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Abstract: The number and severity of bus traffic accidents are increasing annually. Therefore,
this paper uses the historical data of Chongqing Liangjiang Public Transportation Co., Ltd. bus
driver safety violations, service violations, and road traffic accidents from January to June 2022 and
constructs road traffic accident prediction models using Extra Trees, BP Neural Network, Support
Vector Machine, Gradient Boosting Tree, and XGBoost. The effects of safety and service violations
on vehicular accidents are investigated. The quality of the prediction models is measured by five
indicators: goodness of fit, mean square error, root mean square error, mean absolute error, and mean
absolute percentage error. The results indicate that the XGBoost model provides the most accurate
predictions. Additionally, simultaneously considering safety and service violations can improve the
accuracy of the model’s predictions compared to a model that only considers safety violations. Bus
safety violations, bus service violations, and bus safety operation violations significantly influence
traffic accidents, which account for 27.9%, 20%, and 16.5%, respectively. In addition to safety
violations, the service violation systems established by bus companies, such as bus service codes, can
be an effective method of regulating the behavior of bus drivers and reducing accidents. They are
improving both the safety and quality of public transportation.

Keywords: public transportation; safety violations; service violations; accident number prediction;
safety operation management

1. Introduction

Due to frequent traffic congestion and the promotion of green travel, public transporta-
tion is becoming the preferred mode of transportation for some individuals [1]. According
to the Central City Passenger Volume Report published in January 2022 by China’s Ministry
of National Transportation, the cumulative passenger volume of public trams in China’s
central cities reached 166,654,000 in January. By the beginning of 2021, there were 704,400
public buses and trams in China, an increase of 1.6% over 2020.

The rapid increase in bus passenger volume and ownership has been accompanied
by an increase in bus traffic accidents, with approximately 14,000 bus-road traffic acci-
dents resulting in 3500 deaths and 16,000 injuries in China over the past five years. As a
result, many scholars have studied models to investigate the factors influencing bus traffic
accidents and to forecast the number of accidents [2–5].

Driver violations are frequently considered in the prediction of traffic accidents [6–9].
In the existing literature, violations are primarily associated with unsafe driving behav-
iors such as speeding, red light running, and DUI (driving under the influence) [10–12].
However, because public transportation is a service, irregular service can also result in
violations. Sufficient research has not been conducted to determine whether service vi-
olations influence the occurrence of traffic accidents and, consequently, traffic accident
prediction models.
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In this paper, the violations are categorized as safety violations and service violations,
and the data of safety violations, service violations, and accident statistics for a bus company
in Chongqing, China, from January to June 2022 are analyzed. Extra Trees (ETs), BP Neural
Network, Support Vector Machine, Gradient Boosting Tree, and XGBoost are used to
construct five different models for predicting the number of traffic accidents and the degree
of influence of various violation types on the occurrence of bus traffic accidents, respectively.

The rest of the paper is organized as follows. In Section 2, a summary and literature
review are presented. Section 3 describes data processing. Five prediction models are
developed in Section 4. In Section 5, the modeling results are discussed. Finally, the article
is summarized in Section 6. Figure 1 shows the conceptual model depicting the process
of study.
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2. Literature Review
2.1. Traffic Violations and Traffic Accidents

Numerous studies have revealed a significant correlation between traffic violations
and accidents. In most cases, accidents are typically caused by violations of one or more
traffic laws [13]. The findings of Guangnan Zhang identified traffic violations as one of
the major threats to road safety [14]. According to the research conducted by Ayuso and
Ebrahemzadih in Spain and Iran, drivers who violate traffic laws increase the accident
rate [15,16]. Alver modeled the scenario data using an ordered probit model and discovered
that drivers with at least one ticket had a 50.4% accident rate in the past three years [17].

On this basis, scholars have investigated the connection between particular types of
violations and traffic accidents. Mao used logistic regression to discover that fatigued driv-
ing was strongly associated with traffic accidents [18]. Mansour Hadji Hosseinlou utilized
a zero-truncated Poisson model to confirm that speeding violations and collisions were
positively correlated [19]. Sigal Kaplan utilized an ordered generalized logit model [20]. It
was discovered that the accident rate was raised when a vehicle exceeded or fell below the
minimum speed requirement for road travel. Anebonam discovered through data analysis
that the primary human factors in traffic accidents were speeding, loss of vehicle control,
and dangerous driving [21]. Terje Assum discovered that when drunk driving laws became
stricter, both the number of DUIs and the number of traffic accidents decreased [22]. David
Shinar discovered that illegal overtaking, lane changes, and traffic sign violations could
result in traffic collisions on urban roads [23]. Iversen’s study revealed a significant correla-
tion between driving offenses like DUI and seatbelt violations and traffic accidents [24]. The
G. Maycock survey revealed that people with a DUI were more likely to be involved in a
more severe DUI accident in the future [25]. Feraud noted that violations of the road safety
code were one of the major causes of traffic accidents [26]. Maowei Chen examined truck
traffic safety and concluded that “lane violations” and “signal violations” had a significant
impact on the severity of truck accidents [27]. Table 1 provides a summary of the specific
violations that were investigated.

Table 1. Summarizes the literature related to the specific traffic violations.

Violations References

Fatigue driving Mao et al. [18]
Speeding Hadji et al. [19]; Kaplan et al. [20] and Anebonam et al. [21]

Dangerous driving Anebonam et al. [21]
DUI Assum [22]; Iversen [24] and Maycock [25]

Not wearing seat belt Maycock [25]
Illegal lane change Shinar et al. [23] and Feraud et al. [26]

Signal violation Feraud et al. [26]
Violation of traffic signs and markings Shinar et al. [23]

2.2. Traffic Accident Prediction Model Based on Machine Learning

Traditional statistical methods require assumptions about the data distribution when
modeling and often require a linear functional form between the dependent and explana-
tory variables. However, when assumptions are violated, incorrect estimates and incorrect
inferences may be generated [28]. Machine learning-based methods can avoid this limi-
tation and more accurately predict traffic accidents. Thus, they have been widely used in
traffic prediction problems in recent years [29–31].

Farhangi used bagged decision trees, ETs, and random forest (RF) algorithms for
accident risk prediction on a geographic information system (GIS) platform [32]. Wang
used violation and accident records and performed predictions in a connected vehicle
environment through LSTM-RNN [33]. Mohammad predicted traffic accidents through
histogram-based gradient augmentation (HistGBDT) [34]. He used the prediction results as
a reference to decide whether an ambulance should be dispatched to the accident scene. Ju
Yang found that the BP neural network prediction model has the best generalization when
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the activation functions are ReLU and sigmoid [35]. B. Yu found that both artificial neural
network models (ANN) and SVM models can predict traffic accidents within an acceptable
range [36]. ANN is better for long-time events, and SVM has better overall performance
than ANN in prediction. Li and Chen compared SVM with ordered probability (OP) and
Gaussian radial basis function (RBF) and demonstrated that the SVM has a more reasonable
prediction performance [37,38]. Katha Mehta compared RF, SVM, Stochastic Gradient
Descent, ANN, and XGBoost model performance and found that XGBoost provides the
best results [39]. Moreover, Yookyung Boo compared the prediction models of RF, ETs, and
XGBoost and demonstrated that the XGBoost model combined with SMOTE samples has
the best prediction performance [40].

The above-mentioned models were confirmed for their reliability in prediction. In this
paper, five of them are selected for accident prediction modeling: Extra Trees, BP Neural
Networks, Support Vector Machines, Gradient Boosting Trees (GBDT), and XGBoost.

2.3. Summary

Section 2.1 demonstrates that there is an undeniable correlation between the occurrence
of safety violations such as speeding, drunk driving, and illegal lane changes and the
number of traffic accidents. Thus, safety violations can be used to predict the number of
traffic accidents. However, there are some service violations for bus drivers that may be
worth observing, such as answering the phone during non-driving time while in the service
process, allowing a missing reflector in the bus, and not running in the bus priority lane.
Service violations reflect the driver’s work ethic. Hussain demonstrated that a poor work
ethic may increase the risk of traffic accidents [41]. Thus, a scientifically feasible qualitative
or quantitative analysis is worth conducting to explore whether these service violations
also affect the occurrence of traffic accidents, similar to safety violations, and whether
considering service violations can improve the accuracy of the accident prediction model.

Consequently, this paper proposes a model for predicting the frequency of bus acci-
dents based on safety violations and service violations, and reveals the degree of impact
of each type of violation. The model with the best prediction effect is selected by com-
paring five machine learning prediction models with five indicators: goodness of fit, root
mean square error, root means square error, average absolute error, and average absolute
percentage error. Then, a prediction model is constructed using safety violation data.
The new prediction model is compared to the model constructed with service violation
data and safety violation data to determine whether the addition of service violation data
significantly improves the prediction accuracy of the model.

3. Data
3.1. Data Processing

The data were obtained from the Chongqing Liangjiang Public Transportation Co.,
Ltd. data of safety violations, service violations, and traffic accidents from January to June
2022. The data contained 2384 safety violations, 4369 service violations, and 1741 traffic
accidents and involved 227 bus fleets. The safety and service violation types were set
according to Wang’s article and the Passenger Transport Services Specifications for Urban
Bus/Trolleybus [42,43]. The violation type and traffic accident occurrence were matched and
counted for each bus fleet using the Vlookup function for subsequent analysis. Table 2
shows some of the processed data.

Safety violations consist of five categories including bus GPS speeding violations (Sa),
dangerous driving behavior of bus (Sb), violation of bus safety operation regulations (Sc),
violation of bus safety regulations (Sd), and violation of general bus road traffic regulations
(Se). Furthermore, service violations consist of seven categories including bus signs and
markings (S1), bus service specifications (S2), bus cleaning and sanitation (S3), bus facilities
and equipment (S4), bus station transport order (S5), complaints (S6), and other violations
(S7). Table 3 shows the specific violations for each violation type.
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Table 2. Statistics on the types of violations and the number of accidents in some fleets.

Fleet
Safety Violation Type Service Violation Type

Number of Accidents
Sa Sb Sc Sd Se S1 S2 S3 S4 S5 S6 S7

1 1 0 3 1 1 3 9 2 3 3 0 2 7
2 1 4 4 1 2 4 18 13 0 10 1 2 18
3 0 0 2 3 1 0 4 2 3 1 0 0 6
4 2 0 2 0 0 0 2 1 1 0 0 1 5
5 4 3 16 12 12 5 20 1 12 9 1 5 49
6 2 0 1 1 0 0 1 11 0 3 1 4 21
7 2 3 7 19 10 2 19 8 14 5 3 1 46
8 4 2 5 20 8 6 9 11 16 7 0 4 37
9 1 1 5 14 3 2 10 0 1 7 2 2 14

...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ......
227 6 0 1 0 0 0 3 0 0 0 0 0 0

Table 3. Classification and interpretation of violations.

Type of Violation Violation Item Violations

Safety Violations

Bus GPS speeding violations

The speed limit specified by the driving section as the
standard, divided into speeding 10 km/h (excluding) below,
speeding 10 km/h (including) above—to 20 km/h
(excluding) below, speeding 20 km/h (including) above—to
50 km/h (excluding) below and speeding 50 km/h
(including) above.

Dangerous driving behavior of bus

• Running red lights or yellow lights.
• Not stopping to yield to pedestrians through

crosswalks or intersections.
• Driving against traffic.
• Fatigue driving, driving with illness, or lousy

state driving.
• Driving without maintaining a safe distance.
• Chase driving or speed driving.
• Other public transport dangerous driving behaviors.

Violation of bus safety
operation regulations

• Not correctly using the seat belt, the lights, the wipers,
or the cab safety guard.

• Violation of the provisions of the opening and closing
of the door and driving while opening the door.

• Driving while gossiping, eating, drinking, or engaged
in activities unrelated to driving work.

• Driving while using cell phones or other
electronic devices.

• One-handed driving or driving with both hands off the
steering wheel.

• Other violations of bus safety operating regulations of
driving behavior.
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Table 3. Cont.

Type of Violation Violation Item Violations

Violation of bus safety regulations

• Not waiting for passengers to pull or sit firmly before
starting to drive.

• Shut down, interfere with or destroy GPS or 4G video
monitoring equipment or system without permission.

• Leaving the cab without taking the engine key.
• Not using the triangle wood after parking.
• Driving a sick car.
• Late reporting or hiding the accidents.
• Not carrying a driver’s license or a professional

qualification certificate.
• Before the start of the “wine state.”
• Other driving violations of public transportation

safety regulations.

Violation of general bus road
traffic regulations

• Competition for lane rush, illegal lane change, and
illegal U-turns.

• Fast speed into the station.
• Not slowing down in advance when passing

crosswalks, intersections, visual blindness, or
narrow sections.

• Failure to follow the prescribed lane and ride the
dividing lane.

• Overtake two- and three-wheeled vehicles in the
same lane.

• Other violations of the general road traffic regulations
of public transport.

Service violation

Bus signs and markings Bus compartment logos, bus body logos, and other bus
signs logos are missing, broken, and not standardized.

Bus service specifications

• Bus in the waiting time without monitoring the ticket.
• Not opening the mobile TV or the LED display.
• Answering the phone, wearing headphones, reading

text messages, and surfing the Internet at non-driving
times in the service process.

• Artificially terminate the operation, dumping
passengers in the middle or transferring passengers
without any reason.

• Station annunciator failure when not manually
reporting the station.

• Not using Mandarin service, cross-use Mandarin or
Chongqing dialect, and using the impermissible
service language.

• Not wearing a work number plate or safety cuffs.
• Strange hair color and style.
• Other violations of bus service specifications.

Bus cleaning and sanitation

• Air-conditioning returns air mesh cover, window sill,
seat head cover, bus wall panel, mobile TV, toolbox,
and other parts of the bus cleaning are unqualified.

• Window glass, mirrors, and other parts of the bus
body cleaning are unqualified.

• The hood or table pile of debris.
• Not dumping the garbage at the starting station.
• Other bus cleaning and hygiene violations.
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Table 3. Cont.

Type of Violation Violation Item Violations

Bus facilities and equipment

• Windows, door strips, various lamps (lampshades),
light belts, reflectors, air conditioning vents, and other
bus body facilities are missing, broken, or off.

• Body appearance paint color is not uniform.
• Seats are missing or broken.
• Power lines are messy.
• Other bus facilities and equipment violations.

Bus station transportation order

• The first bus does not stop at the front of the station to
get on and off.

• Do not follow the last bus to stop at the front of the
station to get on and off.

• Outside the bus stop to get on and off.
• Not driving bus priority lanes.
• Press traffic signs while getting on and off.
• Get on and off at crosswalks.
• Other bus operation order violations.

Complaints No liability passenger complaints, minor liability passenger
complaints, and general liability passenger complaints.

Other violations Other violations in addition to the above violations of the
bus company regulations.

To reduce the influence of exceptional data points on the model, Rstudio software was
applied to discriminate high leverage points, outliers, and strong influence points with
hat diag H, student residual, and Cook’s distance (Cook’s D) as measures, respectively.
Figure 2 shows the discriminant results.
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According to the screening results of anomalies, six fleet data of numbers 26, 38, 44, 54,
154, and 161 were deleted. Figures 3 and 4 show the final statistics of the traffic accidents
and various violations for each bus fleet, respectively.
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It can be seen from Figure 3 that there is a large variability in the number of traffic
accidents by bus fleet, with 52 fleets having no accidents from January to June 2022, 64
fleets having up to and including five accidents, 41 fleets having more than five but not
more than ten accidents and 34 fleets having more than ten accidents but not more than
twenty. There were 28 fleets with more than twenty accidents. The highest number of
accidents was 49, which occurred in numbers 6 and 34.
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It can be seen from Figure 4 that the occurrence of violations of bus service specifi-
cations is significantly higher. Hence, the impact of bus service specifications regarding
accidents may be more significant. The impacts of bus station transportation orders, bus
facilities and equipment, bus cleaning and sanitation, violations of bus safety operation
regulations, and violations of bus safety regulations regarding accidents are slightly less
significant. Complaints, dangerous driving behavior, violations related to bus signs and
markings, violations of general road traffic regulations, and bus GPS speeding violations
are third in terms of the impact on the accidents. Other violations are of the weakest impact.
The specific impact needs to be followed by modeling analysis.

3.2. Correlation Analysis

The cardinality test (cross-tabulation analysis) was used to study the different rela-
tionships between the types of violations (safety violations and service violations) on the
occurrence of accidents [44]. It can be seen from Table 4 that the samples of different
violation types showed significance (p < 0.05) on the occurrence of accidents, indicating that
the samples of different violation types showed differences in the occurrence of accidents.

Table 4. Results of cross-tabulation (chi-square) analysis.

Title Name
Type of Violation

Total X2 p
Safety Violations Service Violations

Accidents
happen

Accidents occur 858 (39.20%) 1331(60.80%) 2189
11.828 0.001 **

Accident-free 1493 (34.85%) 2791(65.15%) 4284

** p < 0.01.

The correlation analysis was used to investigate the correlation between traffic acci-
dents and 12 types of violations. The Spearman correlation coefficient was used to indicate
the strength of the correlation. The results are shown in Table 5, all of which showed
significance at the 0.01 level [45].

Table 5. Spearman correlation analysis.

Type of Violation Accidents Occur

Bus GPS speeding violation 0.508 **
Dangerous driving behavior of bus 0.502 **

Violation of bus safety operation regulations 0.696 **
Violation of bus safety regulations 0.692 **

Violation of general bus road traffic regulations 0.593 **
Bus signs and markings 0.662 **
Bus service specification 0.756 **

Bus cleaning and sanitation 0.685 **
Bus facilities and equipment 0.637 **
Bus station transport order 0.695 **

Complaints 0.563 **
Other violations 0.437 **

** p < 0.01.

3.3. Time Smoothness Assessment

Due to the global and local temporal dependencies of the traffic data, the temporal sta-
bility of accident data needs to be evaluated before formal modeling can be performed [46].
Table 6 shows a sample of the various types of violations of the fleet from January to June.
The correlation test between the violation months and the number of accidents for 219 fleets
was conducted using Pearson and the results are shown in Table 7. It can be seen from the
table that the correlation coefficient value is 0.010, which is close to 0, and the p-value is
0.421 > 0.05, indicating that there is no direct correlation between accident occurrence and
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month of violation. Therefore, the accident prediction model can be constructed without
considering the time factor.

Table 6. Number of violations and accidents in a fleet from January to June.

Month
Safety Violation Type Service Violation Type

Number of Accidents
Sa Sb Sc Sd Se S1 S2 S3 S4 S5 S6 S7

January 0 0 0 1 0 1 2 0 0 1 0 0 2
February 0 0 1 0 0 0 1 1 0 0 0 0 0

March 1 0 0 0 1 0 0 0 0 0 0 1 1
April 0 0 1 0 0 1 3 0 2 1 0 0 2
May 0 0 1 0 0 0 2 1 1 0 0 0 1
June 0 0 0 0 0 1 1 0 0 1 0 1 1
Total 1 0 3 1 1 3 9 2 3 3 0 2 7

Table 7. Time Smoothing Evaluation.

Correlation Coefficient 0.010

p value 0.421

4. Modeling of the Relationship between the Type of Bus Traffic Violation and the
Number of Accidents

In this paper, ETs, BP Neural Network, SVM, GBDT, and XGBoost models are used for
accident prediction modeling. The dependent variable is the number of bus accidents, and
the input variable is the number of occurrences of the 12 violation types. The goodness-
of-fit (R2), mean square error (MSE), root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) are used as indicators to compare and
measure the fitting effects of the five models.

4.1. Extra Trees

The ETs algorithm is based on the RF method, which uses random features and
thresholds for decision tree node partitioning to ensure that each decision tree shape and
variance are larger and more random. The pseudo-code for ETs is shown in Appendix A.1.

The MSE was selected as the node-splitting evaluation criterion. The number of
decision trees was set to 100, and a put-back sampling approach was adopted. According
to the data scale of this study, the minimum number of samples for internal node-splitting
was set to 2, the minimum and maximum numbers of leaf nodes were set to 1 and 50,
respectively, and the maximum depth of the tree was set to 10. No sample weights were
introduced because the deviation of the data distribution was insignificant.

4.2. BP Neural Network

A BP neural network is a typical multilayer forward neural network with an input
layer, multiple hidden layers (one or more layers), and an output layer. The layers in
the BP Neural Network are fully connected, and the neurons in the same layer are not
interconnected. The pseudo-code of the BP Neural Network is shown in Appendix A.2.

According to the findings of [29], ReLU (Rectified Linear Unit) was used as the
activation function. For the solver, lbfgs was selected, which is an improvement on the
second-order Taylor expansion for local approximate average loss that can accelerate the
model convergence. The learning rate, the L2 regular term, and the number of iterations
were set to 0.1, 1, and 1000, respectively, while the number of hidden layers of one neuron
was set to 100.
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4.3. Support Vector Machine

The SVM prediction model maps the data into a high-dimensional data feature space
using a nonlinear mapping to ensure that the independent and dependent variables have
better linear regression characteristics in the high-dimensional data feature space. After
the variables are fitted in that feature space, the model then returns to the original space.
The SVM is suitable for the small number of sample data. Its pseudo-code is shown in
Appendix A.3.

Since different kernel functions are used for different decision functions, the choice
of kernel function is significant for SVM. A linear kernel is suitable for linearly divisible
data. Therefore, the linear kernel function was used for classification in this study. The
parameters were generally adjusted to penalize the parameters C = 100 and gamma = 0.01
or C = 1000, and gamma = 0.01, where C = 1000 and gamma = 0.01 were chosen.

4.4. Gradient Boosted Decision Tree (GBDT)

The GBDT is an additive model based on boosting integration, which is trained with a
forward distribution algorithm for greedy learning. Each iteration learns a CART tree to fit
the residuals of the prediction results of the previous t − 1 trees with the actual values of
the training samples. The pseudo-code of GBDT is shown in Appendix A.4.

Usually, squared-error and Friedman-MSE are used as the loss function and the node-
splitting evaluation criterion for GBDT models, respectively. The default number of base
learners is 100, the learning rate is 0.1, the minimum number of samples for internal node-
splitting is 2, the minimum and maximum numbers of samples for leaf nodes are 1 and
50, respectively, and the maximum depth of the tree is 10. When the number of features
is significant, only proportional features need to be considered for splitting in each cut to
control the tree generation time, which is unnecessary in this paper.

4.5. eXtreme Gradient Boosting

XGBoost is an algorithm partially based on GBDT. In XGBoost, second-order deriva-
tives make the loss function more accurate, regular terms avoid tree overfitting, and
Block storage allows parallel computation. The pseudo-code of XGBoost is shown in
Appendix A.5.

The base learner was gbtree, while subsample, colsample_bytree, min_child_weight,
lambda, and alpha were set to default values of 1, 1, 1, 1, and 0, respectively. Sample weights
were not introduced because the data distribution category deviation was insignificant.
The max_depth was set to 10 as determined by the cross-validation cv function.

The specific parameters of the XGBoost model used in this study are shown in Table 8.
To compare the prediction effects of the five models, all the datasets were divided into

training and test sets according to the ratio of 7:3, and 10-fold cross-validation was per-
formed on the training set to prevent the overfitting phenomenon due to the unreasonable
division of the datasets. The training set was randomly divided into ten mutually exclusive
subsets of similar sizes, the concurrent set of nine subsets was used as the training set
each time, and the remaining subsets were used as the test sets for ten training and testing
sessions. Finally, the mean of the ten evaluation results was obtained.
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Table 8. Model parameters setting.

Model Parameter Name Value

Extra Trees

Node split evaluation guidelines MSE
Minimum sample size for internal node splitting 2

Minimum number of samples of leaf nodes 1
Minimum weights of samples in leaf nodes 0

Maximum depth of the tree 10
Maximum number of leaf nodes 50

Threshold for node division impurity 0
Number of decision trees 100

BP Neural Network

activation function ReLU
Solver lbfgs

Learning Rate 0.1
L2 canonical term 1

Number of iterations 1000
Number of hidden layer 1 neurons 100

SVM

Penalty Factor 1
Kernel functions linear

Kernel function coefficients scale
Nuclear function constants 0

Maximum number of terms in the kernel Function 3
Error convergence condition 0.001

Maximum number of iterations 1000

GBDT

Loss function Friedman MSE
Node split evaluation guidelines Friedman MSE

Number of base learners 100
Learning Rate 0.1

No put-back sampling ratio 1
Minimum sample size for internal node splitting 2

Minimum number of samples of leaf nodes 1
Minimum weights of samples in leaf nodes 0

Maximum depth of the tree 10
Maximum number of leaf nodes 50

Threshold for node division impurity 0

XGBoost

Base Learners gbtree
Number of base learners 100

Learning Rate 0.1
L1 canonical term 0
L2 canonical term 1

Sample Collection Sampling Rate 1
Tree feature sampling rate 1

Node feature sampling rate 1
Minimum weights of samples in leaf nodes 0

Maximum depth of the tree 10

5. Results and Discussion
5.1. Results

The prediction effect of each model was measured using R2, MSE, RMSE, MAE, and
MAPE. Table 9 lists the metrics for each model training set, cross-validation set, and test
set. The prediction plots for the test data are shown in Figures 5–9.
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Table 9. Model evaluation results.

Methods MSE RMSE MAE MAPE R2

Extra Trees
Training set 4.841 2.200 1.558 34.540 0.961

Cross-validation set 36.695 5.7144 4.104 52.392 0.726
Test set 20.078 4.481 2.953 102.801 0.703

BP Neural
Network

Training set 18.979 4.356 3.277 62.034 0.847
Cross-validation set 31.987 5.326 4.050 211.567 0.756

Test set 17.000 4.123 2.654 129.746 0.748

Support vector
machines

Training set 27.561 5.250 3.501 112.135 0.838
Cross-validation set 36.583 5.742 4.432 107.288 0.719

Test set 17.074 4.132 2.712 199.637 0.787

GBDT
Training set 0.000 0.003 0.002 15.745 1.000

Cross-validation set 37.920 6.527 5.232 110.922 0.696
Test set 18.546 4.307 2.797 554.305 0.725

XGBoost
Training set 0.001 0.030 0.008 15.354 1.000

Cross-validation set 36.211 5.191 4.007 50.685 0.853
Test set 10.597 3.255 1.572 72.688 0.868
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Further, the segmentation effect on the dataset is discussed using 60% of the data as
the training set. The results are shown in Table 10. Taking the BP Neural Network and
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XGBoost models as examples, when using 70% of the data as the training set, the MSE,
RMSE, MAE, MAPE, and R2 of the BP Neural Network model are 17.000, 4.123, 2.654,
129.746, and 0.748, respectively. The five metrics of the XGBoost model are 10.597, 3.255,
1.572, 72.688 and 0.868. When using 60% of the data as the training set, the MSE, RMSE,
MAE, MAPE, and R2 of the BP Neural Network model are 16.999, 4.1225, 2.652, 129.742,
and 0.747, respectively. While the MSE, RMSE, MAE, MAPE, and R2 of the XGBoost model
are 10.596, 3.254, 1.5715, 72.679, and 0.867, respectively. The results demonstrate that the
performance of the proposed model is almost independent of the division of the dataset.

Table 10. Model evaluation results (60%).

Model MSE RMSE MAE MAPE R2

Extra Trees
Training set 4.845 2.201 1.5578 34.543 0.9623

Cross-validation set 36.694 5.7145 4.105 52.395 0.727
Test set 20.079 4.4812 2.954 102.807 0.704

BP Neural
Network

Training set 18.978 4.3558 3.275 62.031 0.848
Cross-validation set 31.986 5.324 4.048 211.560 0.757

Test set 16.999 4.1225 2.652 129.742 0.747

SVM
Training set 27.560 5.250 3.501 112.134 0.837

Cross-validation set 36.582 5.741 4.429 107.283 0.716
Test set 17.073 4.131 2.711 199.632 0.786

GBDT
Training set 0.000 0.003 0.002 15.7448 1.000

Cross-validation set 37.919 6.528 5.231 110.918 0.692
Test set 18.543 4.308 2.793 554.293 0.723

XGBoost
Training set 0.001 0.030 0.008 15.352 1.000

Cross-validation set 36.210 5.190 4.007 50.681 0.850
Test set 10.596 3.254 1.5715 72.679 0.867

5.2. Discussion

In this paper, five machine learning methods were used to construct traffic accident
prediction models, considering safety violations and service violations. The model with
the best prediction effect was chosen by comparing the MSE, RMSE, MAE, MAPE, and
R2. Table 9 reveals that in terms of MSE, RMSE, MAE, and R2, the XGBoost model has the
highest prediction accuracy, followed by the BP Neural Network model, SVM model, GBDT
model, and ETs model. In terms of the MAPE, the prediction accuracies of the XGBoost
model, ETs model, BP Neural Network model, SVM model, and GBDT model are in the
order of highest to lowest. Therefore, the XGBoost model was finally chosen.

To investigate the effect of service violations on the predictive effect of the XGBoost
model, only safety violations were used in the modeling. The model employed a total of
five safety violation types, including bus GPS speeding violation, bus dangerous driving
behavior, bus safety operation violation, bus safety violation, and bus general road access
violation, as input variables, and the number of fleet traffic accidents as the dependent
variable, with 70% of the data serving as the training set. Table 11 displays the final output
model evaluation results.

Table 11. Evaluation results of XGBoost regression model considering only safety violations.

MSE RMSE MAE MAPE R2

Training set 0.934 0.966 0.359 32.101 0.995
Test set 37.358 6.112 4.274 485.989 0.534

Comparing the indicators of the XGBoost model in Table 9 with the results in Table 11,
the model constructed by considering both safety violations and service violations performs
better than the model constructed by considering only safety violations in terms of higher
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prediction accuracy and better fit, indicating that the introduction of service violations
improved the model’s performance.

The XGBoost traffic accident prediction model, which incorporates both safety and
service violations, has a high level of accuracy and interpretability.

Figure 10 depicts the critical percentages of various types of violations on the output
of the model for predicting traffic accidents. According to the figure, three violations have
a greater impact on the occurrence of traffic accidents: violation of bus safety regulations,
violation of bus service specifications, and violation of bus safety operation regulations,
with 27.9%, 20%, and 16.5%, respectively. It is followed by violations pertaining to bus
facilities and equipment, GPS speeding violations, complaints, bus station transport orders,
bus cleaning and sanitation, bus signs and markings, violations of general bus road traffic
regulations, and dangerous driving behavior.
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The main violations of bus safety regulations include driving a sick vehicle, appearing
to be “drunk” before starting work, turning off and disrupting GPS or 4G video surveillance
equipment, not using a triangle after stopping, not waiting for passengers to pull up and
sit down, and other general violations. Similar conclusions have been reached by other
researchers regarding the effect of such violations on traffic accidents. Zhong discovered
that drunk driving increased the likelihood of car accidents [47]. According to an article
by Zhao, 4% of accidents involve vehicle safety, and driving a defective vehicle was more
likely to result in traffic accidents [48].

Violations of bus safety operation regulations include driving while using electronic
devices such as cell phones, driving with an open door, violating door opening and closing
rules, improper use of seat belts, driving with one hand, and taking both hands off the
steering wheel while driving. Other studies have confirmed the significance of these
violations in the field of crash research. According to a study by Febres, the use of seat
belts reduces the likelihood of fatal crashes [49]. Farmer discovered that the risk of collision
increased by approximately 17 percent when drivers used cell phones [50].

Complaints, bus service regulations, and bus facilities and equipment are the three
most significant influencing factors for service violations, especially, in this paper. The most
common violations of bus service regulations involve non-driving time during the service
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process for phone calls and other non-work-related activities, non-driving time smoking,
failure to turn on the LED display, wearing irregularly or not wearing work number plate
or shoulder (arm) badge, failure to dress according to the regulations, and failure to use
Mandarin service. The occurrence of bus service regulation violations reflects the laxity
and burnout of drivers’ work attitudes, and this negative attitude increases the driving
risk. Sergio and Bing Li reached the same conclusion regarding the connection between
burnout and traffic accidents [51,52]. Most public transportation facilities and equipment
violations involve damaged or missing facilities and equipment, such as lamps and seats,
which drivers fail to notice or address promptly. It may cause accidents while passengers
are in transit. In addition, 40% of bus accidents are in-vehicle accidents, which include, but
are not limited to, passenger falls and injuries, as well as sudden accidents resulting from
arguments between passengers and drivers. Following these occurrences, some passengers
choose to lodge complaints with the bus company. It may be the reason for the high number
of bus facility and equipment complaints and violations.

5.3. Management Recommendation

Figure 10 shows that violations of bus safety regulations, violations of bus service
specifications, and violations of bus safety operating regulations are the main types of
violations affecting traffic accidents. Based on the violations covered by these three violation
types, the bus fleet prone to traffic accidents can be divided into two broad categories. The
first category belongs to driving misconduct. These bus fleets violate bus safety regulations
in addition to operating safety regulations. The second category, work attitude misconduct,
is exemplified primarily by frequent bus service code violations. The bus company can
add onboard monitoring to regulate violations such as drunk driving, failure to use seat
belts, and open-door driving for fleets with improper driving behavior. They can also
enrich the driver’s training in driving skills by enhancing the details and implementing
effective safety education [53]. Meanwhile, the bus company can also increase publicity
and education regarding professional identity and responsibility for bus fleets with poor
work attitudes.

Moreover, due to the popularity of unmanned ticketing, the bus driver is the only
person providing service. It is essential to monitor the driver’s service behavior and
insist that he/she strictly adhere to service specifications and safety operating procedures.
Managers of bus operations can adjust the severity of penalties based on the impact of
violations (the number of percentages in Figure 10) on traffic accidents and enhance the
driver point system to improve service levels and operational safety.

6. Conclusions

In this paper, Chongqing Liangjiang Public Transportation Co., Ltd. traffic accident
data and violation data from January to June 2022 were used to study the violations,
which are classified into five categories of safety violations and seven categories of service
violations. Then, XGBoost, Extra Trees, BP Neural Network, Support Vector Machine, and
Gradient Boosting Tree were utilized to develop five models for predicting traffic accidents.
Analyzing the five-evaluation metrics of MSE, RMSE, MAE, MAPE, and R2 reveals that the
XGBoost model outperforms the other four models in terms of both prediction accuracy
and fitting effect. Consequently, XGBoost was ultimately chosen to establish the model for
predicting bus traffic accidents.

To verify the reasonableness of the service violation introduction, a prediction model
using XGBoost based only on the data of safety violations was constructed. The five
indicators of MSE, RMSE, MAE, MAPE, and R2 were 37.358, 6.112, 4.274, 485.989, and
0.534, respectively, when only safety violations were considered, and 10.957, 3.255, 1.572,
72.688, and 0.868, respectively, when both safety violations and service violations were
considered. The results demonstrate that the bus company’s service regulations have
increased passenger comfort while decreasing the risk of traffic accidents.
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In addition, XGBoost was utilized to rank the influence of twelve distinct types of
violations. The results indicate that three violations have the greatest impact on prediction:
violation of bus safety regulations, violation of bus service specifications, and violation
of bus safety operation regulations. Finally, based on the ranking of the severity of the
impact of violations, the fleets prone to violations were divided into two categories, and
governance measures from the perspective of bus operation managers were proposed.

The primary limitation of this study is the insufficient sample size. In this paper,
only six months of accident data from a single company were used. If more data become
available in the future, the study area will be examined from an international perspective
to increase the model’s generalizability. Moreover, in this study, only safety violation
data and service violation data were used to predict traffic accidents, highlighting the
importance of service violations in predicting bus accidents. Nevertheless, road conditions,
weather, season, environment, and driver characteristics also influence the incidence of
traffic accidents. Next, the authors will rely on a state-funded project to collect data on
additional factors and build a traffic accident prediction model based on a hybrid approach
by combining multiple influencing factors to reduce the risk of bus accidents.
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Appendix A

Appendix A.1. Pseudocode for Extra Trees

Algorithm A1 Extra Trees splitting algorithm

1: Split_a_node (S)
2: Input: the local learning subset S corresponding to the node we want to split
3: Output: a split [a < ac] or nothing
4: If Stop_split (S) is TRUE then return nothing.
5: Otherwise select K attributes {a1, · · · , aK} among all nonconstant (in S) candidate attributes;
6: Draw K splits {s1, · · · , sK}, where si = Pick_a_random_split (s, ai), ∀i = 1, · · · , K;
7: Return a split s∗ such that Score (s∗, S) = maxi=1,··· ,K Score (s∗, S).
8:
9: Pick_a_random_split(S, a)
10: Inputs: a subset S and an attribute a
11: Output: a split
12: Let aS

max and aS
min denote the maximal and minimal value of a in S;

13: Draw a random cut-point ac uniformly in
[
aS

min, aS
max
]
;

14: Return the split [a < ac].
15:
16: Stop_split(S)
17: Input: a subset S
18: Output: a boolean
19: If |S| < nmin, then return TRUE;
20: If all attributes are constant in S, then return TRUE;
21: If the output is constant in S, then return TRUE;
22: Otherwise, return FALSE.
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Appendix A.2. Pseudocode for BP Neural NetworkAppendix

Algorithm A2 BP Neural Network

1: Inputs: a training set D = {(xi, yi)}(i = 1, 2, · · · , m) and learning rate η

2: Output: BP Neural Network
3: Initializes the connection weights and thresholds of neurons in (0, 1)
4: Repeat
5: For all (xk, yk) in D
6: Calculate the output of the neural network based on the data of the current sample;
7: Calculate the error between the output of the neural network and the label value;
8: Calculate the descending gradient of each parameter according to the error;
9: Update parameters according to the descent gradient;
10: End
11: Until meet the end condition

Appendix A.3. Pseudocode for Support Vector Machines

Algorithm A3 Support Vector Machine

1: Input: a training set D = {(xi, yi)}(i = 1, 2, · · · , m)
2: Output: the classification function model
3: Set up an equation wT x + b = 0

4: Set up the optimization problem as follows: min
w,b

(
1
2 wTw + C

N
∑

i=1
ξi

)
s.t.yi

(
wT xi + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, 2, · · · , N
where: w is the normal vector; b is a constant term; C is the punishment factor; ξi is the relaxation
variable.
5: By converting the above formula into a quadratic programming problem and introducing the
corresponding Lagrange function, the classification problem becomes:

L(w, b, λ) = 1
2 wTw + C

N
∑

i=1
ξi −

N
∑

i=1
αi
[
yi
(
wT xi + b

)
− 1 + ξi

]
−

N
∑

i=1
βiξi

where: αi, βi are Lagrange multipliers, αi ≥ 0, βi ≥ 0.
6: According to the duality principle, the above formula is changed into:

maxαL(α) =
N
∑

i=1
αi − 1

2

N
∑

i=1,j=1
αiαjyiyjxiyj

s.t.
N
∑

i=1
yiαi = 0, 0 ≤ αi ≤ C

In this algorithm, the kernel function is:

K
(

xjxi

)
= xT

j xi

7: After solving α, the model can be obtained by solving w and b.

Appendix A.4. Pseudocode for GBDTAppendix

Algorithm A4 Gradient Tree Boosting Algorithm

1: Input: a training set D = {(xi, yi)}(i = 1, 2, · · · , m)
2: Output: f̂ (x) = fM(x).
3: Initialize f0(x) = argminγ ∑N

i=1 L(yi, γ).
4: For m = 1 to M:
5: For i = 1, 2, · · · , N compute rim = −

[
∂L(yi , f (xi))

∂ f (xi)

]
f= fm−1

6: Fit a regression tree to the targets rim giving terminal regions Rjm, j = 1, 2, · · · , Jm.
7: For j = 1, 2, · · · , Jm compute γjm = argmin

γ
∑xi∈Rjm

L(yi, fm−1(xi) + γ).

8: Update fm(x) + ∑Jm
j=1 γjm I

(
x ∈ Rjm

)
. Update fm(x) + ∑Jm

j=1 γjm I
(

x ∈ Rjm

)
.
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Appendix A.5. Pseudocode for XGBoost

Algorithm A5 eXtreme Gradient Boosting

1: Input: a training set D = {(xi, yi)}(i = 1, 2, · · · , m)
2: Output: the classification function model
3: Build the XGBoost model:

ŷi =
K
∑

k=1
fk(xi), fk ∈ F(i = 1, 2, · · · , n)

where:
F =

{
f (x) = wq(x)

}(
q : Rm → {1, 2, · · · , T}, w ∈ RT)

F is the set of CART decision tree structures, q is the tree structure of the sample mapped to
the leaf node, T is the number of child nodes, and w is the real number fraction of the leaf node.
4: Construct objective function:

Obj = − 1
2

T
∑

j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi+λ + γT

where:
gi = ∂ŷ(t−1) l

(
yi, ŷ(t−1)

)
, hi = ∂2

ŷ(t−1) l
(

yi, ŷ(t−1)
)

5: Use exact greedy algorithm for split finding
6: The optimal XGBoost model is built by searching for the optimal tree structure using the
objective function and placing it into the existing model.
7:
8: Exact Greedy Algorithm for Split Finding
9: Input: I, instance set of current node
10: Input: d, feature dimension
11: Output: Split with max score
12: gian← 0
13: G ← ∑i∈I gi, H ← ∑i∈I hi
14: For k = 1 to m do
15: GL ← 0, HL ← 0
16: For j in sorted

(
I, byxjk

)
do

17: GL ← GL + gj, HL ← HL + hj
GR ← G− GL, HR ← H − HL

score← max
(

score, G2
L

HL+λ +
G2

R
HR+λ −

G2

H+λ

)
18: End
19: End
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