capacity, and other settings. Finally, potential
carbon reductions were calculated according to the simulated curtailment rate, the total
amount of rooftop PV generation and known penetration rates, and emission factors.

2.1. Estimation of Rooftop Resources

Accurate surveys of rooftop area rely on very high resolution (e.g., WorldView, GeoEye,
and Pleiades satellites) and LiDAR remote sensing [7,20,41]. However, this approach faces
challenges of high cost and low efficiency when applied over large areas. Therefore,
it is impractical to conduct rooftop surveys over the 9.6 million square kilometers of
China’s territory. In contrast, extracting settlement footprints from moderate- or high-
resolution remote sensing is more cost-effective, and settlement footprint products with
global coverage are already available [42,43]. Figure 2a shows the settlement area in China
at 500 m resolution, which is aggregated from the world settlement footprint products [43].
These settlement footprints indicate the extent to which the buildings locate and can be
used as a reference for rooftop area estimation.
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Figure 2. Settlement and building footprints. (a) Settlement area in China at a spatial resolution of
500 m, aggregated from the world settlement footprint products [43]; (b) building rooftop area at a
spatial resolution of 500 m, which was calculated based on sub-meter building footprints in Jiangsu
Province, China [7].

Regional building footprint extraction has been conducted in many regions [44,45].
Previously, we conducted a rooftop footprint survey in Jiangsu Province by fusing multi-
source remote sensing images [7]. Figure 2b shows the rooftop area distribution based on
the sub-meter building footprints. We counted the settlement area and rooftop area of each
town in Jiangsu Province and found that these two areas had a significant linear correlation
with a coefficient of determination of 0.9247 at a 95% confidence level (Figure 3a). Such a
correlation was also observed at the global scale [27]. We further validated this correlation
at the county level and observed a coefficient of determination of 0.9495 at a 95% confidence
level (Figure 3b), implying the stability of the relationship across different scales. Here,
we extended this relationship to the entire country to map the rooftop area based on the
settlement area at 500 m resolution. In addition, according to the experiences in Europe
and China, only about 60% of the rooftop is suitable for PV installations [7,8]. Therefore,
the effective rooftop area ( Ar) was calculated from the settlement area (As) as:

Ar = 0.6 × 0.3633 × As (1)
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2.2. Simulation of PV Generation

In this study, we used GSEE [39] to simulate the PV system’s performance, pixel
by pixel, at a spatial resolution of 500 m, and on an hourly basis. Its inputs consisted
of climate data from remote sensing inversion (mainly including solar radiation and air
temperature) and PV system parameters (including installed capacity, panel orientation,
panel tilt angle, panel material, and inverter efficiency). Hourly solar radiation data were
from geostationary meteorological satellite images. Jiang et al. [46] produced hourly solar
radiation products in China using an outstanding deep learning algorithm, and the accuracy
was proven to be superior over other products [47]. Here, we collected the hourly data
from 2007 to 2018 and used multi-year averages for simulation. The distribution of annual
total solar radiation and the fraction of diffuse solar radiation are illustrated in Figure 4a,b,
respectively. We assumed that all rooftop PV systems were south-facing and tilted at an
optimal angle (θT) that varied with the latitude (ϕ) and diffuse fraction (Rd), as [48]:

θT = 4.521 + 0.430 × ϕ + 0.006 × ϕ2 + 54.504 × Rd − 80.712 × Rd
2 (2)

This empirical relationship was validated at 98 radiation stations in China [48].
Figure 4c shows the calculated distribution of θT in China according to the empirical rela-
tionship and spatial estimates of the diffuse fraction. Hourly air temperatures (Figure 4d)
were retrieved from the ERA5-Land reanalysis data [49]. We simulated the performance
of PV modules composed of crystalline silicon material, assuming an inverter loss of 10%.
The installed capacity was set to 1 kW; hence, the output of GSEE was equal to CF.

When the CF is known, the PV electricity generation (EPV) can be calculated as:

EPV = Ar × DP × CF, (3)

with DP denoting the PV installation density (here, a density of 74 W/m2 was adopted
according to the practices in Jiangsu Province, China [7]). In addition, the coefficient of
variation (CV) in daily averaged CF was calculated to provide a comparable understanding
of the variability in rooftop PV generations [50]:

CV =
δ

µ
, (4)

where δ and µ denote the standard deviation and mean of CF, respectively.
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2.3. Calculation of Carbon Reductions

If the electricity generated by rooftop PV is delivered to the electrical grid to replace
the power from other sources, rooftop PV contributes to carbon emission reductions. We
calculated CO2 equivalent emission reductions (Cr) based on the approach provided by the
Intergovernmental Panel on Climate Change (IPCC) [51]:

Cr = (1 − Rc)× AD × EF(
1 − Rp

) , (5)

where AD represents activity data, equaling the amount of PV electricity consumption (EPV)
in this study; EF represents the emission factor that is associated with each unit of electricity
supplied by a grid (tCO2e MWh−1); and Rc and Rp denote the curtailment rate and the
penetration rate, respectively.

PV generation varies depending on local weather conditions, so they do not always
correlate well with customer-side demand. If PV generation exceeds the net demand,
the excess generation is at risk of being curtailed. In Equation (5), we introduce (1 − Rc)
to correct for the decline in AD due to the curtailment; that is, this item indicates the
proportion of rooftop PV generation that is delivered to the grid. We used the REFLEX
model to simulate the electricity dispatch of each regional grid (Figure 5a) to obtain the Rc
value when their respective rooftop PV potential was fully released. The REFLEX model
compares the generations from rooftop PV and other plants with the net system load,



Sustainability 2023, 15, 3380 7 of 16

hour by hour, to calculate the fraction of load met by PV generation. When PV generation
exceeds the net load, the excess portion is curtailed or placed into storage, if available. The
amount of storage in a grid is characterized by the average hourly load, for example, if
the average hourly load is 30 GW, 2 h storage represents 60 GWh of energy capacity. The
REFLEX model can evaluate the ability of an entire grid system to accommodate variable
generations (e.g., solar PV and wind) according to the minimum generation level across the
system. The minimum generation level represents the limit of both baseload generators, as
well as generators that must remain online to reliably meet the variability and uncertainty
of the net load and can be more generally expressed as the system flexibility, defined as the
fraction of the must-run generators below the annual peak [36]. In this study, we designed
a set of scenarios with different flexibility (80%, 90%, and 100%) and storage capacity (4 h,
8 h, and 12 h) levels. The typical load profiles of each grid were extracted from the report
issued by the National Energy Administration [52]. The example of the Beijing grid is
displayed in Figure 5b,c. The hourly loads throughout the year were calculated as [52]:

Li,j = Lpeak,i −
Hmax − Hj

Hmax − Hmin

(
Lpeak,i − Lbase,i

)
, (6)

where Hj denotes the load at hour j, Hmax is the maximum load, and Hmin is the minimum
load, whose values vary depending on whether the day belongs to weekdays (blue line in
Figure 5b) or weekends (brown line in Figure 5b). Li,j denotes the load at hour j of day i,
Lpeak,i is the peak load of day i (red line in Figure 5c), and Lbase,i is the base load of day i
(green line in Figure 5c).
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Emission factors are sourced from China’s Regional Grid Emissions Factors 2019 [53].
We used the operating margins (OMs) that represented emission factors from existing
power plants in the electric grid, and the values for the northwest, north, northeast, central,
east, and south grids were 0.8922, 0.9419, 1.0826, 0.8587, 0.7921, and 0.8042 tCO2/MWh,
respectively. Since these values were calculated for a generation mix that already included
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zero-emission PV electricity and rooftop PV did not displace existing clean energy on
the grid, the emission reductions calculated by directly applying these factors were un-
derestimated. Here, we used the current renewable energy penetration rate (Figure 6a,
sourced from https://www.bjx.com.cn/, accessed on 30 December 2022) to correct for this
underestimation, as EF

(1−Rp)
.
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For clear recognition of the magnitude of emission reductions from rooftop PV, we
defined a metric called the carbon offset rate (Ro):

Ro =
Cr

Ca
(7)

This metric compared the emission reductions (Cr) to the total CO2 emissions in
2019 (Ca). The emission inventories for each regional grid (Figure 6b) were collected from
the China Emission Accounts and Datasets (https://www.ceads.net.cn/, accessed on 30
December 2022) [54]. Ro ≥ 1 indicated that carbon neutrality could be achieved within the
grid by developing rooftop PV.

https://www.bjx.com.cn/
https://www.bjx.com.cn/
https://www.ceads.net.cn/
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3. Results
3.1. Electricity Generation Potential

Figure 7 shows the spatial distribution of rooftop PV electricity generation poten-
tial, as well as statistics by regional grid. In total, the theoretical maximum potential
reached 6.5 PWh yr−1, of which, more than 80% was concentrated in the eastern part of
China. The North China Plain, Yangtze River Delta, and Pearl River Delta represented
the most notable hotspots. The potential per unit area (500 m × 500 m) in these re-
gions could exceed 5 PWh yr−1. However, the western parts with high-quality solar
energy resources accounted for less than 20% of the potential. As for the 33 regional
grids, Shandong (681.9 TWh yr−1), Henan (521.0 TWh yr−1), Jiangsu (489.3 TWh yr−1),
Jinan (400.3 TWh yr−1), and Guangdong (381.7 TWh yr−1) grids had the greatest potential.
According to energy statistics, these grids were in the front ranks of electricity consump-
tion (Figure 7b). Such a coincidence reflects the advantages of rooftop PVs; that is, their
electricity generation is close to the energy demand.
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Figure 8a illustrates the variability of rooftop PV electricity generation, expressed as
the CV of the daily averaged CF. In general, the variability was small in western China
while large in eastern China (especially in the south). The variability was extremely high
(CV > 0.6) in the Sichuan basin and the middle and lower reaches of the Yangtze River,
due to frequently cloudy and rainy weather. The spatial pattern of CV implied that most
rooftop PV generations were characterized by significant volatility and uncertainty. Spatial
aggregation was an effective way to reduce volatility. As demonstrated by the case of
the Beijing grid (Figure 8b), the variability remained high after aggregation. Moreover,
the fluctuations were highly stochastic and irregular in nature, making them difficult to
forecast [55]. This issue was compounded by the shortened forecasting horizon because
the fluctuations were more frequent and drastic at finer time scales (cf. the black and
blue lines in Figure 8b). When comparing the hourly rooftop PV generations with the
load profiles of the Beijing grid (Figures 5c and 8b), the mismatch between the two was
clear. This mismatch magnified the difficulty of electricity dispatch [34]. Meanwhile, the
increased variability imposed a more cyclic operating profile on dispatchable generation,
with considerable cost implications [56].
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3.2. Carbon Reduction Potential

We calculated the ratio of the minimum base load relative to the maximum peak load
as a lower bound for grid flexibility in our scenario design. Based on the calculation results,
we simulated the potential carbon reductions in the 33-region grid under 80%, 90%, and
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100% flexibility and 0, 4, 8, and 13 h of storage capacity (Table 1). As shown in Figure 9a, the
carbon reduction potential declined with decreasing flexibility. A less flexible grid had more
electricity from must-run units, so the net load to be met by variable PV generations was
lower, putting rooftop PV at greater risk of curtailment [36]. The adoption of energy storage
technology enhanced the capability of reducing carbon emissions (Figure 9a). Rooftop PV
systems generate electricity during the daytime and store the excess to meet the load during
the nighttime, ensuring that more electricity can eventually be consumed. Given 100%
grid flexibility, 4 h storage capacity increased carbon reductions by 30% compared to the
no-storage scenario. In contrast, at the same 100% flexibility, 12 h storage capacity increased
the carbon reduction potential by only 9% compared to the 8 h storage case, suggesting
that the role of storage diminished with expanding capacity. Because of the diminishing
effect, 8–12 h storage capacity hardly worked at 80% flexibility. In the scenario with 90%
grid flexibility and 8 h storage capacity, the total carbon reductions reached 4471.2 MtCO2,
consisting of 457.3 MtCO2 from the Northwest grid, 1226.8 MtCO2 from the North grid,
469.0 MtCO2 from the Northeast grid, 824.9 MtCO2 from the Central grid, 886.7 MtCO2
from the East grid, and 606.6 MtCO2 from the South grid (Figure 9b).

Table 1. Potential carbon reductions (unit: MtCO2) in each regional grid under different scenarios.

100% Flexibility 90% Flexibility 80% Flexibility
0 h 4 h 8 h 12 h 0 h 4 h 8 h 12 h 0 h 4 h 8 h 12 h

Xinjiang 111.5 153.1 166.5 166.8 101.9 145.3 165.8 166.8 91.6 136.1 163.8 166.4
Tibet 3.6 4.8 5.9 6.6 3.0 4.3 5.3 5.6 2.5 3.7 4.4 4.5

Qinghai 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.4 20.3 20.4 20.4 20.4
Gansu 59.8 82.6 95.6 96.6 54.2 77.5 93.9 96.5 48.2 71.8 90.8 94.5

Ningxia 47.2 54.6 54.6 54.6 43.9 54.5 54.6 54.6 39.9 54.3 54.6 54.6
Shan’xi 74.6 100.6 126.0 144.5 65.6 91.6 117.2 128.5 56.2 82.2 102.8 107.7
Beijing 54.4 73.4 86.8 89.6 47.5 67.0 80.5 83.2 39.9 59.2 68.8 70.3
Tianjin 41.5 56.4 68.0 72.3 36.7 51.8 64.6 68.5 31.6 46.8 58.0 59.7

Jibei 92.4 125.5 158.2 186.6 82.2 115.4 148.3 168.9 71.6 104.7 136.9 144.9
Jinan 129.8 172.1 214.3 245.4 113.9 156.2 197.3 213.0 97.5 139.7 171.4 176.1

Shanxi 117.9 162.2 196.5 208.3 105.7 150.7 188.8 204.2 92.7 138.0 178.6 188.9
Shandong 253.3 341.1 428.3 504.1 221.9 309.7 396.0 442.8 189.2 277.0 354.5 367.4

Mengxi 124.9 151.2 151.3 151.3 115.8 150.7 151.3 151.3 105.3 148.4 151.3 151.3
Mengdong 43.3 57.6 71.9 84.0 37.9 52.2 66.5 72.7 32.4 46.7 59.1 60.3

Heilongjiang 70.9 92.8 114.7 127.0 62.7 84.6 104.7 110.9 54.4 76.3 90.6 92.8
Jilin 54.4 71.6 88.8 98.9 48.1 65.3 80.8 86.6 41.7 58.9 70.2 72.9

Liaoning 134.3 183.1 230.3 271.1 120.4 169.3 217.0 247.1 106.0 154.8 202.3 216.3
Sichuan 100.0 135.2 158.6 163.5 88.2 124.3 152.2 158.1 75.4 112.0 136.9 139.5

Chongqing 37.6 48.8 51.5 51.5 32.8 45.8 50.8 51.2 27.2 41.1 44.9 45.1
Henan 168.2 225.7 283.2 330.4 143.9 201.5 258.5 282.1 118.7 176.3 218.9 225.9
Hubei 93.2 126.2 156.9 176.8 80.8 113.9 145.0 156.9 67.6 100.7 124.6 129.7
Hunan 78.7 105.0 131.1 149.4 67.9 94.2 118.7 128.3 56.6 82.9 99.8 103.7
Jiangxi 64.3 86.3 108.1 125.3 56.4 78.3 99.7 110.0 48.0 70.0 87.5 91.1
Anhui 89.4 120.7 151.9 177.6 76.4 107.8 138.5 152.7 62.9 94.2 117.6 123.0
Jiangsu 242.2 330.3 389.8 406.6 214.6 305.0 373.3 394.4 184.8 276.0 346.4 358.3

Shanghai 48.5 55.2 55.4 55.4 44.5 54.5 55.4 55.4 39.1 53.0 54.9 55.2
Zhejiang 162.3 205.7 212.0 212.5 146.8 197.9 209.1 210.0 129.0 184.4 203.4 204.4

Fujian 84.2 107.8 110.7 110.8 76.8 104.5 110.4 110.6 68.4 99.1 109.0 109.5
Yunnan 67.7 91.5 114.4 130.7 60.8 84.6 107.9 118.9 53.7 77.4 99.1 102.9
Guizhou 51.2 68.3 73.7 73.9 45.4 63.9 72.9 73.5 38.9 58.2 67.4 68.1
Guangxi 64.4 86.2 107.9 124.9 56.5 78.4 99.9 109.3 48.2 70.1 87.7 89.7

Guangdong 230.1 299.2 310.8 311.2 207.2 286.2 306.4 307.5 180.9 265.2 297.4 299.8
Hainan 12.5 16.8 21.1 24.6 11.0 15.3 19.6 21.8 9.5 13.8 17.6 18.2

Total 3028.8 4011.9 4715.0 5153.1 2691.9 3722.3 4471.2 4762.1 2329.9 3393.5 4091.4 4212.7
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Figure 9. Potential carbon reductions from rooftop PV. (a) Total carbon reductions in China under
different scenarios; (b) distribution of potential in the six primary regional grids.

Using the total CO2 emissions in 2019 as a reference, we calculated the minimum and
maximum offset rates for each grid among the twelve scenarios simulated, as shown in
Figure 10a,b, respectively. Overall, the North and Central grids were relatively poor, with
most grids having minimum offsets of less than 20%; while the East and South grids fared
well, with most grids having maximum offsets exceeding 50%. Except for the Qinghai
grid, all other grids witnessed varying degrees of improvement in the offset, owing to
the increased flexibility and storage capacity. The Qinghai grid itself had little rooftop PV
potential, so curtailment rarely occurred, even when the peak output of the rooftop PV
came across the lowest base load. Energy storage did not make sense for the Qinghai grid
(Table 1). By comparison, the Guizhou, Mengxi, Ningxia, and Chongqing grids were the
most worrisome, while the Guangdong, Zhejiang, and Beijing grids were the most exciting
in terms of both minimum and maximum offset rates. In addition, we can conclude that
carbon neutrality cannot be achieved in China by relying on rooftop PV alone, given that
the offset rates of all grids were below 100% in all scenarios.
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4. Discussion

Our evaluations revealed that China has a considerable amount of rooftop PV elec-
tricity generation. Although rooftop PV potential showed great spatial heterogeneity, it
exhibited a good match with energy demand (Figure 7). On the one hand, the major
energy-consuming provinces, such as Guangdong, Shandong, Jiangsu, and Zhejiang, were
at the forefront in terms of the total potential; on the other hand, the potential was mainly
concentrated in urban areas with high intensities of energy consumption. This is precisely
the advantage of rooftop PV over large ground-based PV plants: helping not only to reduce
energy losses in transmission but also to save on electricity transmission costs [37,57]. In
addition, rooftop PV offers the option of bypassing land competition. If the same amounts
of rooftop PV electricity were obtained by installing ground-based PVs, a minimum net area
of approximately 30,196 square kilometers would be required, which would be equivalent
to six Shanghai cities. This is almost unacceptable for the densely populated eastern region,
where land resources are inherently competitive [9].

In addition to being directly related to the number of electricity generations, carbon
emission reduction is also affected by market consumption [58]. In this study, we quantified
this effect through electricity dispatch based on hourly generation simulations and load
profiles. The results revealed that fully releasing the potential of rooftop PV could reduce
CO2 equivalent emissions by 2.3–5.2 Gt, lower than those (~5.9 Gt) emitted when the
generated electricity is completely consumed without curtailment. Nevertheless, the
potential reduction is equal to 21%–47% of China’s total emissions in 2019 [54]. Such a scale
is sufficient to make a significant contribution to China’s carbon neutrality [59,60]. Our
study highlights the importance of increasing grid flexibility and preparing energy storage
to obtain a greater amount of carbon reduction. When grid flexibility increased from 80% to
100%, carbon reductions increased by about 25%, and an additional increase of about 60%
was attainable if 8–12 h of energy storage were available. It is worth noting that the effect
of increased flexibility and energy storage varied from grid to grid (Table 1), suggesting
that rooftop PV development planning should be tailored to local conditions.

The amount of both roof resources and energy consumption reflects, to some extent,
the level of regional development, and thus, the two coincide spatially. In contrast, carbon
emission intensity was higher in the developed eastern regions than in the central and
western regions, so the total emissions were not consistent with the rooftop PV potential in
space. This leads to significant spatial differences in the process of carbon neutrality that
depend on rooftop PV (Figure 10). Based on the twelve scenarios simulated, we presented
a plausible range of offset rates. It should be noted that the offset rates can be further
enhanced by using larger energy storage or other means, such as load shifting, and may be
decreased if the flexibility is lowered. However, the uncertainty will not be great, as 12 h of
energy storage and 80% flexibility is close to the limit. In addition, increased flexibility and
greater storage capacity are not necessarily better because their effectiveness also depends
on the characteristics of customer-side loads and PV generations in the grid. This, once
again, emphasizes the importance of differentiated layout and planning when developing
rooftop PV, which may also be true for other PV development.

5. Conclusions

In this study, we designed a technical framework for integrating multi-source remote
sensing data to assess the carbon reduction potential of rooftop PV. The key point was to
obtain the PV curtailment rate through a dispatch model based on the spatio-temporal
simulations of hourly PV generation and the load profiles of each grid. The main conclu-
sions include:

(1) The maximum electricity generation of rooftop PV in China reached 6.5 PWh yr−1, of
which more than 80% was concentrated in densely populated areas in the east and
characterized by high variability.

(2) Unlocking China’s full rooftop PV potential could reduce CO2 equivalent emissions
by 2.3–5.2 Gt, depending on the grid flexibility and storage capacity.
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(3) The potential carbon reductions could offset 21%–47% of China’s total emissions,
using the data in 2019 as a reference; thus, it could make a significant contribution to
carbon neutrality.

(4) Both carbon reductions and their offset rates vary greatly from grid to grid, highlight-
ing the need for rooftop PV development plans tailored to local conditions.
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