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Abstract: This study focuses on a technical and economic analysis of designing and operating an
off-grid hybrid renewable energy system (HRES) in a rural community called Olooji, situated in
Ogun state, Nigeria, as a case study. First, a size optimization model is developed on the basis
of the novel metaheuristic particle swarm optimization (PSO) technique to determine the optimal
configuration of the proposed off-grid system on the basis of the minimization of the levelized cost
of electricity, by factoring in the local meteorological and electricity load data and details on the
technical specification of the main components of the HRES. Second, a fuzzy-logic-controlled energy
management system (EMS) is developed for the dynamic power control and energy storage of the
proposed HRES, ensuring the optimal energy balance between the different multiple energy sources
and the load at each hour of operation. The result of the size optimization model showed that an
LCOE for implementing an HRES in the community would be 0.48 USD/kWh in a full-battery-
capacity scenario and 1.17 USD/kWh in a half-battery-capacity scenario. The result from this study is
important for quick decision-making and effective feasibility studies on the optimal technoeconomic
synopsis of implementing minigrids in rural communities.

Keywords: hybrid renewable energy system (HRES); particle swarm optimization (PSO); fuzzy logic
control (FLC); energy management system (EMS); loss of power supply probability (LPSP); levelized
cost of energy (LCOE); microgrid; Nigeria

1. Introduction
1.1. Background

Nigeria, the most populous country in Africa, has one of the lowest rates of electri-
fication in the world [1]. About 43% of the Nigerian population, representing 85 million
people, have no access to grid electricity [2]. Nigerian households connected to the grid
have electricity only for about 7 h per day and experience more than 10 blackouts every
week, and most people run diesel or gasoline generators for more than 4 h a day [3]. Those
who receive electricity from the grid experience more than 17 h of blackout per day. There-
fore, most households and businesses resort to self-electricity generation using alternative
sources such as diesel or gasoline.

Nigeria’s national grid is currently being managed by the following: the Nigeria
Electricity Regulatory Commission (NERC), which is responsible for formulating policies
and regulating the power sector, and the Power Holding Company of Nigeria (PHCN),
which is accountable for coordinating the investments and operations of the power sector.
This duo was created in 2005 after the National Electric Power Authority (NEPA) was
decoupled when the Electric Power Sector Reform Act (EPSRA) was enacted for the pri-
vatization of the power sector [4]. PHCN is currently being grouped into three divisions,
which include generation companies (GENCOs), a transmission company (TRACO), and
11 distribution companies (DISCOs). The GENCOs consists of more than 5) independent
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power producers (IPPs), 10 national integrated power projects (NIPPs), and 6 privatized
PHCNs, which include Afam, Egbin, Kainji, Sapele, Shiroro, and Ughelli Power Plc; the
TRACO is the Transmission Company of Nigeria (TCN), and the 11 DISCOs include the
Abuja Electricity Distribution Company, the Benin Electricity Distribution Company, the
Ibadan Electricity Distribution Company, the Eko Electricity Distribution Company, the
Enugu Electricity Distribution Company, the Ikeja Electricity Distribution Company, the Jos
Electricity Distribution Company, the Kaduna Electricity Distribution Company, the Port
Harcourt Electricity Distribution Company, the Kano Electricity Distribution Company, and
the Yola Electricity Distribution Company [5]. The GENCOs are responsible for producing
electricity, the TRACO is responsible for transmitting electricity from the GENCOs to the
DISCOs, and the DISCOs are responsible for distributing electricity to the final consumers.

The present total installed capacity of the GENCOs is around 12.5 GW, out of which
5.4 GW is inaccessible and 3.3 GW is nonfunctional, leaving only around 3.9 GW of electric-
ity for the GENCOs to functionally produce and dispatch to the TRACO; 0.3 GW is lost
while transmitting to the DISCOs, leaving around 3.6 GW for the DISCOs to distribute
to the final consumers; 0.5 GW is lost during distribution so only about 3.1 GW is dis-
tributed to the final consumers [6,7]. Figure 1 shows the Nigeria Power Sector energy
flow in megawatts (MW). Nigeria’s daily electricity need is approximately 8 GW to 17 GW,
although estimating Nigerians’ electricity need is complicated by the passive demand from
unavailable electricity [1]. Given that the Nigerian population is over 200 million people [8]
and the rule-of-thumb estimates of 1 GW per 1 million people [7], Nigeria will supply the
electricity needed to support full industrialization only once the country can produce up
to 200 GW of electricity. According to the World Bank, Nigeria’s electricity consumption
stands at 144.52 kWh per capita, compared with over 5500 kWh per capita in European
countries [9].
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The above data show that Nigeria’s current generation capacity is far below what the
population demands. This imbalance between the electricity generated and the demand
creates an epileptic and unreliable electricity situation in the country. Furthermore, the
data show that only around 25% of the installed capacity reaches the final consumer; this is
partially connected to the gas supply disturbances in that most electricity-producing plants
are gas fueled. In fact, 85% of the total installed capacity is generated by gas-fueled thermal
power plants, and the remaining 15% is generated by hydroelectric power plants [6].
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Therefore, to meet Nigeria’s electricity demand, generating energy by using fossil fuels is
not advisable, owing to these technical challenges and the severe environmental and health
impacts of using fossil fuels. It is, therefore, important to assess the renewable energy
potential for electricity generation in Nigeria.

Renewable energy has become a panacea to energy problems worldwide because it is
clean, environmentally friendly, and ultimately cheaper. Nigeria has a massive capacity
for generating electricity from its numerous green energy resources, with a daily energy
potential of 934 GWh from biomass, 120 GWh from solar, 84 GWh from hydro, and 44 GWh
from wind [10]. Nigeria’s photovoltaic power output potential (kWh/kWp) is shown in
Figure 2, while the wind speed available in each Nigeria state is shown in the wind resource
map of Nigeria in Figure 3.
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Stears Data reported that even though there are many potential renewable energy
solutions obtainable in Nigeria, solar energy is the best at providing electricity for off-
grid areas in Nigeria because of its sufficiency, relatively low cost, and different strata
available for different levels of consumers [1]. Additionally, electricity generated in off-grid
regions is best consumed where they are generated. Dispatching the produced electricity
to the national grid will cause only more losses and more uncertainty in transmission
to the end users. Nigeria’s transmission grid critically restricts the proportion of the
produced electricity that reaches the final consumers. Outworn and ineffective equipment, a
deficient framework, and insufficient investment in extending the grid have made accessing
electricity through the grid ineffective in the long term [1]. It is thus essential to investigate
how off-grid electricity can be positioned to supplement the void in the electricity supply.
Shaaban and Petinrin pointed out that exploiting off-grid green energy potentials in Nigeria
could reduce the persistent electricity crisis in the country [13]. The present paper, therefore,
focuses on the technoeconomic study of implementing an off-grid hybrid renewable energy
system in Nigeria and proposes an EMS that would ensure the reliability of the HRES
operation. It uses a community situated in the southwestern part of Nigeria as a case study.

This study is motivated by the proliferation of the adoption of renewable energy
systems for generating electricity. This has been due to advocacy by governments and
international organizations for the supply of renewable energy to remote regions that
are off the grid and to reduce the world’s environmental impact from greenhouse effects
exacerbated by nonrenewable energy production and consumption. These developments
have increased efforts to establish renewable energy plants in many nations to access more-
sustainable energy and combat environmental degradation and climate change issues [14].
However, the usage of these renewable energy systems is usually in hybrid forms because
the availability of all renewable energy sources is not dependable. A hybrid renewable
energy system (HRES) integrates many renewable technologies and operates as an inde-
pendent power system with higher reliability than a single renewable energy source [15].
Because renewable energy is sourced from the natural environment, it is dependent on
weather conditions, which makes it difficult to design stable electricity systems that use
renewable sources [16]. The two most important renewable energy sources for off-grid
distributed energy systems, namely wind and photovoltaic (PV) sources, are affected by
random fluctuations owing to their dependence on short-term weather and seasonal cli-
mate variations [17]. A hybrid renewable energy system (HRES) contains a microgrid
or decentralized generation (DG) that consists of two or more renewable energy sources,
such as solar PVs, wind turbines, fuel cells, and other renewable energy sources working
together with other decentralized nonrenewable power generation units in a coordinated
manner to meet the demand of a particular area [18]. Storage systems such as batteries and
hydrogen fuel cells and emergency generation equipment such as a diesel generator are
always included in the hybrid renewable energy systems to back them up against fluctu-
ation and to ensure reliability. Energy-storage equipment stores excess energy, which is
released when renewable energy is not available, thereby solving the fluctuation problems
associated with renewable energy sources [19], while a diesel generator (DG) is added as
an emergency power source to improve HRES reliability [20].

However, the addition of these different units to an energy supply system makes
the system more complex in terms of both technological adaptability and economic sus-
tainability. In addition, the operating characteristics and costs of HRES are much higher
than those of standalone wind turbines or solar PV systems [21]. This, therefore, calls for
designing a cost-effective HRES and an efficient energy management system (EMS) that
ensures economic sustainability and technical adaptability for the hybrid system; such a
system would ensure optimal operation cost and energy system reliability by reducing the
system’s LPSP.
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1.2. Literature Review

Because of the various equipment involved in HRES, excessive sizing leads to exorbi-
tant capital, and insufficient sizing leads to an unreliable system. The two situations are
unwanted; therefore, optimal sizing is important when planning HRES. There have been
numerous studies on sizing models for HRES, where each of them uses either economic
indicators (such as net present value (NPV), levelized cost of electricity (LCOE), total
annual cost (TAC), and cost of electricity (COE)), reliability indicators (such as deficiency
of power supply probability (DPSP), loss of load probability (LOLP), and loss of power
supply probability (LPSP)), environmental indicators (such as life-cycle emission (LCE),
carbon footprint of energy (CFOE), life-cycle assessment (LCA)), or social indicators (such
as social acceptance (SA), the job-creation index (JCI), and the Human Development Index
(HDI)) as its objective indexes for evaluating the HRES’s performance. Most studies have
prioritized economic and/or reliability as objective indexes: 43.5% of the surveyed papers
have prioritized economic indexes, and 37% have prioritized both economic and reliability
indexes as objective indexes [22]. This means that over 80% of the surveyed publications
on HRES sizing have prioritized economics and reliability indexes in evaluating their
HRES’s performance.

HRES sizing includes mostly conventional strategies (such as the analytical method,
numerical method, iterative method, and probabilistic method), artificial intelligence (AI)
techniques (such as the particle swarm optimization (PSO), cuckoo search algorithm (CSA),
genetic algorithm (GA), ant colony optimization (ACO), artificial bee colony (ABC), and
gray wolf optimization (GWO)), hybrid methods (such as GA-ABC, simulated annealing-
tabulated search (SA-TS), and divide and conquer-remote electrical tilt (DP-RET)), and com-
puter software (such as the hybrid optimization model for electric renewables (HOMER),
general algebraic modeling system (GAMS), transient system simulation tool (TRNSYS),
hybrid optimization by genetic algorithm (HOGA), LINGO, and HYBRIDs) [22]. Analo-
gous to conventional strategies, AI methods deal with intricate and nonlinear problems
while dealing with incomplete data and fluctuating wind and solar energy problems [23].
Among the AI strategies, PSO and GA have higher use cases. GA and PSO constitute more
than 50% of the use cases of all AI strategies [22]. Although GA is used more than PSO,
PSO is appreciated for its ease of implementation, high accuracy, simple computation, fast
convergence, absence of crossover, and lack of mutation operations present in GA [23,24].

Many HRES optimization studies have used PSO to optimize the power generated
by HRES to meet the electrical needs of a typical home and minimize LCOE [25]. Yoshida
and Farzaneh designed an optimal standalone microgrid system consisting of the wind,
a PV, a battery, and a diesel generator on the basis of the PSO method to find the optimal
system configuration by using the lowest-cost-perspective approach [26]. Mohammed et al.
developed a PSO model to optimize the power generated by an HRES, which consists of
a wind turbine, a tidal turbine, a solar PV, and batteries [27]. The system was designed
to serve and minimize the energy cost of a standalone community in Bretagne, France.
Naoto and Farzaneh utilized the PSO algorithm to realize the optimal configuration of an
HRES to minimize the total cost of an HRES in an off-grid mode and maximize the total
profit gained in a grid-tied mode while meeting the load demand of a typical residential
household in Fukuoka, Japan [28].

Furthermore, there have been several studies on developing an energy management
system (EMS) to ensure energy balance for an HRES. Currently, most of the EMS-related
research on HRES has focused on distributed energy systems in microgrids and electric
vehicles [29]. EMS strategies can be categorized into intelligence-based controls, such as
wavelet neural networks (WNNs), machine learning, and multi-objective optimization
methods; rule-based controls, such as the logic threshold and fuzzy logic control (FLC)
methods; or optimal-based controls, such as instantaneous optimization and global op-
timization [29]. Of these methods, fuzzy logic control is considered important because
its rules are easy to implement and do not involve complex mathematical modeling [29].
Abdullahi and Majed have shown the necessity of strengthening an HRES by having at
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least two kinds of energy-storage systems and two kinds of renewable sources for system
stability, and they designed an FLC for the energy management of HRES that has multiple
types of storage [30]. However, the designed FLC cannot be applied to a more complex
system involving a larger distribution network, as in the case of microgrids.

In a study comparing the technoeconomic analysis of solar home systems (SHSs) and
microgrids to determine the best choice for rural electrification, Chaurey and Kandpal found
that a microgrid is a more economical option for providing power to an off-grid community
with more than 500 densely populated households [31]. The technoeconomic analysis of a
microgrid, investigated by Borhanazad, through the design of a standalone off-grid hybrid
PV/wind/diesel/battery system for a rural community in Malaysia showed that having
56–61% of solar energy inclusion is important to achieve an optimal and economically feasi-
ble hybrid system [32]. To minimize the power demand of buildings in Japan, Tatsuya et al.
used a fuzzy logic controller to design a grid-tied hybrid solar/wind/hydrogen system
with a maximum power point tracker (MPPT) and obtained a 2% excess power generation
from the designed HRES [33]. Berrazouane proposed a cuckoo-search-algorithm-tuned FLC
to operate an autonomous hybrid power system and discovered that the optimized FLC
could reduce the LPSP, LCOE, and excess energy of the systems [34]. Table 1 summarizes
the recent studies on the modeling of the HRES.

Table 1. Summary of literature survey on HRES.

Country Research Goal System Components Objective
Function

Optimization
Method

Impact
Category Ref.

Japan
To design an optimal
standalone microgrid for
powering a residential area.

PV/wind/battery/DG Total cost PSO Economic [26]

France
To optimize the power
generated by a hybrid
renewable energy system

Wind turbine/tidal
turbine/PV

module/battery

Total net
present cost PSO Economic [27]

Australia

To control the power flow of
an HRES with multiple
renewable energy sources
and multiple
energy-storage systems

PV/wind/fuel
cell/battery EMS control Fuzzy logic Reliability [30]

India
To make a technoeconomic
comparison between an SHS
and a microgrid

SHS/PV/wind/
battery/DG

Annualized
life-cycle

costs (ALCCs)
HOMER Economic [31]

Malaysia

To investigate the
technoeconomic analysis of
an optimal standalone HRES
in remote areas

PV/wind/battery/DG COE
LPSP PSO Economic,

reliability [32]

Japan To reduce the load demand
of buildings on an HRES

Grid-tied hybrid
solar/wind/hydrogen LCOE Fuzzy logic Economic [33]

Algeria

To develop an optimal FLC
for the operation of a
standalone HRES that is
based on a CSA

PV/battery/DG LPSP, excess
energy, LEC Fuzzy logic Economic,

reliability [34]

1.3. Research Gap and Research Contribution

Optimal sizing and control are two aspects of the same HRES. A system that is
optimally sized but not optimally controlled will be inefficient. Optimal sizing ensures the
minimal implementation cost and energy affordability, while optimal control ensures the
optimal operation cost and energy availability. The literature survey showed that most
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of the research studies have focused only on system sizing or energy control. However,
the size, cost, control, and reliability of HRESs are all interdependent; an effective energy
management system needs to be integrated with an appropriate sizing method. This
research aims to develop an optimal sizing model that finds the lowest-cost configuration
of the HRES, which is then integrated into an EMS model that ensures optimal energy
scheduling during HRES operation in an off-grid community. The integration of the two
systems will produce a combined model that ensures energy reliability at the optimal
cost. The study uses PSO to find the equipment sizing that provides the best cost at
optimal reliability and uses a fuzzy logic controller to design an EMS that every time
ensures an energy balance between the energy demand and the energy supply during the
HRES operation.

The rest of this paper is organized as follows: Section 2 introduces the size optimiza-
tion model, the structure of the HRES, and the mathematical modeling of the constituent
components of the HRES. Section 3 presents the design of an optimal fuzzy-logic-controlled
energy management system. Section 4 shows the characteristics of the case-study com-
munity, the renewable energy resource data, the load data, the economic data, and the
technical parameters of the equipment. Simulation results are presented and discussed in
Section 5. Finally, the research objectives are achieved in Section 6, the concluding section.

2. Size Optimization Model
2.1. System Structure

Figure 4 shows the typical structure of the considered HRES. The system contains two
renewable energy sources, solar photovoltaic modules, and a wind turbine. The battery
is included as a backup power source, while the diesel generator serves as an emergency
supply. An inverter is included that converts direct current to alternating current and vice
versa. The consumer load is the energy demand of the community. The inverter is assumed
to contain an energy management system that controls the power flow between the load
demand and the different energy sources.
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The mathematical modeling of each component is explained in the following section.

2.2. Solar PV Model

Solar PV output power is influenced by factors such as solar irradiance, the yearly
season, the surrounding temperature, the type of PV module, and the inclination angle.
The solar panel output power PPV is determined by a simplified simulation model and is
given by following the equations [27]:

PPV = NPV × ηPV × Am × Gt (1)
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ηPV = ηre f × ηpc

[
1− β

(
Tc − Tcre f

)]
(2)

Tc = Ta +

(
NOCT − 20

800

)
× Gt (3)

where Ta.NOCT = 20 ◦C and Gt,NOCT = 800 W
m2 are the wind speed of 1 m/s; NPV is the

number of PV panels; ηPV is the panel efficiency; Am is the total area of the panel module;
Gt is the incident global irradiance (W/m2); Ta is the surrounding temperature; and NOCT
is the normal PV working temperature (◦C).

2.3. Wind Turbine Model

The power output of a wind turbine is determined by the regional wind speed and
wind turbine characteristics. This study uses the following equations to determine the
output power of a wind turbine [26]:

Pw(V) =


pr(V−VCIN))

Vrat−VCIN
. VCIN ≤ V ≤ Vrat

Pr. Vrat ≤ V ≤ VCO

0, V ≤ VCIN and V ≥ VCO

(4)

V = Vre f

(
H

Hre f

)α

(5)

where Hre f (m) is the reference height; Vre f (m/s) is the reference height’s wind speed; α
refers to the exponent; H(m) is the height of the wind turbine; V is the wind speed at H(m);
Vrat (m/s) is the rated wind speed of the wind turbine; Pr(kW) is the constant power;
VCIN (m/s) is the cut-in speed; and VCO(m/s) is the cut-out speed.

2.4. Battery Model

A battery stores electrical energy in chemical form. Energy stored in the battery is
used to power the load when renewable energy is not sufficient. The battery capacity can
be estimated by the following equation [2]:

CB =
EL.SD

VB.DOD_maxTc f .µB
(6)

where VB is the battery working voltage; EL is the load in Wh; Tc f is the temperature
correction factor; SD is the number of autonomy days; DODmax is the depth of discharge;
and µB is the efficiency.

Additionally, the battery SOC is defined as the available capacity divided by the rated
capacity of the battery in ampere hours (AHr). This is mathematically expressed below [32]:

SOC =
Available Capacity(AHr)

Rated Capacity(AHr)
× 100 (7)

SOC(t) = SOC(t− 1).(1− σ) +

⌈
EGen(t) −

EL(t)
µinv

⌉
µB (8)

SOC(t) = SOC(t− 1).(1− σ) +

⌈
EL(t)
µinv

= EGen(t)

⌉
µB (9)

SOC = 1− DOD (10)
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where EL is the load, σ is the self-discharge rate an hour, and EGen is the energy generated.
Equation (8) is used for the battery charging, while Equation (9) is used for the battery
discharging. The battery optimally operates between the allowable discharge limit, denoted
as SOClow, and the allowable maximum charge limit, denoted as SOCmax.

2.5. Power-Flow Strategy

For the optimal sizing of the HRES using the PSO, the power-flow needs to be balanced
such that renewable energy is optimally utilized while ensuring that energy is always
available to power the load. The HRES considered in this study comprises the PV, a wind
turbine, a battery, a DG, and the load. The power management for the PSO ensures that
a balance between the energy supplied and the energy demanded. At every hourly time
step, the PSO program compares the renewable energy (solar and wind) with the load
and then decides whether to charge the battery, discharge the battery, or start the diesel
generator, depending on the conditions. When the energy supplied by renewable energy
(RE) is enough to power the load, the excess energy is used to charge the battery. When the
RE is not enough to power the load and the battery SOC is greater than the lowest SOC,
energy is taken from the battery to power the load. When the RE is insufficient to power
the load and the battery SOC is lower than the lowest SOC, the diesel generator is switched
on to power the load, and the diesel generator’s excess energy is used to charge the battery.
The flowchart of the power-flow strategy is shown in Figure 5.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 33 
 

battery discharging. The battery optimally operates between the allowable discharge limit, 
denoted as 𝑆𝑆𝑆𝑆𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙, and the allowable maximum charge limit, denoted as 𝑆𝑆𝑆𝑆𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. 

2.5. Power-Flow Strategy 
For the optimal sizing of the HRES using the PSO, the power-flow needs to be balanced 

such that renewable energy is optimally utilized while ensuring that energy is always avail-
able to power the load. The HRES considered in this study comprises the PV, a wind turbine, 
a battery, a DG, and the load. The power management for the PSO ensures that a balance 
between the energy supplied and the energy demanded. At every hourly time step, the PSO 
program compares the renewable energy (solar and wind) with the load and then decides 
whether to charge the battery, discharge the battery, or start the diesel generator, depending 
on the conditions. When the energy supplied by renewable energy (RE) is enough to power 
the load, the excess energy is used to charge the battery. When the RE is not enough to power 
the load and the battery SOC is greater than the lowest SOC, energy is taken from the battery 
to power the load. When the RE is insufficient to power the load and the battery SOC is 
lower than the lowest SOC, the diesel generator is switched on to power the load, and the 
diesel generator’s excess energy is used to charge the battery. The flowchart of the power-
flow strategy is shown in Figure 5. 

 
Figure 5. Power-flow strategies for the PSO optimization. 

2.6. Operating Cost of an HRES 
The battery replacement cost and the diesel generator running cost constitute the 

main operating costs of the considered HRES because other sources have only capital 
costs, with little to no maintenance costs. 

2.6.1. Replacement Cost of Batteries 

Figure 5. Power-flow strategies for the PSO optimization.

2.6. Operating Cost of an HRES

The battery replacement cost and the diesel generator running cost constitute the main
operating costs of the considered HRES because other sources have only capital costs, with
little to no maintenance costs.



Sustainability 2023, 15, 3862 10 of 33

2.6.1. Replacement Cost of Batteries

The cost of replacing batteries majorly contributes to the overall operating cost of
an HRES. Battery replacement depends on the battery usage cycle NT , which in turn is
dependent on the depth of discharge (DOD). The operating cost of the battery (CBat) in
(USD/kWh) is given as follows [21]:

CBat =
∑NT

j=0 Cj

∑NT
j=0

∣∣∣∆Pbatj

∣∣∣ (11)

where NT refers to the battery cycle during the operating period, ∆Pbatj is the battery power
output during operating hour j, and Cj is the life cost of the battery. Cj is given as follows:

Cj =
Cinitial−bat

NC
(12)

where Cinitial−bat refers to the battery purchase price and NC is the maximum number of
battery cycles.

2.6.2. Operation Cost of the Diesel Generator

In an HRES, a generator provides the energy needed to power the load at a critical
time when renewable energy and battery energy are not enough. A generator needs to
be run between 70% and 89% of its rated capacity for optimal efficiency [35]. The fuel
consumption of a diesel generator can be mathematically expressed as follows [36]:

D f (t) =∝D PDG(t) + βD × PDr (13)

where D f (t) in (Liter/hour) refers to the fuel consumption, PDG(t) in (kW) refers to the
DG power generation, PDr in (kW) refers to the rated power, and ∝D and βD refer to the
fuel consumption curve coefficients, which are taken as 0.2461 L/kWh and 0.08415 L/kWh,
respectively [36]. The fuel cost (Cg) is given as follows:

Cg =
D f (t)C f

PDG
= C f

(
∝D +

βD × PDr
PDG

)
(14)

where C f is the diesel price.
The DG depreciation cost is given as follows:

CDW =

MT
20,000 C_initialDG

∑MT
t=0 PDG(t)

(15)

where MT refers to the DG’s operating hours and CinitialDG refers to the DG cost of purchase.
The operating cost of the diesel generator (CDG) is given as follows:

CDG = Cg + CDW (16)

2.7. Particle Swarm Optimization (PSO) Model

In 1995, Kennedy and Eberhart proposed the particle swarm optimization algo-
rithm [37]. PSO is a stochastic optimization algorithm based on the population of particles.
It has been successfully used in many applications, such as face detection, voice recognition,
and neural network training, because it computes in parallel with fast computing speed.
PSO mimics the characteristics of a flock of birds, called a “swarm”, with a single possible
bird called a “particle”, which is the solution. The fitness value for each solution is evalu-
ated for every particle by using the fitness function. A velocity vector is also evaluated for
each particle. Every solution is updated for each particle in the search space. Each solution
is compared over several iterations with the particle’s previous and neighbor’s positions
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to determine the optimal value [38]. To reach the optimal point, each particle updates its
position in its search space according to its previous experience and those of its neighbors
over iterations. The movement of the particle depends on its present velocity and every
element j of the velocity vector of the kth particle is expressed as follows:

V(k+1)
i = ω×V(k)

i + C1 × rand1(·)× Pbest,i − X(k)
i + C2 × rand2(·)×

(
Gbest − X(k)

i

)
(17)

X(k+1)
i = X(k)

i V(k+1)
i (18)

where X(k+1)
i refers to the new position of the ith particle; V(k+1)

i refers to the new velocity
vector of the ith particle; rand1(·) and rand2(·) are random numbers, each within [0, 1]; C1
and C2 refer to the learning factors; ω is the momentum weight factor; Pbest,i is the prior
best experience of the ith particle that is recorded; and Gbest refers to the best particle of the
entire population.

The PSO algorithm is used to determine the optimal sizes of the HRES equipment by
minimizing the cost (LCOE) function:

LCOE
(

USD/
kWh

)
=

Annualized Cost(USD)

Annual Energy Supplied (kWh)
(19)

=
NPC (USD)

Pload(kW)(8760 h
year )

× CRF (20)

CRF =
i(i + 1)n

(1 + i)n − 1
(21)

where n is the project life (24 years), i is the prevailing interest rate, NPC is the net present
cost and comprises all capital costs, and Pload(kW) includes all energy supplied in one
year. The cost function is subjected to technical and reliability constraints. The reliability
constraint (LPSP) is defined as follows:

LPSP =
∑ Pload − Ppv − Pwind − Pbattery − PDG

∑ Pload
(22)

where Ppv is the PV power, Pwind is the wind power, PDG is the diesel generator power,
and Pbattery is the usable energy of the battery. The LPSP is to be less than 0.2%. Kashefi
et al. stated that an LPSP of less than 1% is acceptable for off-grid electricity supplies as
compared with an LPSP of less than 0.01%, which is accepted in developed countries [39].

The renewable energy resource data include solar irradiation data, wind data, and
temperature data, and the equipment characteristics and load consumption data of the com-
munity are used to determine the optimum value for the equipment. The load is preferably
powered by using renewable energy (RE), and power is drawn from the battery only when
renewable energy is insufficient. The system uses a diesel generator for emergency supply
when the RE is unavailable and when the battery energy is inadequate for the demand. A
flowchart of the PSO algorithm is shown in Figure 6.



Sustainability 2023, 15, 3862 12 of 33Sustainability 2023, 15, x FOR PEER REVIEW 12 of 33 
 

 
Figure 6. Flowchart of the particle swarm optimization (PSO) algorithm. 

3. Optimal Energy Management System Using a Fuzzy Logic Controller 
A fuzzy logic control is established on multivalued logic that allows for using com-

mon principles and expert knowledge for control rules [40]. Its control method is like hu-
man reasoning methods. L.A. Zadeh pioneered the idea of fuzzy logic in 1965 [41], and it 
has since been developed and adapted for different systems to provide effective and 

Figure 6. Flowchart of the particle swarm optimization (PSO) algorithm.

3. Optimal Energy Management System Using a Fuzzy Logic Controller

A fuzzy logic control is established on multivalued logic that allows for using common
principles and expert knowledge for control rules [40]. Its control method is like human
reasoning methods. L.A. Zadeh pioneered the idea of fuzzy logic in 1965 [41], and it has
since been developed and adapted for different systems to provide effective and efficient
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control in many applications. Zadeh defined a fuzzy set as a collection of objects with
varying grades of membership identified by a membership function that allocates a scale of
membership ranging from zero to one for every object [41]. Fuzzy logic control involves the
application of fuzzy sets and theories in control processes. The fuzzy logic control method
uses range-to-range or range-to-point strategies—unlike the classical control method, which
uses point-to-point control. The fuzzy system (Figure 7) comprises four units: a fuzzification
unit, a knowledge unit, an intelligence unit, and a defuzzification unit. Inputs are converted
into fuzzy inputs by assigning the associated membership functions to the imprecise inputs
at the fuzzification unit. The intelligence and knowledge units work on the fuzzy inputs
and infer the proper results by considering the rules to produce a fuzzy output that is
converted back to crisp output at the defuzzification unit [30,42]. The fuzzy logic controller
is efficiently employed for energy management control thanks to its simple and effective
feature adaptability to the nonlinearity of HRES energy supply and demand [34].
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3.1. Design of the Energy Management System

The main function of the energy management system in an HRES is to control the
energy flow from each energy source to the load. An optimal energy management system
will ensure an energy balance between the demand and the supply and guarantee the
maximum utilization of the available renewable energy. At every point during the HRES
operation, the EMS works to ensure that the power flow satisfies the energy balance
between the components, as shown in the equation below:

Ppv(t) + Pw(t) + Pbattdischarge
(t) + PDG(t) = Pl(t) + Pbatt_charge(t) (23)

In the EMS considered, the PV power (Ppv) and wind power (Pw) are renewable energy
(RE) power. The load is preferably powered by using renewable energy (RE), and power is
drawn from the battery only when renewable energy is insufficient. The system considers
using a diesel generator for emergency supply when the RE is unavailable and when the
energy available on the battery is inadequate for the demand or when the battery has
depleted to its minimum allowable state of charge (SOC). The differential power (∆P) is
the power difference between the load power (PL) and renewable energy (RE):

∆P = PL(t)−
(

Ppv(t) + Pw(t)
)

(24)

The battery state of charge (SOC) for the FLC is modeled by using the SOC equation
presented by [21]:

SOC (t) =
Pbatt(t− 1) + Cbatt[PRE(t)− PL(t)] + {PDG(t)− (1− Cbatt)[PL(t)− PRE(t)]}

Pbatt
(25)
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where, Pbatt(t− 1) is the remaining energy on the battery in the last hour; Cbatt[PRE(t)− PL(t)]
refers to the current RE charging power or load discharging power; { PDG(t)− (1− Cbatt)
[ PL(t)− PRE(t)] } indicates the current generator charging power; and Pbatt is the battery-
rated capacity. If the renewable energy power (RE) is sufficient for the load (∆P ≤ 0)
and if the battery is fully charged (SOC ≥ SOCmax), then the battery stops charging. If
the renewable energy power ∆P is sufficient for the load (∆P ≤ 0) but the battery is not
fully charged (SOC < SOCmax), then the excess renewable energy charges the battery until
the battery is charged to the maximum (SOCmax). If the renewable energy power ∆P is
insufficient for the load (∆P > 0) and if the battery is charged (SOC > SOClow), then the
battery discharges to power the load until the battery becomes low (SOC ≤ SOClow); if the
battery energy is sufficient for the load, then the battery stops discharging. If the battery
energy is insufficient for the load or if the battery is low (SOC ≤ SOClow), then the diesel
generator starts to meet the remaining load demand (∆P′); the DG output power adjusts
to meet the remaining load demand until the diesel generator output power is sufficient
(Pdg ≥ ∆P′). The DG supplies the load demand and charges the battery until the battery is
fully charged (SOC ≥ SOCmax). Figure 8 shows the flowchart of the energy management
system considered in this study.
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For efficient and optimal power control, the fuzzy logic controller is designed to
schedule among the energy sources and establish the energy balance of both the supply
and the demand sides. The solar irradiation data, the wind data, the equipment sizing
obtained from the PSO optimization model (discussed in Section 2), and the load con-
sumption data are considered to analyze the performance and effectiveness of the fuzzy
logic controller. The fuzzy-logic-controlled energy management system (FLC-EMS) was
designed in MATLAB Simulink IDE, v.2022b. The hybrid renewable energy system was
first designed by using the optimal sizes of the equipment obtained from the optimal sizing
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model, the power demand, the solar irradiance, and the wind speed data of the community.
Figure 9 shows the interconnection between the designed HRES and the designed FLC
energy management system. The solar power, wind power, load power, and battery power
signals from the HRES are used as inputs into the FLC energy management system. This
study uses two FLC controllers, denoted as FLC1 and FLC2. Figure 10 shows the HRES
simulation diagram.
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The fuzzy logic controllers operate on the basis of the strategies discussed in Section 3.1.
Tables 2 and 3 show the control rules to be implemented by FLC1 and FLC2, respectively.

Table 2. Fuzzy logic rules for FLC1.

∆P(t)/SOC Multiplier (Cbatt)

ML L SL S SH H MH

NH MH MH MH MH MH MH ML

NS MH MH MH MH MH MH ML

NL MH MH MH MH MH MH ML

PL ML ML ML ML MH MH MH

PS ML ML ML ML MH MH MH

PH ML ML ML ML MH MH MH

Table 3. Fuzzy logic rules for FLC2.

∆P(t)′/SOC PDG(t)

ML L SL S SH H MH

NH VL VL VL VL VL VL VL

NL VL VL VL VL VL VL VL

NS VL VL VL VL VL VL VL

PL VL VL VL VL VL VL VL

PS S S S VL VL VL VL

PH H H MH MH VL VL VL

PMH VH VH VH MH VL VL VL

PVH VH VH VH MH VL VL VL

PMVH VH VH VH MH VL VL VL

These rules are based on the operator’s/expert’s knowledge. For membership func-
tions, “V” represents “very”, “L” represents “low”, “H” represents “high”, “S” represents
“standard”, “M” represents “much”, “P” represents “positive”, and “N” represents “neg-
ative”. Battery SOC, input 1 to FLC1, has a universe of discourse running from 0 to 1
and has seven variables. The differential power (∆P), input 2 to FLC1, has its universe of
discourse running from −80 to 60 kW and has six variables. The two inputs produce a total
of 42 fuzzy logic rules. The battery multiplier constant, Cbatt, which is the output of FLC1,
has its universe of discourse run from 0 to 1. The Cbatt membership function also has seven
variables. The membership function for each variable is plotted as shown in Figure 11.
Battery SOC (t-1), which is input 1 to FLC2, has its universe of discourse run from 0 to 1 and
has seven variables, and the excess power, ∆P, which is input 2 to FLC2, has its universe of
discourse run from −80 to 40 kW and has nine variables. The two variables give rise to a
total of 63 fuzzy logic rules. The diesel generator output power, PDG, which is the output
of FLC2, has its universe of discourse run from 0 to 50 kW and has eight variables. The
membership functions of the variables are plotted as shown in Figure 12.
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3.2. Formation of FLC1 Rules

The fuzzy logic rules for FLC1 are shown in Table 3. The power difference (∆P)
between the current power demand and the current renewable power is the first input into
FLC1, while the battery state of charge (SOC) is the second input. The controller uses the
value of ∆P and SOC at each time to determine whether to charge the battery or discharge
the battery. The correction power factor Cbatt is the output of FLC1 that determines how
much energy is used to charge the battery or is discharged from the battery. Figure 13
shows a three-dimensional view of the output of the FLC1 controller.
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3.3. Formation of FLC2 Rules

The fuzzy logic rules for FLC2 are shown in Table 4. FLC2 decides when to switch
on the diesel generator to power the excess load. The power gap (∆P′), which is the net
load minus the battery discharging power and the previous state of charge (SOC(t-1)), are
the inputs to FLC2. The controller uses values of (∆P′) and SOC (t-1) to decide whether
to start the DG. When the SOC is low and there is excess load, the controller starts the
DG. When the SOC is low and when there is excess RE, the controller will not start the
DG. When the SOC is high and when there is excess load, the controller will not start the
DG. The controller will start the DG when there is excess RE and when SOC is high. The
DG power (PDG), the FLC2 output, supplies the load, and the extra energy from the DG is
used to charge the battery. Figure 14 shows a three-dimensional view of the output of the
FLC2 controller.

Table 4. Investment cost analysis.

Equipment Initial Cost
(USD/kW)

Lifetime
(Years) Efficiency

PV (including PV cable and PV
mounting accessories) 704.63 24

Wind turbine and
wind-turbine-installation accessories 1619.74 24

Battery (including battery cable and
battery rack) 188.17 16 0.85

Diesel generator (DG accessories and ATS) 156.13 24,000 h

Inverter and accessories 645.69 24 0.92

PV controller (including accessories) 102.09 24 0.95
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Table 4. Cont.

Equipment Initial Cost
(USD/kW)

Lifetime
(Years) Efficiency

Wind turbine controller and accessories 102.09 24 0.95

Construction (including powerhouse,
fencing, and PV array foundation) 357.32

Development and installation 320.33

Distribution and metering 1063.70

Fuel costs USD 1.57 per liter

Interest rates 11.5

Project lifetime 24

Operation and maintenance costs 20% of the
initial cost
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4. Data and Case Study
4.1. Case Study

The case study is an isolated off-grid rural community called Olooji, in the Ijebu-East
Local Government Area of Ogun state, Nigeria. Olooji is an agrarian community located
on latitude 06◦53.329′ N and longitude 04◦27.342′ E. Olooji falls within the tropical rain
forest, which is typical of the regions in the southern part of Nigeria. It has two seasons:
the dry season (October–March) and the wet season (April–September). The number
of households in Olooji is about 600, with an average size of 11 people per household,
comprising mostly children and women. Olooji is estimated to have a population of up to
7000 people. The community is about 60 km and around two hours’ drive on an untarred
muddy road from the nearest national grid, in the Orita J4 Express community. Olooji
heads over 10 nearby villages and runs on a self-employed agrarian economy, where
mainly female merchants sell agricultural produce, food, and clothing in roadside shops.
Olooji is currently being electrified by a solar minigrid system constructed and operated by
ACOB Lighting Technology Limited, a private solar minigrid developer in Abuja, Nigeria.
Figure 15 shows a satellite view of the Olooji community.
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4.1.1. Load Profile

The hourly load demand of the Olooji community was collected for 24 h from the daily
records by the minigrid operator via their SMA platform. Figure 16 shows the typical daily
load profile of the Olooji community as obtained from the developer’s load monitoring
platform. From the daily load profile, the hourly average consumption in the community
was 23.3 kWh, and the annual energy consumption in the community was estimated to be
202 MWh.
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4.1.2. Solar Irradiance, Wind Speed, and Temperature Data

Olooji solar irradiation, wind speed, and temperature data for 1 year, running from
1 January 2016 to 31 December 2016 (Figures 17–19), were collected from the National
Aeronautic Space Agency (NASA) website [43].
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Figure 17. Olooji irradiation data for 1 year.
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Figure 18. Olooji temperature data for 1 year.
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Figure 19. Olooji wind speed data for 1 year.

4.2. Battery Life Cycle

The battery life cycle was determined by using the graph that shows the service life in
cycles versus the depth of discharge (DOD) in the data sheet from the Hoppecke battery’s
original equipment manufacturer (OEM), shown in Figure 20 [44]. Figure 21 represents
the cost of operation plotted under different state of charge (SOC) ranges [21]; the best
operating cost, when DG is used in HRES, is at the lower bound SOC of 55% and the
upper bound SOC of 75%. For this research, the lower bound SOC considered is 55%,
which corresponds to a DOD of 45%, and the upper bound SOC considered is 80%, which
corresponds to a DOD of 20%. The battery was assumed to run a daily cycle. This means
that the battery is being charged to the maximum SOC and fully discharged to the minimum
SOC every day (every 24 h).

Sustainability 2023, 15, x FOR PEER REVIEW 22 of 33 
 

Figure 19. Olooji wind speed data for 1 year. 

4.2. Battery Life Cycle 
The battery life cycle was determined by using the graph that shows the service life 

in cycles versus the depth of discharge (DOD) in the data sheet from the Hoppecke bat-
tery’s original equipment manufacturer (OEM), shown in Figure 20 [44]. Figure 21 repre-
sents the cost of operation plotted under different state of charge (SOC) ranges [21]; the 
best operating cost, when DG is used in HRES, is at the lower bound SOC of 55% and the 
upper bound SOC of 75%. For this research, the lower bound SOC considered is 55%, 
which corresponds to a DOD of 45%, and the upper bound SOC considered is 80%, which 
corresponds to a DOD of 20%. The battery was assumed to run a daily cycle. This means 
that the battery is being charged to the maximum SOC and fully discharged to the mini-
mum SOC every day (every 24 h). 

 
Figure 20. Number of cycles versus depth of discharge (adapted from [44]). 

s 

Figure 21. Cost of operation under different SOC ranges (adapted from [21]). 

4.3. Investment Cost Analysis 
The investment costs of the HRES components are given in Table 4. The values were 

derived primarily from the financial budget for implementing a solar minigrid site from 
ACOB Lighting Technology Limited, the minigrid operator. The costs of the equipment 
were collected from the original equipment manufacturers (OEMs) and by surfing the 
OEM websites. The initial costs are considered as follows: 

Figure 20. Number of cycles versus depth of discharge (adapted from [44]).



Sustainability 2023, 15, 3862 23 of 33

Sustainability 2023, 15, x FOR PEER REVIEW 22 of 33 
 

Figure 19. Olooji wind speed data for 1 year. 

4.2. Battery Life Cycle 
The battery life cycle was determined by using the graph that shows the service life 

in cycles versus the depth of discharge (DOD) in the data sheet from the Hoppecke bat-
tery’s original equipment manufacturer (OEM), shown in Figure 20 [44]. Figure 21 repre-
sents the cost of operation plotted under different state of charge (SOC) ranges [21]; the 
best operating cost, when DG is used in HRES, is at the lower bound SOC of 55% and the 
upper bound SOC of 75%. For this research, the lower bound SOC considered is 55%, 
which corresponds to a DOD of 45%, and the upper bound SOC considered is 80%, which 
corresponds to a DOD of 20%. The battery was assumed to run a daily cycle. This means 
that the battery is being charged to the maximum SOC and fully discharged to the mini-
mum SOC every day (every 24 h). 

 
Figure 20. Number of cycles versus depth of discharge (adapted from [44]). 

s 

Figure 21. Cost of operation under different SOC ranges (adapted from [21]). 

4.3. Investment Cost Analysis 
The investment costs of the HRES components are given in Table 4. The values were 

derived primarily from the financial budget for implementing a solar minigrid site from 
ACOB Lighting Technology Limited, the minigrid operator. The costs of the equipment 
were collected from the original equipment manufacturers (OEMs) and by surfing the 
OEM websites. The initial costs are considered as follows: 

Figure 21. Cost of operation under different SOC ranges (adapted from [21]).

4.3. Investment Cost Analysis

The investment costs of the HRES components are given in Table 4. The values were
derived primarily from the financial budget for implementing a solar minigrid site from
ACOB Lighting Technology Limited, the minigrid operator. The costs of the equipment
were collected from the original equipment manufacturers (OEMs) and by surfing the OEM
websites. The initial costs are considered as follows:

• PV panels and accessories, including the PV cable and mounting accessories.
• Battery and battery accessories, including battery cable and battery rack.
• Diesel generator (DG) and DG accessories.
• Inverter and inverter accessories.
• Distribution costs, including erecting the electric poles, aluminum conductor steel-

reinforced (ACSR) cable, recline cable, and stay wires.
• Metering, including the meter, protective circuit breaker (PCB), and data concentrator

unit (DCU) to monitor consumer consumption.
• Development and installation costs, including the cost of the land acquisition, cost

of land clearing and preparation, cost of feasibility studies, environmental impact
assessment (EIA) cost, technical design cost, Nigerian Electricity Management Service
Agency (NEMSA) permit cost, Nigeria Electricity Regulatory Commission (NERC)
license cost, Rural Electrification Agency (REA) license cost, and cost of acquiring the
land title/certificate of occupancy (C of O) by the state government.

• Wind turbines and accessories costs were collected from ATO, a manufacturer of
wind turbines.

• Fuel cost was estimated at USD 1.57/L, the equivalent of NGN 700/L, the prevailing
diesel price in Nigeria as of June 2022. The interest rate of 11.5% was Nigeria’s
prevailing interest rate as of June 2022.
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5. Results and Discussion
5.1. Size Optimization Results

The developed PSO codes were run for January (dry season) and August (rainy season),
representing the two seasons in Nigeria. The codes were run in the MATLAB environment
at several iterations to evaluate the LCOE while keeping the LPSP at a maximum of 0.2%.
Two scenarios were considered. In the first scenario, the boundary conditions used were
expanded to allow the algorithm to choose the equipment values without restrictions. In
the second scenario, the boundary conditions were restricted to limit the battery size to
those realistically and economically obtainable. The two scenarios are shown in Table 5.

Table 5. Basic assumptions used in two scenarios.

Equipment

1st Scenario 2nd Scenario

Minimum
Capacity

Maximum
Capacity

Minimum
Capacity

Maximum
Capacity

PV 0 kW 150 kW 0 kW 100 kW

Wind Turbine 0 kW 100 kW 0 kW 100 kW

Battery 0 kWh 2000 kWh 0 kWh 700 kWh

Generator 0 kW 100 kW 0 kW 100 kW

Table 6 shows the result of the developed PSO codes that were run for 100 iterations
of the two scenarios.

Table 6. Result of the PSO optimization algorithm.

Equipment Capacity 1st Scenario 2nd Scenario

PV 130 kW 100 kW

Wind Turbine 0 kW 0 kW

Battery 1370 kWh 700 kWh

Generator 0 kW 25 kW

LPSP 0.20% 0.05%

LCOE 0.48 USD/kWh 1.17 USD/kWh

The LCOE values for scenarios 1 and 2 were estimated at 0.48 USD/kWh (LPSP = 0.20%)
and 1.17 USD/kWh (LPSP = 0.05%), respectively. For the two scenarios, wind power was
not used. This could be explained by the fact that the wind speed in the case-study
community is deficient. Hence, using the wind turbine to meet the extra energy required
would be more expensive. The second scenario required a diesel generator that was not
needed in the first scenario. This raised the LCOE higher, by more than 150%, because of
the excessive cost of fuel required to run the diesel generator. In both scenarios, the LPSP
of 0.2% and 0.05% were within acceptable limits, ensuring adequate and reliable electricity
supply to the community.
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The effect of the two seasons (dry and wet seasons) in Nigeria can be compared
by using the combined graphs of the simulation output. Figure 22a shows the power
distribution of all energy sources using 1 week of data in January (dry season) in the first
scenario, while Figure 22b shows the power distribution of all energy sources using 1 week
of data in August (wet season) in the first scenario. Figure 23a shows the distribution of all
energy sources using 1 week of data in January (dry season) in the second scenario, while
Figure 23b shows the distribution of all energy sources using 1 week of data in August
(wet season) in the second scenario. Figure 24a,b shows the LCOE values for the first and
second scenarios, respectively.
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It can be seen from the power distribution of each month that the solar power gen-
eration during the wet season (August) was low compared with that of the dry season
(January). However, in the first scenario, a diesel generator was not used for both the dry
and the rainy seasons. In the second scenario, the diesel generator was used for the two
seasons and more hours during the wet season in August than during the dry season in
January. The diesel generator was used during most of the nights in August to compensate
for the deficiency in the renewable energy generated.

The monthly energy contributed by each energy source for the first scenario is shown
in Figure 25; solar energy is the only energy source available for scenario 1. The monthly
energy contributed by each energy source for the second scenario is shown in Figure 26.
For both scenarios, the seasonal effects can be seen in the amount of energy generated from
the PV. More solar energy was produced during the dry season (October–March), and less
diesel energy was used. On the other hand, less solar energy was produced during the
rainy season (April–September), and more diesel energy was used. For both scenarios, the
total annual energy generated equaled the total annual energy demanded plus the total
annual lost energy factored into the efficiency of the equipment.

Sustainability 2023, 15, x FOR PEER REVIEW 27 of 33 
 

It can be seen from the power distribution of each month that the solar power gener-
ation during the wet season (August) was low compared with that of the dry season (Jan-
uary). However, in the first scenario, a diesel generator was not used for both the dry and 
the rainy seasons. In the second scenario, the diesel generator was used for the two seasons 
and more hours during the wet season in August than during the dry season in January. 
The diesel generator was used during most of the nights in August to compensate for the 
deficiency in the renewable energy generated. 

The monthly energy contributed by each energy source for the first scenario is shown 
in Figure 25; solar energy is the only energy source available for scenario 1. The monthly 
energy contributed by each energy source for the second scenario is shown in Figure 26. 
For both scenarios, the seasonal effects can be seen in the amount of energy generated 
from the PV. More solar energy was produced during the dry season (October–March), 
and less diesel energy was used. On the other hand, less solar energy was produced dur-
ing the rainy season (April–September), and more diesel energy was used. For both sce-
narios, the total annual energy generated equaled the total annual energy demanded plus 
the total annual lost energy factored into the efficiency of the equipment. 

 
Figure 25. Monthly energy contribution by each source: first scenario. 

Figure 25. Monthly energy contribution by each source: first scenario.



Sustainability 2023, 15, 3862 28 of 33

Sustainability 2023, 15, x FOR PEER REVIEW 28 of 33 
 

 
Figure 26. Monthly energy contribution by each source: second scenario. 

5.2. Comparing This Paper’s LCOE Result with LCOE Values from Other Studies 
The LCOE result from this study was compared with LCOE results from other stud-

ies on HRES in other countries, as shown in Table 7. The system configuration of the com-
pared studies includes the solar PV, the wind turbine, the battery, and the diesel generator. 
Result from this study is within the range of results from other studies. However, variation 
in the cost of equipment, cost of operation, cost of transportation, road networks, security, 
government incentives, and regulation are among the factors responsible for the variation 
in the LCOE values among the different countries. 

Table 7. Comparing this paper’s LCOE to LCOE values of other studies. 

System  Country 
LCOE(USD/k

Wh) Ref. 

This study (PV/battery) Nigeria 0.48 This study 
This study (PV/battery/diesel) Nigeria 1.17 This study 

Hybrid wind/solar PV/diesel/battery,  India 0.76 [45] 
Solar PV/wind/diesel Indonesia 1.06 [46] 

PV/wind/battery/diesel Japan 0.88 [26] 
Typical off-grid microgrid in Pacific Is-

land: PV/diesel Pacific Island 1–1.7 [26] 

Solar PV/diesel/wind/battery South Africa 0.41 [47] 
Solar PV/diesel Ecuador 0.46 [48] 

5.3. Fuzzy Logic Controller Results 
The performance indicators for the fuzzy-logic-controlled EMS are the SOC of the 

battery and the energy balance of the HRES. By using the FLC-EMS, the SOC is expected 
to be kept within a certain range to ensure battery longevity. The energy balance of the 
HRES for each time unit measures the effectiveness of the EMS. The energy balance is the 
summation of all energy sources minus the load, and it is expected to be zero if the supply 
meets the demand at each time. Figure 27a,b show the combined diagrams of all energy 
sources, for January (a) and August (b), respectively. These figures show that the energy 

Figure 26. Monthly energy contribution by each source: second scenario.

5.2. Comparing This Paper’s LCOE Result with LCOE Values from Other Studies

The LCOE result from this study was compared with LCOE results from other studies
on HRES in other countries, as shown in Table 7. The system configuration of the compared
studies includes the solar PV, the wind turbine, the battery, and the diesel generator. Result
from this study is within the range of results from other studies. However, variation in
the cost of equipment, cost of operation, cost of transportation, road networks, security,
government incentives, and regulation are among the factors responsible for the variation
in the LCOE values among the different countries.

Table 7. Comparing this paper’s LCOE to LCOE values of other studies.

System Country LCOE
(USD/kWh) Ref.

This study (PV/battery) Nigeria 0.48 This study

This study (PV/battery/diesel) Nigeria 1.17 This study

Hybrid wind/solar PV/diesel/battery, India 0.76 [45]

Solar PV/wind/diesel Indonesia 1.06 [46]

PV/wind/battery/diesel Japan 0.88 [26]

Typical off-grid microgrid in Pacific
Island: PV/diesel Pacific Island 1–1.7 [26]

Solar PV/diesel/wind/battery South Africa 0.41 [47]

Solar PV/diesel Ecuador 0.46 [48]

5.3. Fuzzy Logic Controller Results

The performance indicators for the fuzzy-logic-controlled EMS are the SOC of the
battery and the energy balance of the HRES. By using the FLC-EMS, the SOC is expected
to be kept within a certain range to ensure battery longevity. The energy balance of the
HRES for each time unit measures the effectiveness of the EMS. The energy balance is the
summation of all energy sources minus the load, and it is expected to be zero if the supply
meets the demand at each time. Figure 27a,b show the combined diagrams of all energy
sources, for January (a) and August (b), respectively. These figures show that the energy
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balance (blue line) is equal to zero for each hour, indicating that the fuzzy logic controller
effectively ensures energy balance.
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Figure 27. Power distribution of all energy sources for 1 week in the second scenario: (a) January and
(b) August.

Figure 27a shows the combined diagram of all energy sources and the demand for the
dry season (January), while Figure 27b is the combined diagram of all energy sources for
the wet season (August). The FLC-EMS enabled the HRES to reliably and satisfy operate
the load at each hour of operation. It can be seen that when solar energy was available, it
was used to meet the load demand, and excess solar energy was used to charge the battery.
When there was no more solar energy, the energy on the battery was discharged to meet
the load demand. When the energy on the battery depleted to its minimum state of charge,
the diesel generator was switched on to meet the load demand. The diesel generator was
immediately switched off; there was energy from the PV the following day.
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Furthermore, by comparing the two seasons, it can be seen that more solar energy was
generated during the dry season than during the wet season, and by the same comparison,
more DG energy was used during the wet and dry seasons. In either case, there was no
output power from the wind turbine, because the wind turbine was not considered in
this FLC-EMS, because the wind turbine sizing from the PSO algorithm was zero. The
generator sizing used in the FLC (35 kW) was higher than the sizing from the PSO (25 kW).
This was to provide operating tolerance and stability for the DG. The extra energy from the
DG was being used to charge the battery. Additionally, by comparing the graph of the PSO
and the FLC, it can be seen that there is a faster response during the energy transition in
the case of the FLC than in the case of the PSO. This faster transition offers stability and
prevents disruptions during HRES operations. Therefore, FLC-EMS offers stability and the
optimal utilization of the energy resources during HRES operation; it offers reliable energy
irrespective of the weather conditions and load fluctuations. The EMS was able to provide
energy to the load both in the dry season and in the rainy season. Figure 28a,b show that
the FLC-EMS could keep the battery SOC within the desired range of 55% to 80%.
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6. Conclusions

This research studied the technoeconomic analysis of providing a hybrid renewable
energy system to an off-grid rural community in Nigeria. The investigated HRES includes
the PV, wind turbine, battery, and diesel generator, which are used to meet the load demand
of an off-grid rural community. The optimal sizing of the HRES equipment was found by
using a least-cost perspective approach, which is necessary to ensure the minimum cost
of implementation and make the electricity affordable to consumers. This research also
developed a fuzzy-logic-controlled energy management system that ensures the optimal
operation and reliability of an HRES.

Two scenarios were considered for optimal sizing while using the proposed HRES.
In the first scenario, the LCOE for electrifying the off-grid rural community was found
to be 0.48 USD/kWh, with the HRES components estimated as 130 kW for PV, 0 kW for
wind turbine, 1370 kWh for battery, and 0 kW for DG. However, because of the high capital
associated with using the maximum battery capacity, a second scenario, where half of the
maximum capacity would be used, was considered. In this latter scenario, the LCOE for
electrifying the off-grid rural community by using a hybrid renewable energy system was
found to be 1.17 USD/kWh, with the HRES components estimated as 100 kW for PV, 0 kW
for wind turbine, 700 kWh for battery, and 25 kW for DG. The results revealed that wind
energy could not be considered as an energy source in the two scenarios, because of the
low wind speed in the region. Furthermore, the effect of the different seasons was observed
on the PV power output. More PV power can be generated in the dry season compared to
the wet season. Consequently, more renewable energy was used to meet the demand in the
dry season, and more DG power was used to meet the load demand in the wet season.
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The FLC-EMS comprised two FLCs, denoted as FLC1 and FLC2. FLC1 manages the
battery charging and discharging, while FLC2 manages the DG operation. The FLC-EMS
rules were designed on the basis of expert knowledge and were used to schedule the
energy sources in order to meet the load demand while prioritizing renewable energy. The
controller could switch at any time of operation, as required, to ensure an energy balance
between the energy supply sources and the energy demand of the community. For this
study, the membership functions of the variables and the FLC rules were constructed on
the basis of the operators’ knowledge; however, in future work, the parameters of the
membership functions can be tuned using PSO or any other optimization algorithm, and
the fuzzy rules can be chosen on the basis of the optimization algorithm.

The results from this study can be used as a general overview and a quick feasibility
study to determine the technical and economic implications of implementing and operating
an HRES in an off-grid rural community in Nigeria.
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