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Abstract: An arrival time of an elastic wave is the important parameter to visualize the locations of
the failures and/or elastic wave velocity distributions in the field of non-destructive testing (NDT).
The arrival time detection is conducted generally using automatic picking algorithms in a measured
time-history waveform. According to automatic picking algorithms, it is expected that the detected
arrival time from low S/N signals has low accuracy if low S/N signals are measured in elastic wave
measurements. Thus, in order to accurately detect the arrival time for NDT, the classification of
measured elastic waves is required. However, the classification of elastic waves based on algorithms
has not been extensively conducted. In this study, a classification method based on self-organizing
maps (SOMs) is applied to classify the measured waves. SOMs visualize relation of measured data
wherein the number of classes is unknown. Therefore, using SOM selects high and low S/N signals
adequately from the measured waves. SOM is validated on model tests using the pencil lead breaks
(PLBs), and it was confirmed that SOM successfully visualize the classes consisted of high S/N signal.
Moreover, classified high S/N signals were applied to the source localization and it was noteworthy
that localized sources were more accurate in comparison with using all of the measured waves.

Keywords: self-organizing map; arrival time; elastic wave; non-destructive testing; AE source
localization

1. Introduction

In the field of non-destructive testing (NDT), parameters obtained from an elastic
wave related with the failure process, for instance, the location of acoustic emission (AE)
which the elastic wave generated by the occurrence of cracks sources, propagation ve-
locities are useful for the index of sustainable existing structures. In the NDT using the
elastic waves, AE source localization is attractive for visualizing micro cracks generated
in infrastructures [1,2], and it has been used to evaluate the soundness of infrastructures.
Moreover, elastic wave tomography [3] and AE tomography [4] have been applied to
identify the elastic wave velocity distribution of materials [5,6] and it is expected that the
location and size of inside failures in an infrastructure, is visualized. In the above NDT,
elastic wave arrival time at the sensors used in the measurement is used to identify the
failures. In addition, the arrival time is located in a boundary between noises and signals
in a measured time-history waveform and can be detected based on a visual confirmation.
However, in the arrival time detection, the use of a visual confirmation is challenging since
a large number of AE are emitted during AE measurement [7–9]. Furthermore, the use of
a large number of elastic waves is required to conduct the detailed identification of the
velocity distribution because of the identification based on inverse problems. Therefore,
the arrival time detection should be conducted using automatic picking algorithms.

In the algorithms of automatic arrival time detections, several approaches have been
proposed to detect the accurate arrival time. The simple approach is a use of a threshold
and if an amplitude exceeds the threshold, the exceeding time is defined as the arrival time.
However, it is difficult that the original arrival time is detected by the threshold defined by
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an amplitude level since the value of amplitude at arrival time is unknown. Thus, the use
of characteristic functions instead of directly using amplitudes is proposed [10,11]. In other
approaches, Akaike information criterion (AIC) has been applied to measured waveform
to evaluate the boundary noises and signals [12,13]. It is noted that a determination
of threshold considered the measurement conditions, is not required in AIC pickers to
detect the arrival time. Although, theses conventional approaches can detect the accurate
arrival approximated visual confirmation accuracies, it is challenging that the elastic wave
arrival is detected from low S/N signals because decreasing the amplitude of the signal
contributes to the low accuracy of the index computation to detect the arrival time. Since
low S/N signals should not be used in NDT, the classification of elastic waves is required.
However, eliminating low S/N signals is difficult. Arrival time detections conduct in
waveforms and in order to measure waveforms, AE measurement systems generally use the
threshold of the measurement trigger wherein waveforms are measured if the amplitude
exceeds the threshold [14]. It should be noted that owing to the measurement trigger
determination based on an empirical rule, there is a risk of including low S/N signals in
the measurement data. Moreover, although high S/N signal is increased in measurement
data if the measurement trigger is set higher values in comparison with the average of
amplitudes of propagating waves, it is expected that the arrival time is not recorded in
the waveforms. It should be noted that the measured waveform includes the pre-trigger
time wherein is the duration from the start of the waveform to the time of the actuated
measurement trigger, and the arrival time is located in the pre-trigger time. Hence, it is
challenging to record the arrival time in the pre-trigger time since the start of measurement
with the high measurement trigger is largely delayed from the start of signal. In the recent
studies [9,15–17], elastic wave measurements have depended on the measurement trigger
determined by empirical rules, and the classification of elastic waves based on algorithms
has not been extensively conducted. Therefore, if the dependence of empirical rules in the
classification is improved by algorithms, NDT conducts with accurate arrival times and it
is expected that results of NDT are improved.

According to the above reasons, the measured waves include low S/N signals, and
the classification of elastic waves is required for NDT using elastic waves. In this study,
a classification method based on self-organizing map (SOM) [18] is applied to classify
the measured waves to accurately detect the arrival time for NDT. SOM is a one of AI
algorithms and SOM visualizes relations of measured data wherein the number of classes is
unknown. In addition, SOM is categorized as an unsupervised learning method. If SOMs
are applied to the classification of elastic waves, it is expected that SOMs improve the
dependence of the empirical rule in the classification because the unsupervised learning
does not require knowing characteristics of the data in the classification. Moreover, SOMs
have been applied to the classification of AE signals generated in cross-ply composite
specimens during tensile tests [19]. Therefore, it is expected that using SOM selects high
and low S/N signals adequately from the measured waves. In order to validate the
classification of elastic waves based on SOM, the model tests using the pencil lead breaks
(PLB) are conducted, and classified high S/N signals generated by pencil lead breaks are
applied to the source localization. Further, the specimen used in the model test, has a
defect and the defect causes diffractions in wave propagations. The diffraction contributes
to attenuate amplitudes of waves, and it is expected that high and low S/N signals are
measured in the model test.

2. SOM Analysis
2.1. Architecture of SOM

In the algorithm of SOM, the class of the measured data is visualized in the output
layer. The output layer as shown in Figure 1, is consisted of the neurons allocated with the
weight vectors. The number of the neuron is generally determined by the heuristic rules.
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In this paper, the heuristic equation used in an application of SOM [20], is applied to the
determination of the number of the neurons J which is as follow:

J = 5
√

N, (1)

where N is the number of input vectors obtained by measured data. At first phase of SOM,
the weight vectors are set random values and the random values is iteratively updated
by the input vectors for the visualization of classes. The updated weight vectors have
similarity in the neighbor neurons. Therefore, it is noted that the class is visualized by the
group of neurons obtained by the similarity of the weight vectors.

In order to update the weight vectors, a one of the weight vectors is selected by the
Euclidean distance d obtained as

dj = ‖Xi −Mj‖2, (2)

where Xi is the ith input vector, and the weight vector Mj in the neuron j. Moreover, x is
input vector component, m is weight vector component, Xi and Mj have the number of
the vector components n. The Equation (2) is used to select the winning neuron which is
minimum d in all of neurons. Furthermore, the neighbor of the winning neuron is updated
by the Equation (3) obtained as

M′j = Mj + hc
[
Xi −Mj

]
, (3)

where M′j is the updated weight vector in the neuron j, and hc is the neighborhood function.
It is noted that M′j is computed based on hc and the value of hc is obtained as

hc = a(t)exp

(
−
‖rc − rj‖2

2

2σ2(t)

)
, (4)

where a(t) and σ(t) are monotonically decreasing functions, rc and rj are the position
vectors of the winning neuron c and the neuron j. In the Equation (4), a(t) is defined as

a(t) = a0 −
t
T

, (5)

where a0 is the initial value, t is the iteration count with 0 ≤ t < T, T is total iteration
number. Moreover, σ(t) is the same decreasing ration as a(t) and σ(t) is defined as

σ(t) = σ0

(
1.0− t

T

)
, (6)

where σ0 is the initial value. In the Equations (5) and (6), while the value of a0 is 1.0, the
value of σ0 is the initial radius of the update. The values of a(t) and σ(t), are, respectively,
decreased with the iteration to prevent the diverges of the obtained classes.

According to the Equation (4), the maximum value of hc is obtained if rj is equal to rc,
and decreased with the distance between rj and rc. It is worth noting that since the neurons
are updated based on hc, the group of neurons had the similarity of the weight vectors
is appeared around c, there is the reason why SOM visualizes the class. In addition, the
flow of SOM is iteratively conducting the Equations (2)–(4) with all of input vectors. Thus,
the winning neuron is obtained by each input vector and the winning neurons form the
several classes.
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2.2. Classification of Elastic Waves

The map which is the output layer visualizing the classes, can be used in the classifi-
cation of the measured data if the closest Euclidean distance between the neuron and the
measured data in the map is computed by the Equation (2) and the class of the winning
neuron is known. Moreover, since the weight vectors in the class are interpolated by the
winning neuron based on the Equation (4), the dispersion of measured data is considered
in the map. Therefore, if an SOM forms the class in which is consisted of neurons updated
by high S/N signals, it is expected that the obtained class selects the waves applied to NDT.

In this classification of the elastic waves, the input vector component is the root mean
square voltage V obtained from the equally divided waveform as shown in Figure 2. Al-
though the number of the input vector component is related with the number of classes
since the components imply the characteristics of measured data, the object of this classifica-
tion is to select high and low S/N signal and it should be noted that the classification does
not require obtaining the huge number of classes. Therefore, the input vector components
should be decreased to prevent that the complex map is obtained. Furthermore, three
components have been used in the classification of using RGB value [21] and it implies
that the use of 3-dimensions vectors is sufficient in the simple classification. Hence, it is
expected that the use of V1, V2, and V3 for the input vector components contribute to the
simple classification.

The boundary of the classes is not cleared in the obtained map and the boundaries
have been indicated by the computing similarity of the weight vectors [19,22]. In this
study, since the boundary are easily determined, the three types of the weight vectors are
determined using the ration of the root mean square voltage between the pre-trigger time
and the signal duration in all of the neurons, and based on the Equation (2), the 3 types of
classes are obtained by the winning neurons. In the measured waveform shown in Figure 2,
0 µs implies the time of a measurement wherein the amplitude exceeds the measurement
trigger. Moreover, the negative time is the pre-trigger time and the positive time is the
signal duration. Further, it should be noted that the ration of the root mean square voltage
implies the level of S/N because the high S/N signal tend not to be measured in the
pre-trigger time. Therefore, it is possible that the neurons had the highest ration of the root
mean square voltage in the map belongs to the high S/N class. Moreover, the low S/N
signal is assumed to be classified between attenuated elastic waves and noises: for instance,
reflection waves, electrical noise, other noises generated in outside of the materials. The
noises generally have lower amplitudes in comparison with other measured waves, and
it is expected that the neurons had the lowest voltage ration belongs to the noise class in
which the noises are classified. Therefore, the weight vectors used for the criterions of
classes are selected from the neurons had the highest and the lowest voltage. Furthermore,
the low S/N class in which the attenuated elastic wave is classified is determined by the
average vectors computed by two of other weight vectors used for the criterion.
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3. Experimental Set Up
3.1. Artificial AE Measurement Conditions

In order to validate the performance of the wave classification based on SOM, high
and low S/N signals should be measured in the model test. According to Huygens-
Fresnel principle, amplitude of the diffraction waves is lower in comparison with the wave
propagated in the straight line. Therefore, it is expected that high and low S/N signals
could be measured if the diffraction waves are generated in the model test. In the model
test, an aluminum plate with a thickness of 5.0 mm, is used as the specimen. The aluminum
plate shown in Figure 3, is square-shaped with a side of 1000 mm, and the defect is 40 mm
and 500 mm in height and width, respectively. Furthermore, 12 of the sensors are installed
10 mm inside the frame. It is noteworthy that the diffraction waves propagate around the
defect, and it is expected that the diffraction wave is measured in Ch3 and Ch4, if artificial
AE is generated in the upper side of the specimen. In addition, artificial AE is generated
by PLB, which is widely used in studies of AE source localizations [23–25]. In PLB test,
pencil lead is a diameter of 0.5 mm and hardness of 2H. The measurement conditions
listed in Table 1 refer the previous study conducting PLB [26]. In the measurement, the AE
measurement system produced by PAC [14] is used. The operating frequency of R6a was
35–100 kHz, and the sensors have been applied to metal materials to measure the waves
generated by PLB [26,27]. Further, the measured artificial AE is amplified by 40 dB via the
2/4/6 preamp, and the sampling frequency on the measurement boards of the Express-8
is 2 MHz. In addition, the wavelength is measured as 511.5 µs if the amplitude exceeded
55 dB of the threshold, and the pre-trigger time is set to 256 µs.
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Table 1. The measurement conditions of the model test.

Operating frequency (kHz) 35–100
Preamplifier gain (dB) 40

Sampling frequency (MHz) 2
Threshold of measurement trigger (dB) 55

Pre-trigger time (µs) 256
Wavelength (µs) 511.5

3.2. Arrival Time Detection

A one of AIC pickers using a single parameter is AR-AIC [12] and the arrival time
detection only requires the number of the AR model order. Hence, it is expected that
a use of the single parameter contributes to improving the differences of arrival time
accuracy caused of users. Moreover, AR-AIC have been applied to the source localization in
geomaterials had higher attenuation in comparison with other construction materials [28].
Therefore, AR-AIC is applied to the classified waves and the detected arrival times are
used in the AE source localization in this study.

The example of arrival time detection using AR-AIC, is shown in Figure 4. In AR-
AIC, the minimum AIC value is the index of the arrival time. The arrival time detections
based on AIC assume that measured wave can be approximated continuous functions and
AIC pickers detect a large amplitude difference. Thus, if an amplitude of first arrival is
particularly lower in comparison with other amplitudes, it is possible that the arrival time
accuracy is decreased [13]. In use of AR-AIC, owing to the above problem, the elastic waves
should be classified to detect accurate arrival times.
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3.3. Validation of the Classification Using SOM

In this validation of the classification, if the measured waves at Ch4 are classified from
all of waves, SOM is expected to classify the measured waves for NDT. PLB is conducted
around Ch9 as shown in Figure 5. Moreover, PLB is repeatedly conducted 10 times, and
AR-AIC is applied to all of the measured wave to detect arrival times at each sensor. If
the artificial AE signal generated by PLB propagates to all of the sensors, the diffraction
waves are measured at Ch3, Ch4 and the straight waves arrive at the other sensors. In the
model test using an aluminum plate with a thickness of 5.0 mm, the artificial AE signal
propagates as Lamb waves. Phase velocity of Lam wave has the frequency dispersion
of velocity. According to the phase velocity dispersion curves for an aluminum plate
with a thickness of 5.0 mm shown in Figure 6, the phase velocities of the S0 modes are
approximately constant at the highest operating frequency shown in Table 1. Therefore,
if travel times are computed by subtracting the arrival time at Ch9 from the other arrival
times, the velocities computed by the ration of the theoretical ray-paths and the computed
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travel times approximate the phase velocity of S0 mode lamb wave in which is 5400 m/s.
The average of the computed velocities is shown in Figure 7, and it is confirmed that the
average of the velocities using the arrival times at Ch4 is different from the phase velocity
of S0 mode lamb wave. Therefore, it is possible that the arrival times at Ch4 include arrival
detection errors and the measured waves at Ch4 should not be used in NDT.
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Although a sufficiently large number of total iterations are required in an SOM analy-
sis [18], generally, the number is empirically determined. In this study, the number of total
iterations is 10,000, and the parameter is validated by the results of the classification. More-
over, in order to initially update sufficient neurons, the initial radius uses one-third of one
side of the output layer which is a square. According to Equation (4), the update of neurons
is obeyed by Gaussian distributions. Hence, the used initial radius is expected to update
more than half of neurons if the winning neuron is located in edge of the output layer.

3.4. AE Source Localization with the Classfied Artifical AE Signals

To validate the performance of the elastic wave classification for NDT, the classified
waves by SOM are applied to the AE source localization based on ray-tracing [29]. Further,
SOMs use limited waves at the sensor which measures the largest number of waves in the
model test to validate the practical classification. If an SOM is conducted with limited data
to visualize classes and it is expected that the computation cost of SOM is conserved.

The AE source is localized on the basis of the possible pulse-originated time computed
by using the first travel times computed by ray-tracing. Further, in the ray-tracing algorithm,
the elastic wave velocity distributions of the models are approximated by the mesh in which
each cell has a constant velocity, and first travel times considered diffractions of waves are
computed by the approximated elastic wave velocity distributions. The possible pulse-
originated time Pij, is computed by subtracting the first travel time from the arrival time
as follows:

Pij = Ai − Trij, (7)

where Ai is the arrival time of the AE sensor i, Trij on the ray-path from the sensor i to
the candidate j. The number of estimated originated times is the same as the number of
used sensors at all candidates because the computation of the originated time is conducted
on all of the combination of a sensor and a candidate. A candidate in which variance of
the originated time σ2

j is minimum is selected as the AE source. The localized source is

illustrated in Figure 8. It is noted that σ2
j can be computed by the limited sensor. There-

fore, in the AE source localization based on ray-tracing, the sensors which the accurate
arrival times are detected can be selected based on the result of classifications. The time
difference of arrival (TDOA) method [30] is a popular AE source localization method in the
field of NDT. However, the TDOA method requires computing matrix equations and the
determinant is possibly approximated 0 with the particular location of the used sensors.
Furthermore, the TDOA method generally assumes homogeneous elastic wave velocity
distributions, it is challenging that the TDOA method is applied to this heterogeneous
model. On the other hand, the ray-tracing can consider diffraction and refraction waves
occurred in heterogeneous velocity distributions and it is expected that the AE source
localization based on ray-tracing can localize the source generated in heterogeneous model.

In this validation, artificial AE sources generated by PLB, are localized. PLB is repeat-
edly conducted with the interval of PLB points 100 mm as shown in Figure 9. Thus, it is
expected that total 49 events are localized in the model test. AE source localization based
on ray-tracing is conducted in the approximated velocity distributions of the model. The
approximated velocity distributions for the specimen are show in Figure 10a. In the model
show in Figure 10a, the original point of the orthogonal coordinate system is defined as
Ch1 and the defect in the specimen is shown by low velocity distributions and the source
candidates are located with the interval of candidates 20 mm. The propagation velocity
in the soundness area is 5400 m/s, wherein the phase velocity of S0 mode lamb wave is
applied. Moreover, the velocity distributions in the defect are assumed to be velocities
of air 300 m/s. If the classification of artificial AE signal is practically conducted, the
accuracy of the localized source is improved in comparison with the sources localized
by all of waves. Furthermore, if SOM has the performance to classify diffraction waves,
it is expected that the AE source localization based on ray-tracing can be conducted in
homogenous distributions shown in Figure 10b.
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4. Results
4.1. Results of the Classification Using SOM

The result of the SOM, which is the map using all of measured waves, is shown in
Figure 11. It should be noted that the map is same the structure as the output layer shown
in Figure 1. In Figure 11a, each cell is the neuron and the center of cells is allocated with
the weight vectors. Moreover, the number of neurons is determined based on Equation (1)
with 168 waves, and the result of Equation (1) is approximated 64 for the map formed
rectangular structure. Although 120 artificial signals are theoretically measured in the
model test because the PLB is conducted 10 times with 12 sensors, total measured waves
are 168. Thus, the noises are measured in the model test and the map is required to classify
the noises in the noise class. Colors shown in the map imply classes of waves, and the
red area is the high S/N class. In addition, the gray and the blue area imply the low S/N
class and the noise class. Further, the gray scale shown in Figure 11b implies how many
waves belong to each cell. If classified waves in the red are only consisted of high S/N
signals in which accurate arrival times are detected, the classification based on SOM has
the potential to select high S/N signals for NDT. In order to detail the performance of
the classification, the class of measured waves in each sensor is shown in Figure 12. In
each sensor, the number of the measured waves belonged to the high and low S/N class is
totally 10 times and the number is the same as the number of PLB test times. Therefore,
it is confirmed that the map has the performance to classify between the noise and the
artificial AE signal. Although detecting accurate arrival time from the wave measured at
Ch4 is challenging, and waves measured at Ch4 should be classified in the low S/N class
or noise classes, artificial AE signals measured at Ch4 are classified in the low S/N class in
Figure 12. Furthermore, according to Figure 6, the classified waves in the high S/N class
can be detected accurate arrival times. Hence, it implies that the classification based on
SOM, is possible to select high S/N waves in which the accurate arrival time is detected
for NDT. In addition, it is confirmed that used parameters in SOM, are sufficient values to
classify the measured waves using 3-dimension input vectors.
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4.2. Results of AE Source Localization with Classified Artificial AE Signals

In measured waves at Ch6, it is expected that three of the classes are included because
the number of measured waves at Ch6 is largest in the model test. Thus, measured waves
at Ch6, are applied to SOM and the result is shown in Figure 13a. It should be noted
that 56 waves are measured in Ch6 and the map is consisted of 36 neurons which is the
approximated value of Equation (1). According to Figure 13a, it is confirmed that the use of
all of waves is not required to update the map since 3 of classes are visualized on the map
updated by limited waves. In Figure 13b, all of measured waves are classified in 3 of classes,
and it implies that the map can be used to classify all of measured waves in each class. In
the number of classified waves shown in Figure 14, the large number of measured waves
at Ch3 and Ch4 are classified in the low S/N and the noise class. According to Figure 9,
diffraction waves propagate from PLB points located in upper side of the specimen to Ch3
and Ch4. According to Figure 12, diffraction waves arrived at Ch4 tend to be classified in
the low S/N signals. Thus, it implies that low S/N signals can be classified on the map, and
it is expected that the map contributes to improve the results of AE source localization with
classified waves. The results of AE source localization based on ray-tracing are show in
Figure 15. While the sources localized with all of measured waves are shown in Figure 15a,
the results of AE source localization with classified artificial AE signals are shown in
Figure 15b. Moreover, it should be noted that white dots imply the location where PLB test
is conducted and if the localized source which is the black dot is located on the white dot,
the accurate source is localized. In Figure 15b, the number of the localized source in original
PLB points are increased in comparison with the results shown in Figure 15a. In addition,
the map is expected to classify the diffraction waves. In order to validate the performance
of the classification in the homogeneous model, the source localization with classified
artificial AE signals is conducted in homogeneous velocity distributions shown in Figure 16.
According to Figure 16, it is confirmed that the number of localized sources on the original
PLB points is 38 sources the same as the results in the heterogeneous velocity distributions.
The performance of the classification in the AE source localization are shown in Table 2.
Although the number of total sources with the non-classification is 54 sources, the number
of localized sources with SOM is 49 sources the same as PLB tests. In the non-classification,
it is expected that five sources are generated by noises because the number of PLB tests
is 49 time in the specimen. Hence, it implies that SOM has the performance to eliminate
non-target sources generated by noises. Further, it is confirmed that the maximum and the
average of errors in the use of SOM are smaller in comparison with the non-classification.
In the non-classification case, it should be noted that the non-target sources are eliminated
in the maximum and the average of errors. Furthermore, the maximum and the average
of errors in the source localization with classified artificial AE signals are approximated
in heterogeneous and homogeneous velocity distributions. Therefore, if SOM is applied
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to the AE source localization based on ray-tracing, it implies that the consideration of
heterogeneity in materials is not required to localize sources.
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According to the algorithm of AE source localization based on ray-tracing [29], the
factors of errors in the AE source localization are the locations of candidates of sources,
considered diffractions, and arrival time detection errors. In this model test, candidates
of sources are same the locations as PLB points and the locations of the candidates did
not contribute to localization errors. In the heterogenous velocity distributions, the AE
source localization considers the diffraction and it is expected that the factor of velocity
distributions is limitingly affected in the maximum error listed in Table 3. Hence, arrival
time detection errors are expected to contribute to the maximum localization error in
the heterogenous velocity distributions. Although the diffraction is not considered to
localize sources in the homogenous model, arrival times of diffraction waves are used in
the AE source localization conducted on the homogenous model. Thus, it implies that the
diffractions contribute to localization errors in the homogenous model. However, according
to the Table 2, the average of localization error in the homogenous model are approximated
to the heterogenous model and it is expected that considered diffractions are not the main
factor of the maximum error. Further, in the localized sources with maximum errors, the
wave is propagated with the larger angle of diffraction to Ch7 in the heterogenous model,
and Ch4 measures the diffraction wave used in the homogeneity model. Moreover, the
arrival time detection in diffraction waves is shown in Figure 17. The waveform shown
in Figure 17a is measured at Ch7, and Figure 17b shows the measured wave at Ch4. In
Figure 17, the arrival times are unclear, and it is difficult that the arrival times are detected by
visual confirmations. Furthermore, applied AR-AIC detects times at middle of waveforms
in Figure 17, it is confirmed that detected arrival times at Ch7 and Ch4 include detection
errors. In addition, detection errors are confirmed in other waveforms for the AE source
localization and it is confirmed that detection errors contribute to the source localization
error in the model test. Therefore, it implies that the high S/N class includes low S/N
signals in which arrival times are detected with the low accuracy.

Table 2. The performance of the classification in the AE source localization.

Classifications Velocity
Distributions

Events
Used

Number of
PLB Tests

Maximum
Errors (mm)

Average of
Errors (mm)

Number of
Accurate Sources

Non-classification Heterogeneous 54 49 220 90 9
SOM Heterogeneous 49 49 130 19 38
SOM Homogeneous 49 49 130 20 38
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Table 3. Maximum errors and number of sensors used in the AE source localization.

Velocity
Distribution

Actual PLB Points (mm) Localized Sources (mm) Maximum
Errors (mm)

Number of
Sensors

The Diffraction
Wave ArrivalX Y X Y

Heterogeneous 700 100 780 0 130 6 Ch5, Ch7
Homogeneous 100 500 0 580 130 12 Ch4
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5. Discussion

Since a threshold of a measurement trigger in which is determined by empirical ap-
proaches is generally used to detect the waveforms, it is challenging to eliminate noises
from measurement data. Particularly, AE measurement system requires to use resonant
sensors [14] and the determination of the threshold should be considered differences of
amplitudes depended on the resonate frequency and the size of an amplitude in the prop-
agated waves. Thus, the determination of the practical measurement trigger requires to
consider the combination between materials and the measurement system. In the elastic
wave measurement, the noise is assumed to be reflected elastic waves, noises transmitted
from outside of a specimen and electrical noises. According to the acoustic impedance,
amplitudes of reflected and transmitted waves are expected lower in comparison with
elastic waves since incident waves are separated between reflected and transmitted waves.
Further, the duration of electrical noises is generally shorter than signals, and it is expected
that the root mean square voltage obtained from electrical noises smaller in comparison
with the voltage obtained from elastic waves. Therefore, SOM has the potential to classify
measured waves based on differences of the root mean square voltage. According to
Figures 12 and 14, it is confirmed that SOM performs to classify the artificial AE signals
and the noises. Hence if the measurement data includes several noises because the measure-
ment trigger is not appropriate for measurement conditions, SOM performs to eliminate
noises and it implies that the dependency of the measurement trigger in the accuracy of
measurements is improved. Moreover, the number of the input vector components imply
the characteristic of data, and huge number of the components causes to form several
scattered classes in the map. In this classification, the waveforms are not directly applied
to input vectors and 3-dimensions input vectors in which components are consisted of
the root mean square voltage obtained from the equally divided waveform are used. As
results of using 3-dimensions input vectors, 3 of classes are formed in the map shown in
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Figures 11 and 13, it is expected that 3 components are sufficient to classify elastic waves
because the classes are not scattered.

In the results of the classifications shown in Figure 12, it implies that SOM has potential
to classify waveforms based on the root mean square voltage. Furthermore, the value of
the root means square voltage computed by the waveform is related with the levels of
the amplitudes. According to Huygens-Fresnel principle, the amplitudes of diffraction
waves are more attenuated in comparison with straight propagations wave. Thus, SOM is
expected to separate elastic waves between the straight and the diffraction. According to
Table 2, the accuracy of the source localization with the classified waves in homogeneous
velocity distributions are approximated the results of the source localization considering
heterogeneous velocity distributions. Therefore, SOM performs to classify the straight and
the diffraction waves, and it is expected that the consideration of the diffractions caused by
the heterogeneity of the material is not required in the source localization in heterogeneous
velocity distributions. If an AE source localization is applied to an evaluation for soundness
of infrastructures, sources are possibly generated in failure areas in which is lower elastic
wave velocities than soundness areas. Therefore, it is expected that the accuracy of the
evaluation of the soundness based on the AE source localization is improved if the AE
source localization is conducted with the classified elastic waves. Further, although the
huge number of the elastic waves should be measured in order to identify the process or
locations of failures by NDT, the computation cost in SOM is increased with the number
of waves. However, according to Figure 13, the classification based on SOM performs to
visualize 3 of classes with a limited number of waves. It is expected that the dispersion of
the measured waves is considered by the neighbor function defined as the Equation (4)
and the missing data is interpolated in the map. In addition, the AE source localization
is improved by the accurate arrival times detected from the waveforms classified by the
formed high S/N class. Hence, it is confirmed that a result of SOM is possible to be applied
to other measurement data if the data are measured in the same conditions as forming
the map. Therefore, it is expected that the computation cost ca be more conserved in
comparison with conducting SOM in each measurement if the formed map is shared in
each measurement. Moreover, owing to the high S/N class shown in Figure 13 included
diffraction waves in which detected arrival times are low accuracies, 11 sources are localized
with localization errors in Figures 15b and 16. Since measured waves are not gathered in
the center of the high S/N class shown in Figure 13b, it implies that the high S/N class
can be divided. Thus, it is expected that if the high S/N class is divided in 2 classes and
high S/N signals are selected based on the divided high S/N class, the accuracy of the
source localization is improved in comparison with the results of the AE source localization
shown in Table 2.

The classification based on SOM is expected to improve the identifications of elastic
wave velocity distributions because the accurate arrival times are required in the iden-
tifications. The identifications of the velocity distributions require to obtain difference
travel times computed subtracting the computed travel time form the measured travel time
measure of diffraction and/or refraction waves [3–6]. In Figure 13a, the high S/N class
includes diffraction waves, and it is expected that the classified diffraction waves are larger
S/N in comparison with other diffraction waves. Thus, the classified diffraction wave has
potential to be detected accurate arrival times. However, applied AR-AIC detects arrival
times of the diffraction waves including detection errors. Therefore, it is expected that
other arrival time detection method in which have detected arrival times from diffraction
waves [26], is required to be applied to the classified waves in order to identify an accurate
velocity distribution.

6. Conclusions

In order to conduct NDT in which are AE source localizations, elastic wave tomogra-
phy, and AE tomography, accurate arrival times of elastic waves used for input data are
required. According to the algorithms of the arrival time detection, the accuracy of the
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detected arrival time depends on levels of S/N in measured wave forms. Hence, high S/N
signal is required to be applied to the arrival time detections. Although a measured wave
form is generally selected by thresholds of the measurement trigger, the determination of
practical measurement triggers requires an empirical rule. An SOM is categorized as an
unsupervised learning method. Thus, if an SOM is applied to the classification of elastic
waves, it is expected that the SOM improves the dependence of the empirical rule in the
classification because the unsupervised learning does not require knowing characteristics of
the data in the classification. In this study, the classification of elastic waves based on SOMs
for NDT is validated by the model tests. In the model tests, PLB tests are conducted in the
specimen in which the aluminum plate with a thickness of 5.0 mm. Here, the conclusions
of this study are listed as follows.

• According to Figure 12, in each sensor, the number of the measured waves belonged
to the high and low S/N class is totally 10 times and the number is the same as the
number of PLB test times. Therefore, it was confirmed that the classification based on
SOM can performs to classify artificial AE signals and noises from measurement data.

• In this classification, waveforms were not directly applied to input vectors and 3-
dimensions input vectors in which components were consisted of the root mean
square voltage obtained from the equally divided waveform were used. According
to the results of SOM, it was confirmed that artificial AE signals were classified by
3-dimentions input vectors computed based on the root mean square voltage.

• The AE source localization based on ray-tracing was conducted with classified waves.
As consequence, the localized sources were more accurate in comparison with the
use of all waves. Therefore, if the measurement data include several noises because
the measurement trigger is not appropriate for measurement conditions, the SOM
performs to eliminate noises and it implies that the dependency of the measurement
trigger in the accuracy of measurements is improved.

• The accuracy of the source localization with classified waves in homogeneous velocity
distributions were approximated the results of the source localization considered
heterogeneous velocity distributions. Therefore, it is expected that the source lo-
calization in heterogeneous velocity distributions does not require considering the
diffractions caused by the heterogeneity of the material if classified waves are used in
the source localization.

• According to Figure 13, the classification based on SOM performed to visualize 3 of
classes with a limited number of waves. In addition, the AE source localization was
improved by the accurate arrival times detected from the waveforms classified by the
formed high S/N class. Hence, it was confirmed that a result of SOM is possible to be
applied to other measurement data if the data are measured in the same conditions
as forming the map. Therefore, it is expected that the computation cost can be more
conserved in comparison with conducting SOM in each measurement if the formed
map is shared in each measurement.

• In Figure 13, the high S/N class included diffraction waves, and it is expected that the
classified diffraction waves are larger S/N in comparison with other diffraction waves.
Thus, the classified diffraction wave has potential to be detected accurate arrival times.
However, applied AR-AIC detected arrival times of the diffraction waves including
detection errors. Therefore, it is expected that other arrival time detection method in
which has the potential to detect arrival times from diffraction waves, is required to be
applied to the classified waves in order to identify an accurate velocity distribution by
the tomography methods.
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