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Abstract: Energy harvesting is a green technology that authorizes small electronic devices to be
supplied for perpetual operation. It enables wireless sensors to be integrated in applications that
previously were not feasible with conventional battery-powered designs. Intermittent computing
and scheduling are the two central aspects of designing a Real-Time Energy Harvesting (RTEH)
sensor, generally used to monitor a mission critical process. Traditional scheduling algorithms
fail to timely execute the hard deadline tasks because they accommodate no fluctuations in power
supply and therefore no intermittent computing. A suitable energy-harvesting-aware scheduling
algorithm has been proposed so as to achieve a higher schedulability rate. Unlike the classical EDF
(Earliest Deadline First) scheduler, the ED-H algorithm is idling and clairvoyant, with an improved
performance in terms of the deadline missing ratio. This paper reviews the main advances in dynamic
priority scheduling based on EDF for energy-neutral systems.

Keywords: sustainable sensor; real-time computing; energy harvesting; energy neutrality;
preemptive scheduling; earliest deadline first

1. Introduction

The new generation of low-power sensor nodes allows local, remote and autonomous
control of a very large range of mission critical products. Their use in Cyber–Physical
Systems (CPS) tends to spread quickly in automotive systems, appliances, military and
security systems, etc. [1,2]. Wireless sensors constitute the key parts for a vast range of
computing and communication infrastructures in global markets [3–6]. Energy harvesting
(EH) is a technology that enables a small standalone sensor to function perpetually (more
specifically, the lifespan in the order of one or several decades) and continuously, without
needing a power-line connection or battery replacement. For this reason, EH technology has
become quite popular. Thanks to the developments in ultra-low-power semiconductors, EH
will facilitate exciting classes of new embedded system applications [7–10]. It is expected
to become more prevalent in the near future thanks to the numerous benefits it provides to
the embedded system designs. Nonetheless, a complete EH-powered sensor system uses
a lot of various components (see [11] for a review). Figure 1 depicts the framework of an
energy-harvesting system as the power-source element of a typical low-power sensor.

Different types of energy can be captured from the environment. Outdoor light and
indoor light are the most famous ones [12]. This energy can be converted into electricity
through photoelectric cells. Some objects may produce mechanical energy. When they
vibrate or move, they can produce electricity since vibrations generate considerable voltage
when applied to a piezoelectric material [13–16]. Thermoelectric energy is also a source
of possible energy for sensor nodes [17–19]. Importantly, ambient energy most often is
unstable and intermittent [20]. Energy-harvesting products have to operate continuously.
Consequently, they must incorporate a rechargeable energy storage device and power-
control circuitry [21,22]. When designing and developing standalone sensor systems,
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engineers have to address a lot of design issues relative to the performance characteristics
of the sensor, the capacity of the energy storage unit, the processing performance of the
microcontroller, etc.

Figure 1. A typical real-time energy-harvesting sensor node.

The implementation of energy-harvesting systems is rapidly changing as better power
management chips are introduced and harvesters are improved [23,24]. Electronic engineers
gain application experience with EH technology. Choosing the right microcontroller is a
central step for a very low power embedded device.

A good microcontroller will have several power-down modes so as to minimize power
consumption. It will perform fast processing so as to satisfy the timing requirements of
the real-time programs, and the extremely fast wake-up times from power-down modes.
Electronic circuits must spend as much time as possible in a low power state before
switching to the active operating mode [25].

When the engineer incorporates EH technology into a sensor, he has to consider a
power-management function so as to handle fluctuations in the power generated by the
harvester [26,27]. In most energy-harvesting devices, an energy-storage device serves as
a buffer energy unit also called a reservoir between the load (i.e., the different software
tasks in execution on the microcontroller) and the energy harvester (i.e., a solar panel,
for example). The battery or supercapacitor provides power to the electronics when the
harvester cannot produce power or when the computing device requires more current than
the harvester can provide.

These specific characteristics of sensor-based systems impose additional challenges
on Operating Systems (OS) because their role and requirements deviate from a traditional
OS design [28]. The role of the OS is primarily to act as a resource manager. Typically,
resources include the processing unit and other hardware such as memories, timers, etc.
The OS has to provide allocation of these resources, taking into account the constraints and
performance criteria. In a real-time system, the application tasks invoke the different OS
services through system calls. The tasks’ access the resources according to their priority,
which generally reflects an urgency and/or criticality. Scheduling determines the order in
which tasks are executed on the processing unit [29,30]. In traditional real-time computer
systems, the goal of a scheduler is to ensure feasibility, i.e., to optimize the ratio of deadline
missing. In all RTOSes (Real Time Operating Systems), the scheduler can accommodate the
timing requirements by assigning fixed or dynamic priority to each task, by authorizing pre-
emptions. In most cases, sensor-based systems are utilized to continuously monitor/control
a given phenomenon and to process data measurements such as temperature, pressure, etc.,
at a regular time interval. As a consequence, the applicative software is mainly composed



Sustainability 2023, 15, 3972 3 of 18

of hard deadline constrained tasks which execute repetitively with fixed periods. Addi-
tionally, a real-time system may have aperiodic tasks with random arrival times and no
deadline. Thus, in the so-called HRT (Hard Real-Time) applications such as medical critical
care, the RTOS has to guarantee that all hard deadlines are met and to provide minimal
responsiveness to the aperiodic tasks, executing them as soon as possible [31]. In contrast, a
SRT (Soft Real-Time) application, such as animal tracking, tolerates deadline missing from
the operating system [32].

Today’s classical real-time schedulers, including RM (Rate Monotonic) and EDF (Ear-
liest Deadline First) [33], fail in energy-harvesting systems where the supply energy is
intermittent. Energy and time should be treated as equally important resources. A number
of problems such as intermittent computing, dynamic power management and energy
aware real-time scheduling are not addressed in the design of a classical battery-powered
sensor [34–38]. In particular, we have now to characterize the tasks by both processing
time and energy consumption. Moreover, we have to achieve the online monitoring of
available energy in the storage unit as well as the online prediction of environmental energy
produced in the near future.

Consequently, the selection of an appropriate scheduling algorithm becomes necessary
so as to guarantee energy neutrality of the RTEH sensors by considering both time and
energy in the on-line decisions of the scheduler. The RTOS installed in any energy-neutral
device has to treat energy as a central constraint, identically to timeliness. Energy may be
more important than timeliness in some time intervals where not enough energy can be
harvested so as to execute all the deadline constrained tasks in a timely manner. In order to
deal with such a faulty situation, the scheduler should deliberately switch the processing
unit to the sleep mode and postpone the execution of the currently active task, thus avoiding
energy starvation for a future occurring task with high criticality. This is what is known
as intermittent computing. A new energy aware real-time scheduling framework called
ED-H, described in [39], combines the conventional dynamic priority-based algorithm EDF
with intermittent computing facilities.

This paper introduces the scheduling issue in energy-neutral sensors and gives a short
survey of the fundamental results about EDF-based scheduling for energy-neutral sensors.

The remainder of this paper is structured as follows: The subsequent section details
relevant works performed on scheduling algorithms for real-time energy-neutral devices.
Assumptions of the system model are presented in Section 3. In Section 4, we discuss the
challenges for an optimal scheduling algorithm. This section also shows that the famous
EDF scheduler has interesting properties that make it a good candidate for scheduling
tasks when the ambient harvested energy is not predictable. A description of the optimal
scheduler ED-H is given in Section 5. The schedulability analysis is reported in Section 6.
Section 7 addresses the problem of aperiodic task servicing and describes an optimal
slack stealing server for energy-neutral systems. Section 8 is about the considerations for
implementing energy-neutral systems within the Operating System. Finally, Section 9
concludes the paper.

2. Related Works

Scheduling periodic tasks is a central issue in real-time embedded systems. Real-time
scheduling typically focuses on models where the tasks have to be completed before a
deadline and have processing requirements only. The work of Liu and Layland reported
in [33] five decades ago deals with fixed-priority and dynamic-priority task scheduling.
There, all the tasks execute cyclically and do not synchronize. A lot of works have con-
sidered this model, where there is no limitation on energy availability. Surveys can be
found in [40,41]. Another important issue concerns real-time systems that consist of both
aperiodic and periodic tasks. Aperiodic tasks have irregular arrival times and no deadline.
The objective of the aperiodic task server is to minimize the response times for aperiodic
tasks and guarantee hard deadlines for periodic tasks. Different approaches were proposed,
including the Polling server, Deferrable server [42], Constant Bandwidth server (CBS),
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Total Bandwidth server (TBS) [43], and Slack Stealing server, also known as EDL (Earliest
Deadline as Late) [44,45].

The scheduling issue in energy-neutral devices has been explored from the beginning
of the 2000s. The work of Allavena and Mossé, reported in [46], addresses frame-based tasks
with voltage and frequency scaling capabilities. An optimal scheduler is presented, under
the assumption that the energy storage unit replenishes with a constant power rate. Another
work considers tasks with different software versions in [47]. An optimal EDF-based
algorithm known as Lazy Scheduling Algorithm (LSA) is proposed by Moser et al. [48].
The harvested power is modeled as a time varying variable and all tasks consume energy
with the same rate. LSA is extended by Liu et al. to apply to DVFS processors [49,50]. The
so-called EA-DVFS and HA-DVFS algorithms take advantage of the slack time to slow
down the processor and consequently to save energy. They speed up the task execution
in case of the overflowing harvested energy. In [51], Abdeddaim et al. propose a fixed-
priority scheduling algorithm, called PFPASAP. Periodic tasks consume energy linearly
and the environmental source delivers constant power. A schedulability condition is given
for PFPASAP.

Very recently, some works concentrate on semi-HRT applications that accept missed
deadlines because of energy starvation. In [52], the incoming source energy is assumed to
be predicted with accuracy. The objective of the best effort scheduler is to maximize the
performance. The problem of the resilient scheduling against the energy-harvesting rate
prediction error is studied in [53]. An energy-resilient scheduler is proposed for periodic
tasks with multiple performance levels. In this work, the actual harvesting rate in each
hyperperiod (equal to the least common multiple of the task periods) is considered as a
constant value. The proposed scheduler allows one to react to unpredicted changes called
surprises when the actual amount of harvested energy is different from the prediction.
Simulations show that the scheduler outperforms other ones since it recovers from changes
in a timely manner, adequately controls the performance degradation, and consequently
makes the system survivable.

3. The System Model
3.1. Assumptions about the Computing Load

We consider an energy autonomous system as depicted on Figure 2. Applications
executed on wireless sensors have real-time constraints. Every application can be character-
ized by a generic set of periodic tasks, say τ, which has n deadline-constrained tasks. The
tasks are independent, i.e., they do not synchronize. The tuple (Ci, Di, Ti, Ei) defines task τi
with Ci, its worst-case computation requirement, Di, its relative deadline, Ti, its repetition
period, and Ei, its worst-case energy requirement. The values Ci and Ei can be derived from
a static program analysis. The common assumption is that 0 < Ci ≤ Di ≤ Ti. τi generates
an infinite number of instances called jobs. The ratio of the processing time spent in execut-
ing τ provides the so-called processor utilization factor, i.e., Upp = ∑τiετ

Ci
Ti

. The average

power consumed by τ is called the energy utilization factor and is given by Uep = ∑τiετ
Ei
Ti

.
The processing unit, generally a microcontroller, has one operating frequency. Its energy
consumption comes from the dynamic switching activity of the circuits. The overhead due
to switching the processor from one job to another is assumed to be negligible.

3.2. Assumptions about Energy Production

This paper focuses on an energy-neutral system, which draws energy from environ-
mental sources such as sunlight, vibrations, movement, etc. The system uses an energy
harvester that generates electric power, which may be modeled with the function Pp(t). The
instantaneous charging rate Pp(t) incorporates all losses due to friction, heat, air damping,
etc. It follows that the amount of harvested energy during the time interval [t1, t2) is given
by the following formula: Ep(t1, t2) =

∫ t2
t1

Pp(t)dt.
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Figure 2. The energy model of the considered autonomous system.

3.3. Assumptions about Energy Storage

A battery and/or a capacitor are generally used to buffer the harvested energy. The
storage unit then permits one to guarantee the operation of the wireless device for a
certain period of time when the environment does not produce energy. The model assumes
that energy consumption may overlap with energy production and power produced at
any time instant never exceeds power consumed at the same time. Consequently, the
residual capacity of the energy storage decreases every time some task executes on the
computing unit.

The model considers an ideal energy storage with no leakage, which may be operating
even in the absence of energy to harvest, provided the storage is not completely depleted.
The capacity of the energy storage is denoted by C, which gives the highest amount of
energy that can be stored at any instant. The quantity of energy stored at a given time t is
denoted by E(t). The energy storage unit stops drawing power from the harvester when
fully charged.

4. Challenges for Optimal Scheduling
4.1. Necessary Terminology

Below, we first provide some background on the terminology around energy neutral systems.

• Optimality: a scheduling algorithm is said to be optimal whenever each time a task set
can be scheduled to meet its timing requirements on a given hardware platform; the
same task set is feasibly scheduled by the optimal algorithm on the same hardware
platform. Let us note that the energy harvester, the energy storage unit, and the
computing unit characterize any platform.

• Clairvoyance: A clairvoyant scheduling algorithm has a precise knowledge of future
arriving jobs and future energy produced by the source.

• Lookahead-ld: a scheduling algorithm is said to be a lookahead-ld if it needs to foresee
on a time interval with a length equal to ld time units.

• Idling: an idling scheduling algorithm may keep the processor in the sleep mode
even if there are one or more jobs ready for execution. In contrast, a non-idling or
work-conserving algorithm such as the classical EDF and RM schedulers executes tasks
as soon as possible, never inserting idle times in the schedule.

We now detail and explain important research results.

4.2. No Optimality without Clairvoyance

The following theorem says that any optimal energy aware scheduler requires clair-
voyance on the future so as to anticipate energy starvation. Finding a valid schedule
with no deadline missing whenever one exists cannot be possible by a totally on-line
scheduling algorithm.
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Theorem 1. No optimal non-clairvoyant algorithm exists for scheduling tasks on a single process-
ing self-powered sensor [54].

Theorem 2 states that any faulty situation such as the energy depletion conducted for
the missing deadline has to be anticipated early enough by the scheduling algorithm to
make the right decision. More precisely, a lower bound on the clairvoyance interval is given
by the longest relative deadline of the application. As a consequence, the longest deadline
appears as a central parameter: the longer the relative task deadline is, the more long
should be the time interval for predicting the harvested energy. If the value of the deadline
is revealed to be much greater than the capability of the energy predictor, a sub-optimal
schedule will be constructed. When designing a self-powered sensor, the central challenge
consists in addressing the prediction issue of the future harvested energy. When there is
no possibility to predict the incoming energy even in the short term, only a sub-optimal
solution may be obtained using a simple non-clairvoyant online scheduler such as EDF.

Theorem 2. Let D be the longest relative task deadline of the application. A lookahead-ld scheduling
algorithm may be optimal only if ld ≥ D [54].

4.3. Scheduling with EDF for Unpredictable Systems

The well known Earliest Deadline First (EDF) scheduler is optimal [33] whenever
the energy of the tasks can be consumed greedily. The optimality signifies that EDF can
successfully schedule any set of periodic tasks with deadlines if at least one valid schedule
exists for the task set.

EDF makes processing decisions without any knowledge on, first, the arrival pattern
of future tasks and second, the amount of harvested energy in the short-term future. From
the previous theorems, EDF may only provide a sub-optimal solution to the scheduling
issue under the energy-harvesting settings.

Nonetheless, in some applications, the energy source may be both uncontrollable and
unstable. Recall that the optimal scheduler needs to adapt the activity of the processor in
its dependence on energy availability, then define the so-called intermittent computing.
Some tasks have to be postponed if the available energy in the storage unit is not sufficient
to execute them completely or if executing them immediately will provoke energy star-
vation in the future. The optimal scheduler does not execute the tasks in ASAP (As Soon
As Possible) mode. Intermittent computing is achieved through a smart dynamic power
management strategy that decides when and for how long the processor should stay idle.
This assumes that the system has all the necessary hardware and software for precisely de-
termining how much energy is left in the energy reservoir (e.g., battery or supercapacitors)
and for predicting the future incoming energy. Consequently, there is no chance to build an
optimal schedule when the incoming energy is stochastic and uncontrollable. Furthermore,
it appears of primary importance to assess the performance of the basic EDF strategy when
no prediction mechanism is made possible. Theorem 3 then states that the classical EDF
strategy remains the best scheduler.

Theorem 3. EDF is the best non-idling strategy for scheduling tasks on a single processing self-
powered sensor [55].

The analysis of EDF relating to its competitive ratio (definition of competitive ratio
is given in [56]) establishes a performance bound of EDF for the worst-case scenario in
comparison to any optimal clairvoyant algorithm. Then, Theorem 4 enables us to state that
unfortunately, EDF is non competitive. In other terms, it has a competitive factor equal to 0.

Theorem 4. EDF is non competitive for scheduling tasks on a single processing self-powered
sensor [55].
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As a consequence of Theorem 4, EDF may behave very poorly even if proved to be
the best non-idling scheduler (see Figure 3). Nonetheless, let us note that a non-idling
scheduling presents the following important features: easy implementation and low run-
time overhead of the scheduler.

Figure 3. The EDF scheduler under energy-harvesting constraints; energy depletion at t = 2 leading
to deadline violation at t = 3.

5. Optimal Scheduling under Energy-Harvesting Settings

In this section, we assume that the ambient energy may be accurately predicted in the
near future, generating a negligible loss time and energy cost. We next demonstrate that
taking advantage of lookahead permits to make EDF an energy-harvesting-aware scheduler
of the system has intermittent computing facilities.

5.1. Principles of the ED-H Scheduler

The ED-H scheduling algorithm must choose between stopping the processor or
selecting the task with the highest priority to execute. Starting the execution of a task as
soon as possible will maximize the chance of a timely execution at or before the deadline [44].
However, the execution of a task should not compromise the timely execution of any other
task that will arrive in the future. As a consequence, any decision should be based on the
precise knowledge of both the profile of the future incoming energy, the current amount
of energy available in the storage unit, and the amount of energy required by very urgent
tasks that will occur in the future.

ED-H bases its scheduling decisions on the relative urgency of the ready tasks at any
current time. The next task to be run has the closest deadline. In contrast, ED-H [39]
has a work-conservative behavior, i.e., it may decide to put the processor in sleep mode
deliberately even if some tasks are waiting for execution. ED-H authorizes immediate
execution of a task only if this decision guarantees that no energy starvation will occur
in the furure. Let us define the preemption slack energy at current time tc as the largest
amount of energy that could be consumed continuously from tc by the currently active
task, preventing energy starvation. In other terms, ED-H imposes processor idleness if the
preemption slack energy is zero. In summary, ED-H forces the processor to be busy in one
of the two situations: either the level in the energy storage unit has fallen below a threshold
or the preemption slack energy has reached zero. In contrast, ED-H forces the processor to
be idle in the two situations: either the energy storage unit is fully charged and no energy
could be wasted, or executing no task would lead at least one task to miss its deadline,
i.e., the processor has no slack time. In the situation where the storage unit is neither fully
charged nor completely discharged and the system has both slack time and slack energy,
the user can decide to make the processor either active or passive.

The rule that specifies when to start and when to stop recharging the energy storage
unit will determine a particular version of the ED-H scheduler. One of these versions,
called ASAP-ALAP, consists of finishing the recharging phase only when the storage
unit is fully charged and finishing the discharging phase when the energy storage unit
is completely exhausted. Under such a version of ED-H, the electronic circuits spend
a maximum continuous time in a low-power mode. Energy overheads as well as time
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overheads issued from switching between the different power modes are thus minimized.
Figure 4 depicts the functioning of the ED-H scheduler.

Figure 4. Illustration of the ED-H scheduler.

5.2. Implementation Considerations

Let us denote by Lr(tc) the ordered set of tasks which are ready at the current time tc.
The ED-H algorithm uses the following rules:

• Rule 1: The EDF-based priority assignment rule selects the future active job from Lr(tc).
• Rule 2: If Lr(tc) = ∅, the processor is put in the idle mode on [tc, tc + 1).
• Rule 3: If Lr(tc) 6= ∅ and either E(tc) ≈ 0 or PSET (tc) ≈ 0, the processor is put in the

idle mode on [tc, tc + 1).
• Rule 4: If Lr(tc) 6= ∅ and either E(tc) ≈ C or STT (tc) = 0, the processor is put in the

busy mode on [tc, tc + 1).
• Rule 5: If Lr(tc) 6= ∅, 0 < E(tc) < C, STT (tc) > 0 and PSET (tc) > 0, the processor

can be put either in the idle mode or in the busy mode.

5.3. Performance Analysis

Theorem 5 says that if a set of deadline constrained tasks is schedulable by any
algorithm on a platform composed of a given processor, energy harvester, and energy
reservoir, then it will be schedulable on the same platform using the ED-H algorithm.

Theorem 5. The ED-H algorithm is optimal for scheduling tasks on a single processing self-powered
sensor [39].

Theorem 6 says that any set of the deadline-constrained tasks, which are schedulable
by ED-H using a given energy harvester, will still be schedulable using a more powerful
harvester. Consequently, we may perform the feasibility analysis under a worst-case
scenario in which the energy harvester delivers a constant power even if it is lower than
the actual one. The challenge lies in the determination of an accurate and constant lower
bound on the environmental power. The finer the approximation of the source power, the
more exact is the schedulability test.

Theorem 6. The ED-H algorithm is robust with respect to source power [57].

Power harvested from the environmental source may exhibit stochastic fluctuations
at runtime. Some energy sources make it impossible to compute an acceptable lower
bound, off-line. In that situation, only an online admission test will be achieved so as to
repetitively test the schedulability based on the approximate and constant harvested power
computed over time by the energy predictor, thus reducing both the run-time overhead
and memory utilization.

6. Schedulability Testing

The schedulability analysis is the central part of the real-time scheduling issue. In
systems with no energy limitation, the processor demand approach permits one to detect the
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processing overload. More precisely, the technique consists of verifying that the duration of
each time interval always exceeds the amount of processing time required in that interval.
The idea for analyzing the schedulability with ED-H is to follow a similar approach in the
energy domain. In other terms, we have to verify that in any time interval, the available
energy exceeds the amount of energy required by the tasks for their timely execution.

Consider the feasibility problem for a periodic task set that have to execute in a timely
manner on a self-powered sensor. Since ED-H is optimal, this scheduling algorithm can be
applied to provide a necessary and sufficient feasibility test. As any set of periodic tasks
produces exactly one collection of jobs, the feasibility problem concerns the verification that
this collection of jobs is scheduled in a feasible way to meet all the deadlines under ED-H.

6.1. Schedulability Testing of a Generic Job Set

Here, the feasibility decision problem is addressed for a generic set of jobs
J = {J1, J2, . . ., Jn}, issued or not from periodic tasks [39]. The job Ji is completely specified
by the four-tuple (ri, Ci, Ei, di). It respectively provides the date of arrival, called the release
time, worst case execution time (expressed in time units and normalized to the processing
capacity), worst case energy consumption (expressed in energy units), and deadline of Ji.

The factors which limit schedulability may be the processing time or/and energy. As a
consequence, and additionally to analyze the processor demand as in a real-time scheduling
theory under no energy limitations, the energy demand analysis has to be considered. This
leads us to define two situations, which are called time starvation and energy starvation:

• Time starvation: situation when the amount of processing time required by a job until
the deadline is not sufficient, while enough energy is available when the deadline
missing occurs.

• Energy starvation: situation when the amount of processing time required by a job until
the deadline is sufficient but the energy is exhausted when the deadline missing occurs.

Time schedulability testing aims to check the absence of the time starvation, while the
energy schedulability testing checks the absence of energy starvation in any time interval.

Let us introduce the static slack time of the job set J. The processor demand of the
job set J on the time interval [t1, t2) is given by h(t1, t2) = ∑t1≤rk ,dk≤t2

Ck. We define the
static slack time of J on [t1, t2) as SSTτ(t1, t2) = t2 − t1 − h(t1, t2). SSTJ(t1, t2) represents
the longest time that could be made available within [t1, t2) after having executed all the
jobs of J with a release time at or after t1 and a deadline at or before t2. Finally, the static
slack time of J is given by

SSTJ = min
0≤t1<t2≤dMax

SSTJ(t1, t2). (1)

In the same manner, we may introduce the static slack energy of the job set J. The
energy demand of J on the time interval [t1, t2) is obtained by g(t1, t2) = ∑t1≤rk ,dk≤t2

Ek.
Let Ep(t1, t2) be the amount of energy which is produced by the source between t1 and
t2. The static slack energy of J on the time interval [t1, t2) is given by SSEJ(t1, t2) =
C + Ep(t1, t2)− g(t1, t2). SSEJ(t1, t2) represents the largest quantity of energy that could
be made available within [t1, t2) after having executed all the jobs of J with a release time
at or after t1 and a deadline at or before t2. Finally, the static slack energy of J is given by

SSEJ = min
0≤t1<t2≤dMax

SSEJ(t1, t2) (2)

Intuitively, the static slack time is a lower bound on the acceptable processing surplus
at any instant. The static slack energy of J gives a lower bound on additional energy, which
could be consumed at any instant. The following theorem stated in [39] can be derived:

Theorem 7. J is schedulable by ED-H if and only if

SSTJ ≥ 0 and SSEJ ≥ 0 (3)
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Theorem 7 says that Equation (3) guarantees that both energy and real-time require-
ments can be satisfied for the job set J. If at least one energy- and time-feasible schedule
exists for J, the optimal ED-H scheduler will build it. Note that the analysis presented in
Theorem 7 adapts to any time varying operational condition.

6.2. Schedulability Testing of a Periodic Task Set

Many embedded system applications including self-powered sensor nodes in the IoT
have different types of real-time constraints. Nonetheless, most of them implement hard
periodic tasks dedicated to the controlling functions which execute cyclically and have
critical deadlines. If one deadline is missed, this may have serious repercussions, notably
in healthcare applications. On the other hand, soft real time tasks do not have critical
deadlines and the main focus is to minimize their response time, i.e., the time between
the task arrival and task completion (see Section 7). We are consequently interested in the
schedulability check of a set of periodic tasks.

Theorem 8. If a periodic task set τ is schedulable by the ED-H scheduler in the synchronous
scenario, τ is also schedulable in any asynchronous scenario [57].

The initial release times of the periodic tasks cannot necessarily be known in advance.
Theorem 8 says that the worst-case is attained in the synchronous arrival sequence, i.e.,
when all the tasks release jobs at time 0 as in the classical hypothesis with no energy
limitation. As a consequence, a sufficient feasibility condition for any periodic task set,
synchronous or not, is equivalent to consider the worst-case synchronous scenario.

The question which results from Theorem 8 is how to verify whether a synchronous
periodic task set can be feasibly scheduled under energy harvesting settings. The hyperperiod
Hτ = LCM{T1, T2, . . ., Tn} is an obvious time-bound for the testing schedulability with
EDF when the energy is not limited. As proved in the following theorem, this time-bound
still exists with ED-H under energy-harvesting considerations when the source power is
constant over time.

Theorem 9. Assume a constant source power. Any synchronous periodic task set τ is schedulable
by ED-H if and only if ED-H produces a valid schedule in the time interval [O, Hτ) [57].

Thanks to Theorem 9 and the robustness properties of the ED-H scheduler, the testing
feasibility of a periodic task set can now be reduced to check that there is no energy shortage
and no deadline missing in only one hyperperiod.

In many applications, the harvested power can be assumed as a constant on long time
intervals, regarding periods of the tasks. For example, solar-powered sensors experience
important changes over time in the power harvested because of the diurnal cycle in the
sunlight, varying conditions of the weather, and seasonal patterns. However, these changes
will not occur every second, whereas the period of a controlling task is in the order of a
fraction of a second. Energy prediction models have been developed in order to estimate the
expected energy intake in the near future [58–60]. Thus, we may apply an energy prediction
technique so as to determine the constant harvested power for the next time interval with
a duration in the order of multiple task hyperperiods. Let us provide the example of
energy harvesting from the human body, which generates a constant power by using
thermoelectric generators. Such wearable devices allow one to exploit the temperature
differences between the environment and surface of the human body.

One other schedulability approach is based on the robustness properties of the system
to implement off-line testing. The robustness refers to the capability of the system to
guarantee a stable behavior when positive changes occur on the parameters (e.g., higher
harvested power than expected, lower energy consumption than expected, etc.). Feasibility
checking can be achieved off-line when the energy profile is precisely characterized for
the application lifespan. If we consider the particular case of a constant power source,
the schedulability problem is reduced to testing a simple sufficient condition. Even if
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it is based on pessimistic assumptions, especially regarding the energy production, the
feasibility is guaranteed for the entire lifetime of the application, which is suitable for hard
real-time systems. Such an approach also has a practical relevance, mainly coming from a
low computational complexity and easy integration in the design process, since it passes
over the variability of the environmental source power and does not need any additional
software in charge of the energy prediction.

7. SSP: Optimal Scheduling for Aperiodic Tasks
7.1. The Scheduling Issue

Periodic and soft aperiodic jobs are scheduled together in most hard real-time task
systems. The goal of task scheduling is to minimize the aperiodic responsiveness while still
fulfilling the periodic task deadlines. A soft aperiodic task never causes serious damage
even if it has a very long response time. Slack stealing is a method that overcomes the
drawbacks of the background servicing. It provides minimal responsiveness for aperiodic
tasks [44,45] by executing the periodic tasks in an ALAP mode, when at least one aperiodic
task is waiting to be processed. In other words, any available processing time is made
disposable for the aperiodic ones as quickly as possible. When no aperiodic task requires
execution, the periodic tasks execute in the ASAP mode according to the EDF scheduling
algorithm. We show hereafter how the slack stealing approach may be extended to RTEH
systems with additional energy constraints.

7.2. Optimal Responsiveness with SSP

We submit here a slack stealing server that expands the original one to EH settings
because it is tailored to the needs of an energy-neutral system. The so-called SSP (Slack
Stealing with Energy Preserving) server authorizes aperiodic task executions as long as
they do not violate any deadlines. Let us recall that a deadline breach is caused by either a
shortage of the processing time or a deficiency of energy.

The slack of the periodic task set τ at the current time tc is evaluated as a pair of values
by the SSP server. The first one estimates the slack time of τ, which is defined as the excess
of the maximum continuous processing time available for completing new jobs from tc. The
second one is the slack energy of τ, which is primarily determined as the amount of energy
surplus that the system may consume continuously from tc. Periodic tasks are performed
using ED-H when no aperiodic tasks have appeared. The server exploits the gathered
slack time and slack energy to handle aperiodic tasks as soon as at least one aperiodic
task arrives. When the aperiodic queue is not empty, the slack stealer is ready to execute.
When there is slack, such as slack time or slack energy, the slack stealer is afforded the first
priority. When there is no slack time or energy, it is given the lowest priority. The aperiodic
task is determined by the slack stealer in the FCFS order.

The pseudo-code Algorithm 1 describes the framework of the SSP server and Figure 5
illustrates an example of its application.

The SSP task server is proved optimal in terms of aperiodic responsiveness:

Theorem 10. Assume a set of periodic tasks feasibly scheduled by ED-H and a stream of occurring
aperiodic tasks served in the FCFS order. The Slack Stealing server minimizes the response time of
every aperiodic task [61].

7.3. Simulation Results

The following simulation study is conducted to verify the theoretical performance of
the SSP aperiodic task server in comparison to classical techniques. The central performance
metric is the average response time of the aperiodic tasks since we want to optimize the
responsiveness of the aperiodic tasks. The goals in this simulation experiment are first
to measure the performance of SSP over a large set of tasks, and second to compare the
performance against known algorithms.
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Algorithm 1 SSP: Slack Stealing server for ED-H

while True do
if Ar(t) is not empty then

calculate ST(t) and SE(t)
if ST(t) > 0 and SE(t) > 0 then

execute Slack Stealer
else

execute ED-H
end if

else
execute ED-H

end if
end while

Figure 5. Illustration of the Slack Stealing server.

The algorithms used for comparison are the Background with Energy Surplus (BES)
and Background with Energy Preserving (BEP). When there are no periodic activities to
execute and the energy storage is depleted, BES services the aperiodic jobs. Any aperiodic
task may be executed under BEP only if it does not cause an energy paucity for a periodic
task released in the future. A Matlab simulation study was carried out. Each plot in the
graphs represents 100 simulation runs, which are made up of one task set with 20 periodic
tasks scheduled on 10 hyperperiods. The overall processing load Up includes 50% of the
periodic processor utilization Upp and 50% of the aperiodic processor utilization Ups. The
overall energy consumption Ue is made up of 50% of the periodic energy utilization Uep
and 50% of the aperiodic energy utilization Ues. We postulate that the recharging power
Pp does not change over time in our study. A Poisson arrival pattern is used to generate a
stream of aperiodic tasks with a uniform distribution.

Figure 6 reports the average response time of the aperiodic tasks for SSP, BES and
BEP algorithms, respectively, with the processor utilization ratio sweeping from 0.1 to 0.9,
while the average power consumed by the tasks is set to 80% of the power produced by the
source. From Up = 0.5 until Up = 1, the Slack Stealing server outperforms the Background
algorithms. In comparison to the Background curves, it has a normalized response time that
is decreased by more than 15%. BEP is 1.5 times better than BES when executing aperiodic
tasks. When Up raises, it smoothly concurs with BES. Aperiodic tasks are completed as long
as there is always enough energy for upcoming periodic activities. Despite the increased
energy constraint, the SSP can still cause a substantial reduction in aperiodic responsiveness
compared to the Background services. SSP has a response time that is at least 30 percent
faster than BES and BEP when Up varies.
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Figure 6. Response time by varying the processor utilization.

Figure 7 reports the average response time for SSP, BES and BEP algorithms, respec-
tively, with the average consumption power sweeping from 0 to 1, while the processor
utilization is 0.6. For all configuration parameters, the SSP server beats the two background
strategies BES and BEP, as expected. It is worth noting that the higher the energy constraint,
the better SSP performs compared to the background approaches. Because aperiodic tasks
may only execute when the reservoir is completely refilled, BES performs worse for large
energy requirements. When renewable incoming energy is abundant relative to the energy
requirements, the BES and BEP produce similar results.

The SSP server attempts to harness time slack stealing to improve the CPU utilization
and outperforms background servers significantly. Even when there is no energy restriction,
they both act badly. The performance of the slack stealing-based server resembles that of
the background servers when the system is severely time and energy confined.

Figure 8 depicts the overhead, which is the processing time the kernel spends conduct-
ing a service on behalf of an assigned task such as computing dynamic variables each time
the scheduler is summoned. The on-line computing/updating slack time and slack energy
are two factors of overhead in the SSP server. The frequency of the required computations
will increase with the strength of time and energy limitations. It should be noted that the
slack time and slack energy are computed whenever a new aperiodic task appears. In
addition, in the absence of the aperiodic tasks, the slack time is computed promptly before
subrogating in the sleep mode to recharge the energy storage unit.
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Figure 7. Response time by varying the average consumption power.
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8. Implementation Considerations with Operating System

The most significant distinction between energy-neutral and traditional battery-operated
devices is how they behave when their energy storage is depleted. An energy-neutral sys-
tem goes into sleep mode at this moment and wakes up once enough energy has been
harvested to continue the task execution. In contrast, a classical battery-operated system
reaches the end of its lifetime. An energy-neutral system must be able to reliably store
its state in permanent memory after detecting that there is no more energy in the storage.
Additionally, the system must have detailed knowledge about task energy requirements,
here called WCEC (Worst Case Energy Consumption) [62]. The system must have specified
the minimum energy that should be available in the storage to authorize the wake up and
guarantee the system to execute tasks for at least a given amount of time.

The Operating System has to obtain accurate and timely information so as to trigger
energy-related events. The online monitoring of the state of the energy storage serves
to notify the OS when a specified threshold is reached. Such functionality is essential,
as it enables one to adjust the dynamic power management according to the amount of
energy actually available. In addition, the system should be equipped with an energy
prediction mechanism to avoid any future energy starvations. The slack energy of the
system represents the highest amount of energy that could be continuously consumed by
any task in execution. As a consequence, the computation of the slack energy is required
at least before starting the execution of every task and possibly at regular time instants
during the execution. This implies calling for the energy predictor. If the slack energy
falls below a certain threshold, the OS is notified and the system switches on the sleep
mode so as to recharge the energy storage. At this instant, just before the system enters
the sleep mode, sufficient energy should be left to save the system state in a non-volatile
memory. Identically, the recharging phase terminates as soon as there is no more slack time
or enough energy becomes available in the storage unit. Figure 9 shows RTOS components
with energy-harvesting considerations.

TinyOS [63,64] implemented with the programming language nesC, Contiki [65] and
FreeRTOS [66], are very famous RTOSes. They all offer preemptive priority-driven task
schedulers, so as to develop the IoT applications [67]. However, such RTOSes, even if
suitable for battery-operated sensors, do not yet integrate clairvoyant and idling schedulers
such as ED-H to accommodate the energy neutrality.
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Figure 9. RTOS components with energy-harvesting considerations.

9. Conclusions

In a variety of application fields, self-powered wireless monitoring and control sys-
tems will be widely deployed. Making these systems as stable as possible, despite the
intermittent generation of the environmental energy required to power them, is a signif-
icant problem. Timeliness and energy neutrality are the two challenging properties of
reliable and sustainable real-time systems that distinguish them from battery-operated
computing systems.

The paper has reviewed two key schedulers for energy-neutral devices, namely ED-H
and SSP. The ED-H scheduler provides an intermittent computing framework for energy
neutrality with no wasted energy, no energy starvation and no deadline missing whenever
possible. The algorithm SSP combined with ED-H provides an optimal responsiveness to
the aperiodic tasks, while guaranteeing no deadline missing for periodic tasks. The server
SSP overcomes the drawbacks issued from Background approaches by taking advantage of
the slacks both in the time domain and the energy domain.
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Abbreviations
The following abbreviations are used in this manuscript:

RTEH Real-Time Energy Harvesting
CPS Cyber–Physical System
EDF Earliest Deadline First
ED-H Earliest Deadline First for energy Harvesting aware
RM Rate Monotonic
ASAP As Soon As Possible
OS Operating System
RTOS Real Time Operating System
EDL Earliest Deadline as Late as possible
CBS Constant Bandwidth Server
TBS Total Bandwidth Server
SSP Slack Stealing with energy Preserving
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FCFS First Come First Serve
WCET Worst Case Execution Time
WCEC Worst Case Energy Consumption
ST Slack Time
SE Slack Energy
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