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Abstract: The condition of drainage pipes greatly affects the urban environment and human health.
However, it is difficult to carry out economical and efficient pipeline investigation and evaluation
due to the location and structure of drainage pipes. Herein, the four most-commonly used drainage
pipeline evaluation standards have been synthesized and analyzed to summarize the deterioration
and breakage patterns of drainage pipes. The common pipe breakage patterns are also summarized
by integrating the literature and engineering experience. To systematically describe the condition
of drainage pipes, a system of influencing factors for the condition of pipes, including physical,
environmental, and operational factors, has been established, and the mechanism of action of each
influencing factor has been summarized. Physical, statistical, and AI models and their corresponding
representative models have been categorized, and the research progress of current mainstream
drainage-pipe deterioration and breakage prediction models are reviewed in terms of their principles
and progress in their application.

Keywords: pipeline condition assessment; pipeline deterioration and breakage; influencing factors;
artificial intelligence model; machine learning

1. Introduction

Sewage overflow and groundwater leakage have seriously affected urban aesthetics
and environmental hygiene [1,2], and the accompanying fetid water bodies [3] and heavy-
metal pollution [4] have gradually become focal issues that endanger human health and
hinder urban development. At the same time, the operation and maintenance of drainage
pipes remain a difficult problem to overcome for the research and engineering community
because of their deep burial, complex branching structure, and the large variation in the
shape of pipe openings [5,6].

The rapid development of science and technology over the past two hundred years
has promoted the construction of urban underground pipelines, and a large number of
engineering practices have catalyzed the social demand for pipeline construction, operation,
and maintenance [7]. The Water Resources Research Centre (WRc) in the UK pioneered the
Manual of Sewer Condition Classification in 1980 [8], which has now been updated to the
fifth edition MSCC5 (WRc2013). The manual innovatively classifies pipeline defects into
four main categories: structural defects, functional defects, construction defects, and special
defects, which has prompted the creation of a Europe-wide standard, which has allowed the
different codes to use a common language [9]. On this basis, most European countries have
developed and improved the original codes according to their actual engineering status as
well as national urban planning and geographical characteristics [10,11]. North America
has been slightly behind Europe in developing standard codes for pipeline classification,
among which the Pipeline Assessment Certification Program (PACP), established by the
National Association of Sewer Service Companies (NASSCO), and the Guidelines for
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Condition Assessment and Rehabilitation, published by the National Research Council of
Canada, are widely used for large sewers.

At the beginning of the 21st century, the US Environmental Protection Agency (EPA)
proposed a new drainage pipeline health condition assessment, which involves the collect-
ing of pipeline data and background information by direct or indirect means and making
judgments and predictions on the current or future structural, water quality, and hydraulic
conditions of the pipeline through data analysis [12]. At the present time, the construction
of a complete pipeline database and the establishment of a scientific and efficient deteriora-
tion and breakage prediction model are the core principles of pipeline condition evaluation
and operations and maintenance (O&M) management, which have achieved good results in
engineering applications [13–15]. However, due to the large temporal and spatial variabil-
ity of drainage pipeline construction, operation, and maintenance specification standards,
and the relatively vague criteria for identifying and selecting influencing factors, pipeline
deterioration and breakage prediction models vary greatly in their form [16–18]. Therefore,
factors influencing the state of health of drainage pipelines and deterioration and breakage
prediction models deserve in-depth research.

In this paper, we have: (a) classified the common drainage pipe damage patterns by
combining the standards and engineering experiences of four typical countries; (b) summa-
rized the factors influencing the condition of drainage pipes and the complex mechanism of
each factor; (c) sorted the drainage pipe deterioration and damage prediction models into
three types: physical models, statistical models, and artificial intelligence (AI) models; and
(d) analyzed the various types of representative prediction models and typical applications.

2. Drainage Pipe Condition Assessment and Deterioration Patterns

Mohammadi et al. determined the frequency of occurrence of specification criteria or
evaluation methods corresponding to relevant results published between 2001 and 2019 by
analyzing meta-index data on drainage pipe deterioration breakage prediction models in
databases such as ProQuest, and then scaled the data as shown in Figure 1 [18]. Next, we
will focus on these specification standards and some other typical standards.
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2.1. Pipeline Assessment Certification Manual (PACP)

PACA is one of typical pipeline standards from North America, which is used for
pipeline defect identification and assessment to identify the pipe condition and manage-
ment. The first version of PACP was developed by National Association of Sewer Service
Companies (NASSCO) in 2001. Referred to in the UK Water Research Center (WRc) “Sewer
Rehabilitation Manual”, the goal of PACP is to identify, plan, optimize, manage, and
innovate sewer management systems wherever possible [19].

PACP has a special classification method that contains five types of classification
patterns: (1) continuous defects, (2) structural defects, (3) operational and maintenance,
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(4) construction features, and (5) miscellaneous features coding. PACP classifies pipeline
defects into structural defects and operation and maintenance (O&M), and defects are
classified by types into Crack, Fracture, Collapse, Weld Failure, Infiltration, Deposits
Attached, and Obstacles [20]. Based on CCTV inspections and operator judgement, defects
can be classified by severity into five classes:

5—Defects requiring immediate attention
4—Defects are going to become grade 5 without operation and maintenance
3—Moderate defects will remain deteriorating
2—Defects have not yet begun to deteriorate
1—Pipelines have minor defects

2.2. Sewer Rehabilitation Manual (SRM)

The first edition of SRM can be traced back to 1983, which is the result of the WRc in
the United Kingdom starting a five-year research project to develop a method to assess the
condition of sewer pipelines [21]. In many ways, SRM and PACP have a lot of similarities;
for example, they all have the same classification, and they all have the same grades. A slight
difference is that SRM classifies defects into Joint Opening, Crack, Fracture, Deformation,
Hole, Broken Pipe, and Collapsed Pipe in concrete pipes [22].

2.3. Australian Conduit Condition Evaluation Manual (ACCEM)

The ACCEM was produced by Sydney Water in 1991 with the aim of addressing the
growing problem of pipeline deterioration. Unlike SRM and PACP, ACCEM uses a grade
of 1 to 3 to judge the impact of pipeline defects in the first version, but changed to a grade
of 1 to 5 in the later versions. Meanwhile, ACCEM classifies pipeline defects into structural
defects and hydraulic defects, and it is also different from PACP and SRM [23].

2.4. Other Typical Standard

We have selected China’s “Technical Regulations for Inspection and Assessment of
Urban Drainage Pipelines” (CJJ181-2012) to complement the standards because it is widely
used and well developed. CJJ181-2012 has absorbed the advantages of PACP, SRM, and
ACCEM and refined the classification of defects. Some less frequent defects (e.g., Stump
Walls and Roots and Scum and Floating Mud) can be found in the CJJ181-2012, and we use
these descriptions to refine the pipeline defect summary.

2.5. Summary and Pipeline Defects

We summarize the important information of the above-mentioned manuals and stan-
dards in Table 1.

Table 1. Summary of important manuals and standards.

Manual or Standard Country Severity Classifications Defect
Classifications

PACP North America
1 to 5 (1 means the minor

defects, and 5 means worse
situation)

Structural defects and
Operation and

Maintenance defects

SRM UK 1 to 5 Structural defects and
Service defects

ACCEM Australia Used to be 1 to 3, and then
revised to 1 to 5

Structural defects and
Hydraulic defects

CJJ181-2012 China 1 to 5 Structural defects and
Functional defects

On this basis, we have combined the PACP, SRM, ACCEM, and CJJ181-2012 and sum-
marized the literature [19,24,25] and engineering experience to collate common drainage
pipe deterioration and breakage patterns (Figure 2). To improve the process efficiency and
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model accuracy, the common deterioration and breakage patterns are usually analyzed first
in the evaluation of drainage pipeline conditions.
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3. Pipeline Condition Influencing Factors

The deterioration and breakage of water and drainage pipelines is a very complex
process, and the use of a single influencing factor to describe the evaluation of pipeline
condition is inadequate [26,27]. The selection of meaningful influencing factors can sys-
tematically describe the underground pipeline deterioration and breakage process mecha-
nistically, and significantly improve the expression of pipeline deterioration and breakage
prediction models [19,28]. A large number of studies have been conducted that sum-
marize and systematically elaborate the classification of influencing factors for pipeline
condition evaluation, but due to the variability of data and standards in different regions,
these studies do not have a uniform way of classifying the influencing factors for pipeline
condition.

In 2001, Davies et al. [29] studied the causes of structural breakage and collapse damage
of rigid pipelines from three aspects: construction factors, local external factors, and other
factors. They summarized the factors influencing underground pipeline condition in a
more systematic way, and then conducted a number of mechanistic studies on this basis.
At the beginning of the 21st century, Kleiner and Rajani [30–32] tried to distinguish the
influencing factors of pipeline condition by time correlation, and in 2007, they pioneered the
classification of influencing factors into static factors (related to the nature of the pipeline
and the type of installation), dynamic factors (related to the soil around the pipeline
or the operating environment), and operational factors (including replacement rate and
maintenance methods). The above approaches provide an important reference perspective
for pipeline construction, investigation, evaluation, and operational rehabilitation, but
in practice, there are problems of redundant and complex influencing factors and large
deviations from the norm.

In 2002, the Canadian National Sustainable Municipal Infrastructure [33] issued the
first practical guide that proposed classifying the factors influencing pipeline conditions into
physical, environmental, and operational factors. Al Barqawi and Zayed [13] integrated and
simplified the three categories of factors to improve the applicability of this classification.
Salman [34], Kley and Caradot [28], and Hawari et al. [35] further added to this approach
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to make it the mainstream classification model of factors. In this paper, we follow the
classification model of Al Barqawi and Zayed and synthesize the literature [17,18,29,35,36]
to summarize the classification of factors influencing drainage pipeline condition and
pipeline damage models as shown in Table 2, where those marked with * are the important
influencing factors.

Table 2. Drainage pipe condition factors and types of mechanism.

Influencing Factors Mechanism

Physical factor

Pipe age *

The mechanism of pipe age influence can be
explained by the “bathtub curve” [37]. Usually,
the older the pipe is, the more likely it is to
break [16,38,39].

Pipe diameter *

It is generally believed that pipes with larger
diameters are less prone to deterioration and
breakage [29,40], and pipes with diameters less
than 200 mm are more prone to breakage [41].

Pipe material *

(i) The selection of pipes has a strong historical
influence [17]
(ii) Concrete, PVC, and other
corrosion-resistant pipes are being used more
and more frequently [2], and in general, as the
most widely used pipe, concrete pipes have
strong corrosion resistance and a lower
deterioration and breakage rate [16,42]

Pipe length *

(i) The effect of pipe length on the condition of
pipes is related to pipe joints and lateral
structures [15,16]
(ii) Longer pipes are more prone to clogging or
settling [16]
(iii) Bending stresses due to increased pipe
length are responsible for the susceptibility of
pipelines to structural breakage [15,43]

Pipe slope

(i) Longer retention time of sewage in gently
sloping pipes leads to the generation of large
amounts of hydrogen sulfide gas in the pipes,
inducing pipe breakage [16,44]
(ii) Pipes with large inclined angles usually
have large water flow velocities, and the water
flow impacts the pipe structure, thus inducing
pipe structure damage [45,46]

Installation quality
There is a greater correlation between the
normative standards of the pipe installation
formation and the type of pipe [27,28]

Pipe depth

(i) Shallow pipeline burial depth is shallow
and vulnerable to ground load pressure and
tree root growth [18,47]
(ii) Increased burial depth of the pipeline
indicates an increase in the static load
overlying the pipeline while increasing the
possibility of the groundwater table affecting
the pipeline [38,48]

Pipe shape Typically, round pipes are more resistant to
deterioration breakage than square pipes [49]
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Table 2. Cont.

Influencing Factors Mechanism

Physical factor

Coating and lining

Coatings and linings have multiple limitations
for historical reasons, and usually, coated and
lined pipes are less likely to deteriorate and
break down [13]

Joint type

(i) The damage probability of pipe joints
increases significantly with time, and after
some time, the damage probability of pipe
joints of some materials may even be
significantly greater than that of pipe
sections [50]
(ii) Rigid pipe joint defects usually originate
from improper installation, and the movement
of the upper load is more likely to induce
leakage and joint fracture in rigid joints [50]
(iii) Flexible pipe joints can withstand the
effects of small displacements, but improper
installation or multi-directional upper load
movement can lead to flexible pipe joint
fracture [51]

Environmental
factor

Seasonality *

(i) Extreme weather and sudden climatic
changes can catalyze pipe deterioration and
breakage with variability in the manifestations
of different pipes [17,52,53]
(ii) Changes in humidity and temperature due
to seasonal changes can affect the condition of
the pipe, and it is generally believed that there
is a significant decrease in humidity and
increase in temperature in summer and
autumn, leading to more vulnerable pipe
breakage during this period [54,55]

Soil condition *

(i) Soil properties such as the type of buried
soil and fracture potential of the pipeline have
a great influence on the pipeline [29,56]
(ii) Soil compression and consolidation
drainage due to ground load movement, as
well as migration loss of fine soil particles
triggered by groundwater seepage, can affect
the condition of the pipeline [57,58]

Construction location

(i) The overlying pressure of the pipeline and
the traffic pressure in the pipeline construction
area jointly affect the condition of the
pipeline [29,59]
(ii) Construction locations with more trees or
deeply buried foundations can easily trigger
foreign object penetration [16,28]

Groundwater level

Infiltration is likely to occur when the
groundwater level is higher than the pipeline
location, while the increase in pore water
pressure brought about by the rising water
level leads to a decrease in the effective stress
of the soil, increasing the risk of breakage of
the pipeline structure [29,60]
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Table 2. Cont.

Influencing Factors Mechanism

Operating factor

Pipe type *

(i) Drainage pipes can be divided into sewage
pipes, stormwater pipes, and rainwater pipes
according to their uses, and the degree of
deterioration and breakage of pipes of different
use types varies greatly [29,39,61]
(ii) Pipe use generally determines the quality of
water in the pipe, and the quality of water
affects the condition of the pipe [28,62]

Maintenance history *

(i) The pipeline areas where defects have
occurred are prone to secondary damage, and
the damage forms or triggering factors have
spatial and temporal clustering with the causal
mechanisms of the initial pipeline
defects [63,64]
(ii) Human activities during operation and
maintenance can affect the pipeline condition,
such as dredging before pipeline cleaning and
testing [29,65]

Flow rate

(i) Drainage pipes are susceptible to fatigue
damage under the influence of cyclic water
pressure, and the phenomenon is more
obvious in pipes with defects [66]
(ii) The increase in the instantaneous drainage
flow rate will lead to a great impact on the
pipe, and fragile parts such as pipe joints and
existing pipe defects are prone to breakage as a
result [67]

The items marked with * are the important influencing factors.

4. Drainage Pipe Condition Prediction Models

The purpose of a drainage pipe deterioration and breakage prediction model is to
analyze the collected pipeline data information to make short-term or long-term pipeline
condition predictions, provide decision-makers with accurate pipeline condition reports,
and provide scientific planning suggestions for future pipeline investigation, operation,
and maintenance [68]. In 1990, Bao and Mays [69] established a distribution system node
and system hydraulic reliability assessment method based on Monte Carlo simulations.
The analysis and extension of the existing system opened up research in drainage pipe
deterioration and breakage prediction models. Since then, advances in computer technol-
ogy and updates in algorithmic models have provided more options for the selection of
prediction models and greatly enriched the drainage pipeline condition evaluation system.

Over the past 30 years, researchers have done a lot of work to elaborate and improve
drainage pipe condition evaluation systems. Table 3 shows the classification types of
some drainage pipe deterioration and breakage prediction models in chronological order.
Combining existing classification methods taken from the literature, each classification
method is integrated and organized into the classification method, as shown in Figure 3.
Many models that have been studied or applied are listed in Figure 3, and the models are
classified into typical models and other models according to how widely they have been
studied (e.g., Other Models for Statistical models, whose studies appear less frequently
and are less recognized). In the following section, we focus on the typical models and the
focused models.
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Table 3. Classification of existing drainage pipes deterioration assessment models.

Authors Year Classification

Dasu and Johnson [70] 2003 Data-driven and Expert-driven models
Yang [71] 2004 Physical, Statistical, and AI models

Morcous and Lounis [72] 2005 Deterministic, Probabilistic, and Soft-Computing
models

Tran [73] 2007 Model-driven and Data-driven types

Ana and Bauwens [74] 2010

Pipe group model (Consider pipe sections with
similar pipeline characteristics throughout the

network or in regional clusters)Pipe level model
(Pipeline characteristics are used as covariates to
analyze the state of a pipeline in a point area for
independent analysis and evaluation of a single

pipeline segment)
Morcous and Lounis [72],

Kley and Caradot [28],
Salihu et al. [75]

2005
2013
2022

Deterministic model
Deterministic, statistical, and AI models
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4.1. Physical Models

Physical models, also known as deterministic models, involve the construction of a
quantitative expression of mathematical formulae for influencing factors and pipeline health
states based on the analysis of pipeline breakage mechanisms and predict pipeline damage
patterns under changes in influencing factors [28,35]. Rajani and Kleiner [76] considered
that the damage mechanisms of physical models involve three aspects: (i) structural
characteristics of the pipeline (e.g., materials); (ii) internal and external pipeline loads (e.g.,
traffic load and drainage flow rate); and (iii) material corrosion deterioration (e.g., internal
and external chemical and environmental corrosion). Some typical physical models are
shown in Table 4.

Table 4. Typical examples of physical models.

Authors Model Name Describe

König [77] ExtCorr
Predicting external deterioration of concrete
pipes by assessing soil moisture, corrosion,
and cement quality

Vollersten and König [78] WATS

Describe the joint mechanism of compounds
in wastewater and organic transformation
processes on the internal deterioration state
of pipes using nonlinear differential
equations
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The main drawbacks of physical models are: (i) only the current state of the pipe is
considered, ignoring the influence of the history of pipe deterioration failures [78]; (ii) the
model assumptions need to be concise, and the model accuracy depends on the correct
identification of the influencing factors [79]; and (iii) the complex process of drainage pipe
deterioration and breakage cannot be described, and the model interpretation is low [73].

4.2. Statistical Models

Researchers have attempted to model the condition of the pipeline with a set of
explanatory covariates, which has led to the gradual development of statistical models.
Among the statistical models that have been widely applied are the cohort survival method,
Markov chains, and logistic regression models [74,80].

4.2.1. Cohort Survival Models

The cohort survival method is an important approach to the survival analysis method
that uses similar grouping data to predict the probability of pipe breakage, life expectancy,
and fracture clustering [27]. The basic assumption of the method is that the pipeline cluster
survives for a number of years in some state with a certain probability, and gradually
evolves from that state to the worst state [81]. This evolution towards the worst state is
usually described using a transition function, as in Equation (1) [82,83]:

S(t)i→i+1 =
ai→i+1+1

ai→i+1+e(bi→i+1)(t−ci→i+1) (1)

where:
S(t)i→i+1: the portion of the pipe with pipe age t that survives to state i or worse.
a: the aging coefficient (a = 0 means no aging occurs, and a larger value of a means a

smoother transition).
b: the transition parameter (a larger value of b indicates a faster transition).
c: the resistance time, which determines the timeframe in which the pipeline will not

deteriorate further in the expected state.
The use of the transition function requires the year of installation, the year of inspection,

and the pipe condition data for the typicality pipes in the cluster. The curves generated
by the transition function can predict the remaining life of the pipeline. A representative
example is the transition function and its curve established by Hörold in 1998 [84], as
shown in Figure 4, which shows that for a group of pipes that have been in use for about
50 years and are categorized as having a health status of 2 to 3 after CCTV inspection, the
earliest pipe in the group to reach class 5 (the worst condition) has a life of 48 years; the last
pipe in the group to reach class 5 status has a remaining life of 105 years, and the average
remaining life of this group of pipes is 80 years.

The cohort survival method is sensitive to pipe-age analysis and can be used to deduce
the most likely time in the future for the target pipeline to enter a poorer health state using
existing data, and can also provide an accurate schedule for pipeline maintenance and
rehabilitation [84–87]. Ana et al. [88] and Laakso et al. [89] developed a cohort survival
method-based prediction model to investigate the sensitivity of pipe age to other influenc-
ing factors that showed a high sensitivity of pipe age to pipe type and pipe length. They
pointed out that the reliability of the model is greatly influenced by the accuracy of the data.

4.2.2. Markov Chains

In a Markov chain, the probability of each event depends only on the state of the
previous event without considering the influence of past events, a property also known
as “memorylessness”. The basic assumption of a Markov chain-based pipeline predic-
tion model is that the conditional probabilities do not vary with time. The conditional
probabilities are given in Equation (2) [45]:

P(Xt+1 = j|Xt = i) = pij (2)
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where pij is the transition probability, which is the probability that part of the pipeline
transitions from state i at moment t to state j at moment t + 1. Usually, the pipeline health
state is divided into five stages: stage 1 is the best state, which refers to the ideal state where
the pipeline has just been installed and can be put into normal use, and stage 5 is the worst
state, in which there is an urgent need to replace the pipeline immediately. From these five
pipeline health states can be obtained a 5 × 5 matrix M, called the transition probability
matrix, as in Equation (3) [90]:

M =


p11 p12 p13 p14 p1m
0 p22 p23 p24 p2m
0 0 p33 p34 p3m
0 0 0 p44 p4m
0 0 0 0 1

 (3)

where pij = 0 when i > j indicates that the pipeline will only get progressively worse
without human intervention [35]. The pipeline health state at moment t + 1 can thus be
calculated from the conditional probability at moment t, as shown in Equation (4), while
the state expression at moment t is as in Equation (5):

Pt+1 = Pt ×M (4)

Pt =
[
pt

1, pt
2, pt

3, pt
4, pt

5
]

(5)

Markov chains can calculate the probability of pipe evolution to a worse state and
can also be used as time-based models to calculate the time probability distribution be-
tween different pipe states [91]. In 2001, Wirahadikusumah et al. [56] combined nonlinear
optimization and Markov chains to establish a drainage pipe deterioration and breakage
prediction model and proved the sensitivity to pipe age of Markov chains. Since then,
many studies have gradually improved the application form and interpretation of Markov
chains [85,92], and some researchers have established Markov chain engineering applica-
tion models [90,92–94], which have gradually established a mature and applicable drainage
pipe health state evaluation O&M system.
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4.2.3. Logistic Regression Models

Logistic regression models are a form of regression analysis model that use logistic
curve fitting to evaluate pipeline conditions by analyzing the relationship between multiple
independent variables and sub-attributable dependent variables [19]. They are usually
described using Equation (6):

log
[

π
1−π

]
= log

[
p(y = 1|x1,··· ,xn)

1−p(y = 1|x1,··· ,xn)

]
= α +

p
∑

j=1
β jXj (6)

where:
π: the state of the pipe is healthy—conversely 1− π means that the pipe has suffered

damage.
Xj: a set of independent variables (influencing factors, such as pipe age and pipe

diameter).
β j: the regression coefficient.
α: the intercept parameter.
Logistic regression models have grown into a relatively mature system through con-

tinuous iteration and improvement across several decades of development. A logistic re-
gression model is established by identifying the influencing factors and collecting drainage
data in a targeted manner, then analyzing the effect of the influencing factors in the model
to rank the important influencing factors and comparing them with a validation set to
determine the model accuracy [39,42,95,96]. Logistic regression models have also been
applied to validate the contribution of new influencing factors to the deterioration breakage
of drainage pipes [60,97].

4.2.4. Comparative Analysis of Previous Models

The advantages and disadvantages of the cohort survival method, Markov chain, and
logistic regression model are summarized and analyzed in Table 5.

Table 5. Summary of advantages and disadvantages of several typical statistical models.

Model Type Advantages Disadvantages

Cohort survival model

(i) Concept is easy to understand and easy to
calculate
(ii) Transition curve gives a good explanation
of the deterioration and damage process of the
pipeline
(iii) Beneficial to the cost calculation of pipeline
maintenance and repair [74]

(i) The data demand is huge and usually not
easy to meet [98]
(ii) Pipes that have undergone deterioration
and breakage are easily ignored in model
calculations, resulting in large predicted
pipeline life [99]

Markov chain

(i) The model can be greatly simplified by
reducing the number of similar pipes when
calibrating the transition function [28]
(ii) The most likely time of pipe deterioration
can be predicted, and the model is very flexible

(i) The pipeline needs to be classified and
grouped, and each group of models requires
sufficient data for simulation validation
(ii) The conditional probability matrix is
complex to build [68]

Logistic regression model

(i) The concept is simple and easy to
understand, and the model is powerful in
prediction
(ii) It can analyze the degree of influence of
influencing factors on the deterioration and
breakage of the pipeline
(iii) The model mechanism is highly
explanatory and can decompose the pipeline
deterioration and damage process
(iv) The model can be built without the
prerequisite assumptions [34,100]

(i) The data requirements are extremely high
(ii) The linear nature of logistic regression is
not flexible enough to identify nonlinear
decision boundaries and more complex
relationships [35,68]
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4.3. Artificial Intelligence (AI) Models

AI modeling refers to the use of artificial neural networks (ANNs) with rule-based
models for problem analysis and interpretation [35]. In pipeline condition evaluation,
ANNs learn the deterioration damage of the pipeline from existing data, study the math-
ematical logic relationship between the independent (each influencing factor) and the
dependent (pipeline condition level) variables, and predict the possible deterioration dam-
age of the pipeline through this process [73].

4.3.1. Artificial Neural Networks (ANNs)

ANNs are a simulation of the human nervous system, consisting of layers of artificial
neurons that mimic the human brain’s ability to recognize judgments and predict certain
possible outcomes by learning from existing knowledge [101]. In drainage pipe condition
evaluation, backpropagation and probabilistic neural networks are usually used to build
pipe deterioration breakage prediction models [16,28,35,73,102].

(1) Backpropagation neural networks

A backpropagation neural network is usually divided into an input layer, a number
of hidden layers, and an output layer (Figure 5) [73]. The nodes in the input layer consist
of the influencing factors describing the health state of the pipe, denoted by Xi; the nodes
in the hidden layer(s) receive the signals from the input layer and multiply them by the
relevant connection weights in aggregate to generate the output signals using a predefined
mathematical function, and the neurons in the output layer analyze and define the drainage
pipe health state type based on the signals from the hidden layer(s). The training of the
neural network is realized by the model learning the data iteratively and continuously cy-
cling the output results, usually by reducing the error between the observed and predicted
values to minimize prediction errors [28].
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(2) Probabilistic neural networks

Probabilistic neural networks are a special form of ANN that classify the inputs into
different classes based on Bayesian classification [103]. A probabilistic neural network
is divided into an input layer, a pattern layer, a summation layer, and an output layer
(Figure 6 [104]). The input layer functions in the same way as the input layer of the
backpropagation NN; the values of the nodes in the pattern layer are the dot product values
of the input vector, X, and the weight vector; the nodes in the summation layer receive
the corresponding output values from the pattern layer and calculate the results using the
probability density function (the formula of the probability density function for category i
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is shown in Equation (7)); the output layer receives the output values from the summation
layer and assigns the conditions by applying the Bayesian decision rule (Equation (8)).

fi(x) = 1

(2π)
π

2σn
1

Mi

Mi
∑

j=1
e−

(x−x(i)j )
T
(x−x(i)j )

2σ2 (7)

where:
x(i)j : the input vector of the jth sample in class i of the training set.
n: the dimensionality of the input vector.
Mi: the number of training samples in category i.
σ: the smoothing parameter; σ is the most important parameter to be determined;

different values of σ need to be selected for training tests when building the model, and
the optimal σ value corresponding to the one that produces the smallest error value is
chosen [105].

h1 f1(x) > h2 f2(x) (8)

where:
x: the n-dimensional input vector.
h1: the prior probability of category i.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 29 
 

 

  
Figure 6. Schematic presentation of a probabilistic neural network. 

𝑓 𝑥 = 12𝜋 1𝑀 𝑒   (7)

where: 𝑥( ): the input vector of the 𝑗th sample in class 𝑖 of the training set. 𝑛: the dimensionality of the input vector. 𝑀 : the number of training samples in category 𝑖. 𝜎: the smoothing parameter; 𝜎 is the most important parameter to be determined; 
different values of 𝜎 need to be selected for training tests when building the model, and 
the optimal 𝜎 value corresponding to the one that produces the smallest error value is 
chosen [105]. ℎ 𝑓 (𝑥) > ℎ 𝑓 (𝑥)  (8)

where: 𝑥: the n-dimensional input vector. ℎ : the prior probability of category 𝑖. 
ANNs have become the main approach for modeling in recent years. The selection of 

influencing factors with important characterization in drainage pipes for targeted data 
collection is the key to establishing ANN models. Most of the models in the literature 
select mostly physical factors, such as pipe age, pipe length, pipe diameter, pipe material, 
pipe inclination, and pipe burial depth [38,106,107]. However, some studies also include 
important environmental and operational factors in the scope of the application [108–110]. 
They have achieved good model prediction results, but there is still a lot of room for pro-
gress in research on models incorporating environmental and operational factors. 

The advantage of ANNs is that they are extremely capable of dealing with complex 
and variable pipeline health states and ambiguous influencing factor data. They can also 
handle scale and ordinal data. The ANN model is a practical alternative to the theoretical 
model if the relationship between the dependent and independent variables is poorly ex-
plained [35,73]. The disadvantage of ANN is that the mechanism of pipe deterioration and 
breakage is poorly explained [28]. 

Figure 6. Schematic presentation of a probabilistic neural network.

ANNs have become the main approach for modeling in recent years. The selection
of influencing factors with important characterization in drainage pipes for targeted data
collection is the key to establishing ANN models. Most of the models in the literature
select mostly physical factors, such as pipe age, pipe length, pipe diameter, pipe material,
pipe inclination, and pipe burial depth [38,106,107]. However, some studies also include
important environmental and operational factors in the scope of the application [108–110].
They have achieved good model prediction results, but there is still a lot of room for
progress in research on models incorporating environmental and operational factors.

The advantage of ANNs is that they are extremely capable of dealing with complex
and variable pipeline health states and ambiguous influencing factor data. They can also
handle scale and ordinal data. The ANN model is a practical alternative to the theoretical
model if the relationship between the dependent and independent variables is poorly
explained [35,73]. The disadvantage of ANN is that the mechanism of pipe deterioration
and breakage is poorly explained [28].
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4.3.2. Fuzzy Logic Rules

Fuzzy logic rule is a mode of application of fuzzy set theory, which was proposed by
Zadeh in 1965 to solve the problem of uncertainty in practical applications [111]. A fuzzy
set Ã in a universe X can be expressed as follows:

Ã =
{

x, µÃ(x)
∣∣x ∈ X

}
, (9)

where µÃ is between [0, 1], and µÃ(x) is the degree of subordination to Ã among the values
of x ∈ X.

Fuzzy sets are usually described using the triangular fuzzy number, trapezoidal
fuzzy number, and Gaussian fuzzy number. The triangular fuzzy number and trapezoidal
fuzzy number are non-continuous functions, and the Gaussian fuzzy number is a type of
continuous function, as we can see in Figure 7. The fuzziness is best characterized by the
above three functions, and in other words, we can describe that the membership function
represents the degree of truth in fuzzy logic [112].
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In general, the models based on fuzzy logic rules follow the term “antecedent propo-
sition”, which can describe the relationships between variables by fuzzy if-then rules.
Mamdani antecedent proposition as a typical antecedent proposition can effectively solve
the qualitative and highly uncertain knowledge problem, and its if-then formula is shown
in Equation (10) [32].

Ri : i f x is Aj then y is Bk, i = 1, 2, . . . , l, j = 1, 2, . . . , M, k = 1, 2, . . . , N (10)

where,
x is the input (antecedent) linguistic variable,
y is the output (consequent) linguistic variable,
Aj is M antecedent linguistic constant in a set A,
Bk is N consequent linguistic constant in a set B.
The values of x, y, Aj, and Bk are obtained from predefined sets and rules that

define the model [35], and the membership function can be described by the expression in
Figure 7.

To identify the deterioration of drainage pipelines, the models based on fuzzy logic
rules are used to overcome data scarcity and imprecision. In modeling applications, fuzzy
logic rules are often used in conjunction with other models to fuzzify the influencing
factors of drainage pipelines. Neuro-Fuzzy Approaches [113], fuzzy rules-based Marko-
vian process [32,114], and fuzzy logic rules-based multiple linear regression and ANN
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models [115] have been developed in the past several years. It can be seen that fuzzy logic
rules have become one of the main tools for model building and are widely used in the
joint application of various models.

The advantages and disadvantages of fuzzy logic rules are very obvious. Its main
advantages are its simple structure and ease of interpretation, no need for precise data
sources, and its ability to integrate effectively with other models. Its major disadvantages
are that it is difficult to express precisely, and it has a large degree of likelihood hypothesis
in the opinion of a significant number of researchers [116,117].

4.3.3. Simulation Rules

The models based on simulation rules are used to represent real-time engineering
systems by generating large numbers of outcomes in order to estimate outcomes as in
reality [118]. In a rule-based simulation model, the state of the system and state transitions
are collectively referred to as events that define the dynamic form of the model, where the
state of the system is defined by the characteristic properties of a collection of objects called
“entities”, and the change of state is referred to as a state transition [119].

In 2004, Ruwanpura et al. [120] developed a rule-based model to determine the
condition of sewer pipelines and the probability that the pipe can remain in its current
condition based on a 5-year increment. But in general, such models are not replicable, the
biggest reason being that a sufficient amount of real-time data for the pipeline is extremely
difficult to obtain. Based on the above limitations, some researchers have adopted the idea
of introducing expert subjective evaluation to solve the problem of missing data to some
extent. Hawari et al. [43] adopted the Fuzzy Analytical Network Process for the evaluation
of influencing factors. The overall condition of the pipeline is determined by simulating the
product of the relevant weights and effect values of different factors over several iterations.

The biggest reason why the models based on simulation are still not widely used is
that the demand for data is difficult to be satisfied. With small samples of data, the accuracy
of the model is easily influenced by different data trends [35].

4.3.4. Machine Learning (ML) Models

ML models learn directly from existing data and predict the future state of the pipeline
by exploring different prediction structures and algorithms [121].

(1) Random forest

Random forest is a method for generating numerous independent classification trees
based on random samples, which also allows for the selection of only a subset of variables
to form a classification tree, adding a layer of randomness to the creation of the model [122].
In drainage pipe condition evaluation, the predictor variables may have complex depen-
dencies, and these relationships are likely to be nonlinear, which creates suitable conditions
for the application of random forest models. Examples of random forest models in drainage
pipe deterioration and breakage prediction models are given in Table 6.

Table 6. Examples of random forest models.

Year Authors Describe

2014 Harvey and McBean [123]

A random forest model was developed using
pipeline data from Guelph, Canada, and ROC
curves were used to establish alternative cut-off
points for prediction probabilities, proving that
the random forest model is an “excellent” choice
for predicting pipeline condition
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Table 6. Cont.

Year Authors Describe

2018 Laakso et al. [15]

A random forest model was developed with a
logistic regression model, and the results showed
that random forest had higher accuracy. It was
also found that although deformation, root
intrusion, and pipe surface defects were not
significantly characterized in the set of datasets,
the random forest still had higher accuracy in
predicting the results of the above damage
patterns

2018 Wang et al. [124]

Proposed a random forest fusion-based pipeline
leakage diagnosis method, the algorithm
improves the accuracy by 2.2% and 6.4%
compared to the backpropagation neural
network model and the D-S evidence theory
model of support vector machine, respectively

2020 Li [125]

A random forest model is established based on
the monitoring data of a pipeline network in a
park in Suzhou, and the univariate and
inter-variate analysis is used to obtain the feature
importance and contribution rate, to give the
decision path of the pipeline section, to improve
the interpretability of the model, and to prove
the superiority of the random forest algorithm

(2) Support vector machines (SVMs)

An SVM aims to find a hyperplane such that the points of different categories in the
training sample set fall exactly on both sides of the hyperplane, and also requires that the
blank area on both sides of the hyperplane is maximized [126]. Figure 8 illustrates the
principle of applying SVM in two-dimensional space. Typical SVM models in drainage
pipe deterioration breakage prediction models are shown in Table 7.
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Table 7. Examples of support vector machine models.

Year Authors Describe

2011 Mashford et al. [127]

A support vector machine model was established
by selecting influencing factors such as pipe age,
pipe diameter, road type, pipe inclination angle,
pipe, soil type, etc. The accuracy of the model
reached 91%, but due to the lack of sufficient
data, the model still has room for improvement

2014 Harvey and Mcbean [128]

Using pipeline data from Guelph, Canada, a
support vector machine model was built using
selected influencing factors such as pipe age,
pipe, and pipe type, with a model accuracy
of 76%.

2021 Zhou et al. [129]

Combining kernel density estimation and
support vector machine algorithm to construct a
drainage pipe deterioration and breakage
prediction model, the model accuracy reaches
91%. Applying the model to the pipeline in
Yangpu District, Shanghai, it can effectively
identify the pipe sections with a lower safety
level

2021 Chen and Wang [130]

To solve the time-consuming problem of least
squares support vector machine, an adaptive
genetic algorithm is used to optimize LSSVM
parameters and establish a pipeline health state
prediction model with overburden depth, pipe
diameter, water pressure, and road grade as
inputs, and the results show that the new model
takes less time to model and has better
prediction capability

(3) Decision trees

Decision trees predict the target variable using a set of rules arranged in a tree structure
(Figure 9). During the training process, the rules are built starting from the root node, where
all observations are initially assigned. The root node is then split into several decision
node branches according to the values of the predicted variables. Under each partition,
the observations of the higher-level nodes are allocated to the lower-level nodes. This is
repeated recursively for each branch until all observations on a decision node have the same
classification result [131]. Typical decision tree models in the drainage pipe deterioration
breakage prediction model are shown in Table 8.
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Table 8. Examples of decision tree models.

Year Authors Describe

2008 Chen et al. [132]

Analyze the aging and leakage data of Beijing
pipelines from 1987 to 2005, apply a decision tree
algorithm to develop a pipeline prediction
model based on pipe age and pipe diameter, and
predict the distribution of aging and leakage of
pipelines in Beijing in 2008 through ArcGIS

2013 Syachrani et al. [131]

A decision tree model based on background
information survey and pipe inspection data is
selected for pipe age, pipe diameter, pipe length,
pipe inclination, and number of trees, and the
model has good performance in predicting the
pipe age of drainage pipes

2014 Harvey and McBean [48]

Using pipeline data from Guelph, Canada, a
decision tree and a support vector machine
model were built using selected influencing
factors such as pipe age, pipe, and pipe type, and
the results showed that the support vector
machine model was more accurate

2022 Meydani et al. [133]

A Bayesian decision model based on decision
tree theory is developed to facilitate the
structuring process of the initial problem in a
decision process with uncertainty. Applying the
model to a water distribution network
architecture in Sweden, the results show that the
cost of human intervention and leakage
probability have a significant impact on the
model performance and O&M decisions

5. Model Validation

Model validation is a necessary step in determining the model’s reliability and creating
a link between practical engineering applications and theoretical studies. Validation of
a model typically refers to confirmation of the model’s prediction accuracy span and
generalization ability [134]. The most direct method of validation is to use actual data to
test the predictability of the results [135]. During data processing, we set aside a small
portion of the data (e.g., 30% or 35%, etc.) and summarize the model’s accuracy by
comparing that raw data to the accuracy of the final prediction.

5.1. Validation Methodologies

Many validation methodologies have been developed, typically at the pipe group
level, with the goodness-of-fit being the most commonly used to predict the number of
deteriorated pipes at a given time under large sample conditions. At the pipe level, re-
searchers typically use the confusion matrix to describe whether or not the model prediction
is accurate, and Root Mean Square Error to describe the model’s prediction accuracy [19].

5.1.1. Goodness-of-Fit Test

Goodness-of-fit is a statistical test methodology that is used to determine how well
the observed data works in the model. It can fairly summarize the difference between the
model’s predicted and actual data. In the goodness-of-fit literature, three main classifica-
tions have been developed: the chi-square, the Kolmogorov-Smirnov, and the Anderson-
Darling. The three methods described above are detailed in Table 9.



Sustainability 2023, 15, 3849 19 of 29

Table 9. The three approaches to goodness-of-fit [136–141].

Approach Description Application Scope Merits

The chi-square

It evaluates whether
proportions of categorical or

discrete outcomes in a sample
follow a population

distribution with
hypothesized proportions.

• Sampling method is
random.

• Predictor variables are
categorized.

• A sufficient sample size
is required to make the
chi-square
approximation valid.

• It can be easily calculated and
concluded.

• The Chi-Square test provides
an additive property. This
allows the researcher to add
independent results to the
sample of interest.

• This test is based on the
observed frequencies rather
than on parameters such as
mean and standard deviation.

Kolmogorov-Smirnov

It assesses whether a single
sample could have been
sampled from a specified
probability distribution

• The predicted variable is
continuous

• It does not make any
assumptions about the
distribution of the data.

• There is no restriction on the
sample size, and small
samples are acceptable.

Anderson-Darling

It is used to compare the fit of
the observed cumulative

distribution function with the
expected cumulative
distribution function.

• The A-D test is proposed
for the continuous as
well as discrete cases

• It does not make any
assumptions about the
distribution of the data.

• There is no restriction on the
size of the sample. Small
samples are acceptable.

5.1.2. Confusion Matrix

A confusion matrix, also known as an error matrix, is a method for summarizing
a classification algorithm’s performance [142]. The matrix’s rows represent instances in
the actual class, while the columns represent instances in the predicted class [143]. Four
scenarios can be obtained by comparing the predicted results to the actual data [19], and
we usually use Figure 10 to describe these situations:

• True positive (TP): the model predicts the good pipe condition correctly.
• True negative (TN): the model predicts the poor pipe condition correctly.
• False positive (FP): the model predicts a poor pipe condition as a good condition.
• False negative (FN): the model predicts the active condition as a poor condition when

it is not.
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5.2. Validation Results in Typical Case Studies
5.2.1. Case Studies

Many researchers have used actual data from a region to analyze data and build
predictive models and have constructed models and mechanistic analyses with regional
characteristics, and this section will summarize some typical regional and model research
cases. We summarize the cases in Table 10.

Table 10. Validation results in typical case studies.

Region Authors Case Description Validation Results

Australia Tran [73]

• Tran developed several deterioration
models to evaluate the sewer pipe
conditions in the City of Greater
Dandenong in Victoria, Australia. Some
important influencing factors had been
used in these models, such as pipe age,
pipe shape, pipe size, and so on.

• The most reliable models that Tran
identified are the Markov model,
Multiple discriminant analysis, Ordered
probit, BPNN, and PNN

• In this case, the Markov model is used to
predict the structural deterioration at the
pipe group level, and the other models
are used at the pipe group and pipe
level.

• As for the pipe group models, the
Markov model, BPNN, and PNN passed
the goodness-of-fit test, and the Markov
model got the lowest chi-square value,
showing the best performance in
predicting.

• For the pipe level models, the best
performed model is BPNN because of its
total model efficiency for the calibration
dataset.

USA Salman [34]

• Salman applied several deterioration
models based on inspection data of the
city of Cincinnati, USA. The inspection
data were evaluated using the PACP
procedures.

• Several influencing factors had been
selected, such as pipe age, pipe material,
pipe function, pipe size, pipe depth, and
so on.

• The selected deterioration models
focused on the pipe level: ordinal
regression, multinomial logistic
regression, and binary logistic regression
analysis.

• Necessary model assumptions were not
matched so the ordinal regression model
cannot be used in this case.

• Three condition classes (poor, fail, and
good) were tested in the multinomial
logistic regression model. The validation
result shows that the total model
efficiency was moderate but prediction
efficiency for class ‘fair’ is low, so this
model was considered to be invalid.

• As for the binary logistic regression
analysis, two condition classes were
applied (good and bad), and the
validation result showed a relatively
good result: the total model efficiency
was 66%, and prediction efficiency for
good and bad condition were 78% and
46%.

UK OS Tade [144]

• Totally, 703,156 records of historic sewer
structural condition inspection data from
a 24,252 km pipeline in Thames Water
and other wastewater utilities in the UK
had been analyzed.

• An improved deterioration model
named the Deterministic Deterioration
Model (DDM) and inspection
frequencies for sewers were developed
as a premise for proactive investment in
this case.

• In this case, the validation focus was on
benchmarking the deterioration model
on collapse data.

• The validation results indicate the
predicted value could be higher than
validation result, and that confirms that
the deterioration model is valid.
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Table 10. Cont.

Region Authors Case Description Validation Results

Germany Le Gat [99]

• Based on inspection data from the city of
Dresden, Germany, Le Gat developed a
statistical deterioration model, which is
an improved model for
non-homogeneous Markov chains. The
data were evaluated using the DWA
procedures (Germany pipe assessment
procedures).

• Pipe diameter, installation period, and
the type of effluent have been selected
for the transition functions.

• The model has been validated using a
methodology based on the ability of the
models to identify sewers in poor
condition.

• The validation result shows the model
gave a good performance in poor
condition.

Belgium Ana [104]

• Ana applied some deterioration models
(cohort survival, semi-Markov, logistic
regression, Multiple Discriminant
Analysis, and PNN) on sewer and
inspection data of the city of Leuven and
Antwerp, Belgium. In this case, about
1255 samples based on 50 km of sewers
were used.

• Several influencing factors had been
used in this case, such as pipe age, pipe
material, pipe function, pipe shape, and
so on.

• Cohort survival, semi-Markov had been
divided into pipe group, and logistic
regression, Multiple Discriminant
Analysis, and PNN had been selected
into pipe level models.

• Pipe group models cannot pass the
confusion matrix whereas pipe group
models are evaluated using the
chi-square goodness-of-fit. The results
indicate cohort survival perform better
than semi-Markov.

• As for the pipe-level models, the
efficiency was calculated from the
confusion matrices, and the logistic
regression and the PNN show good
overall prediction quality.

5.2.2. Validation Result Discussion

In the preceding sections, we have introduced validation methodologies in two dimen-
sions, pipe group and pipe level, and provided examples of application in various regions.
We can draw discussions from the preceding cases.

Several deterioration models have been discussed, many of which appear repeatedly
(e.g., Markov model, logistic regression, Multiple Discriminant Analysis, and PNN). How-
ever, the same model produces different model effects in different cases. The Markov model
performs better in most cases, which is attributed to the Markov model’s excellent computa-
tional potential and the reduction of errors due to the large number of data samples [73,99].
Logistic regression and Multiple Discriminant Analysis have also been tested in a variety
of datasets, but have failed miserably. The following factors may contribute to logistic
regression’s inefficiency: (i) biased distribution of the data set in terms of the number of
samples per condition state, and (ii) a lack of data for significant worsening factors [104].
Non-valid statistical assumptions may be a major cause of Multiple Discriminant Analysis’s
inefficiency [16]. Similarly, the neural network model has proven to be an excellent method
for analyzing data in a wide range of applications, but it does not perform well in case
studies because it requires a large amount of data, which is typically difficult to obtain in
the field of sewer pipe assessment, affecting the model’s accuracy [38].

Many conclusions can be summarized [28,96,134]: (i) the quality of the field test data,
which is, again, closely related to the selection criteria, influencing factors, and so on,
limits the accuracy of validation, (ii) validation results are usually better when analyzing
a database with a large amount of data, and (iii) while it is difficult to say which model
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performs better in general, each model has relative advantages in different application
scenarios.

6. Summary and Conclusions

The current state of two applications of drainage pipeline condition assessment and de-
terioration prediction models is reviewed in this paper. Following that, we will summarize
and discuss each of these two elements.

6.1. Summary and Conclusions of Drainage Pipeline Condition Assessment

In terms of drainage pipeline condition assessment, we summarize the pipeline con-
struction and maintenance development process from the standpoint of historical devel-
opment. In Chapter 2, we examine several representative pipeline evaluation manuals
and standards, as well as summarize pipeline damage patterns based on these manuals
and standards. In Chapter 3, we summarize the main influencing factors used in pipeline
condition assessment and analyze their main influencing patterns using a large body of
literature.

Table 1 shows that, over time and with the accumulation of a large number of engineer-
ing practical experiences, the manuals and standards of each country gradually converge
and generally adopt the evaluation ideas of the same category of WRc SRM. However, there
is some variation in the classification of pipeline defects used by different countries, making
it difficult to combine and analyze pipeline evaluation analysis reports and literature from
different countries. On this basis, we have summarized and condensed the manuals and
standards of various countries, proposed a set of pipeline defect classifications based on
structural and functional defects, and refined and enriched them.

Considering the distribution of the literature, etc., the number of literature materials
that use PACP, SRM, and ACCEM is significantly higher than the others. A more advanced
pipeline condition assessment system has been formed by the mature system, improved
data, and investment in research potential, and the pipe deterioration models established
based on the improved database have gradually formed a system.

Similarly, the similarities and differences in influencing factors caused by various
evaluation systems are an issue that cannot be overlooked. Drainage pipe condition factors
are selected in very different ways across different spans of literature (e.g., chronological
span, regional span, research background span, etc.), and even some of the influence
factors in many studies reflect very low impact effects in the final results, so refining the
mechanistic model of influence factors and targeting the selection of influence factors based
on the former study is a good way to improve the model’s applicability.

In the selection of influencing factors and the mechanism model analysis, there is still
a significant scarcity, such as pipe depth, pipe shape, construction location, groundwater
level, and flow rate, and other influencing factors of the mechanism model are still very
general: the lack of systematic related research (the reason why possibly being a lack of
researchers with underground structure), geotechnical engineering, and other research
backgrounds into the specific research. Another possible reason is that pipeline data
acquisition and evaluation relies heavily on internal pipeline inspection techniques such as
CCTV, and the lack of research variables and data for the overall study of pipe-geotechnical
systems makes targeted verification and analysis difficult.

6.2. Summary and Conclusions of Deterioration Prediction Models

The development of deterioration prediction models is undertaken to reduce the loss
of human and material resources caused by frequent pipeline inspection and maintenance,
as well as to improve the proactiveness of the operation and maintenance process. A
large number of models are currently being used in the assessment of drainage pipeline
conditions. Models are classified into three types based on their modeling mechanism:
physical models, statistical models, and AI models, while models are classified into pipe-
group models and pipe level models based on their application.
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In terms of modeling mechanisms, a physical model is a pipeline deterioration pre-
diction model based on a large number of assumptions, which has greater application
limitations, whereas a statistical model and an AI model are models based on a large
number of known data, whose data sources are usually the results of artificial estimation
and analysis of pipeline internal inspection techniques such as CCTV. Such data sources
are extremely expensive, and it is difficult to obtain such data sources.

So far, there is no literature to prove which model is clearly the best, and the difference
in model performance is reflected in the regional variability of pipelines, manuals and
standards, and model applicability conditions. Similarly, ambiguity in the mechanism
model and confusion in the selection of influencing factors cause errors in the modeling
process, reminding us that influencing factors are a pivotal connecting bridge in the subject
of this paper, and more attention should be paid to the selection of influencing factors and
the mechanism model in future research.

During model validation, we divide the model into pipe group models and pipe level
models to gain a better perspective on the problem and obtain the final validation results.
The pipes are divided into pipe groups with specific research significance based on their
unique regional characteristics in the pipe group model, whereas in the pipe level model,
we usually focus only on the pipe itself and ignore the variation characteristics of the
pipe as a whole. Model validation can provide theoretical validation as well as practical
application of the model, and it determines whether the model has real-world effects. We
discovered that the discussion of validation results is relatively lacking and limited after
reviewing a large amount of literature. This is due to a lack of pipeline data quality and
quantity, which is due to the influence of human evaluation on data quality, resulting in
large errors in the data itself, which affects the calculation and prediction of the model itself
and the expensive cost of the quantitative aspects of the survey and analysis, which hinders
the magnitude and frequency of the data.

7. Discussion and Future Perspective
7.1. Discussion and Limitations

Drainage pipeline condition evaluation is a proactive O&M process requiring a large
amount of data and adequate feature classification that simultaneously assimilates tradi-
tional municipal engineering applications and focuses on professional experience drawn
from materials science, geology, geotechnics, fluid mechanics, and other directions to
identify influencing factors while giving different interpretations to pipeline condition
influencing factors.

Identifying the influencing factors of pipeline condition is key to the success of the
evaluation process. Selecting important influencing factors and collecting data in a targeted
manner can effectively reduce the investment of human and material resources. At the
same time, the importance of the influencing factors also determines the validity and gener-
alization degree of the developed evaluation model. At present, there are few studies that
have attempted to explain the mechanism of the influencing factors of pipeline conditions,
mostly due to the lack of sufficient data to build an evaluation model with application
value.

The rapid development of algorithms and processor upgrades have improved the
accuracy and generalization of evaluation models, but the excessive focus on the model
itself and neglect of influencing factors and data processing have become important factors
that reduce the interpretability of the model. In addition, the implementation of the
drainage pipe deterioration and damage evaluation model is still at the stage of theoretical
research and is difficult to advance to practical applications, and this has become an
important factor limiting the development of the research.

The issues that still need to be addressed are:

1. The lack of investigation of the mechanism of the pipe deterioration and breakage
process. The process of pipeline deterioration and breakage is very complex, and
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it is difficult to describe the mechanism of pipeline deterioration and breakage by
employing a single discipline.

2. Model building is usually limited by the availability of data. Drainage pipeline
deterioration and damage prediction models often require a large amount of data
to build the model, and the lack of data can lead to problems such as overfitting. A
large amount of pipeline data is concentrated in the hands of pipeline operation and
maintenance agencies or inspection agencies. The making available of this data would
promote the in-depth study and application of the data to increase the possibility of
models being used in the active operation and maintenance of pipelines.

3. Existing models are difficult to widely apply. The current model is difficult to build
a highly accurate and dynamically descriptive drainage pipe deterioration model
because of insufficient data levels, lack of data quality, and insufficient data analysis
of time span, and thus it is difficult to put into large-scale practical applications.

4. Drainage pipeline health evaluation systems are difficult to unify. It is difficult to use
the models and mechanisms applied in different standards and evaluation systems.
Therefore, the promotion of the unification of the evaluation system in regions where
pipeline health evaluation systems are relatively mature is recommended.

7.2. Future Perspective and Suggestions

In view of the work that has been carried out so far and the limitations of the study,
the following points are suggested:

1. Experts from different research backgrounds should be combined to suggest interdis-
ciplinary research on influencing factors and mechanistic models.

2. The existing pipeline inspection data should be integrated, a database with regional
characteristics should be established, and pipeline inspection work under different
time spans should be promoted to establish a large number of databases with temporal
and spatial dimensions for drainage pipe condition assessment.

3. The quality of pipeline inspection data is a very important issue, and there are already
researchers working on the development of an algorithm-based automatic pipeline
defect detection system. The joint application of automatic pipeline defect detection
and the drainage pipe deterioration prediction model is a very challenging and
promising direction.

4. There is an urgent need to summarize and condense manuals and standards from
different countries and regions to pave the way for a cross-regional discussion of
literature results.
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