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Abstract: Magnetic gear and magnetic-geared machine (MGM) are the potential solutions in electric
vehicles (EVs) powertrains for inherent high efficiency and mechanical simplification. However, the
torque density issue of the MGM greatly limits its industrial application. To enhance the torque
performance of the MGM, a torque-enhanced magnetic-geared machine with dual-series-winding and
its design approach are proposed. The key merits of the proposed design are to achieve a high space
utilization with a dual-winding design, with no additional control topologies and power converters
required. The auxiliary winding is supplemented and integrated with modulation rings. The relative
position of the stator and armature winding are designed and rotated compared to the modulation
rings with auxiliary winding, to ensure the auxiliary winding shares the excitation with the armature
winding. Accordingly, simplifying the external control topologies. With the proposed design, the
torque of the MGM can be significantly enhanced with a single three-phase driving. Theoretical
analysis, parameters optimization and electromagnetic verification are given, demonstrating that the
proposed machine can achieve an efficiency of 93.2%, generate a torque of 107.2 N·m, and reach a
torque density of 10.81 N·m/kg.

Keywords: dual-series-windings; electric vehicle powertrain; high torque density; magnetic-geared
machine; shared excitation

1. Introduction

Electric vehicles (EVs) have been developed and given rise to many novel technolo-
gies, including electric, hybrid, and hydrogen vehicles [1–6]. Regardless of iteration and
deployment in the electric vehicle, the electric machines (EMs) are always the key and
irreplaceable component of the powertrain system, which is a promising solution for devel-
oping green energy, making it a continued research trend in this decade [7]. In the electric
vehicle propulsion system, the volume of the electric machine is inversely proportional to
its nominal speed [8]. Hence, the propulsion system always employs a combination of a
high-speed electric machine and a reduction mechanical gearbox. The magnetic-geared
machine (MGM) combined the mechanical gearbox and the direct-drive EM into an in-
tegral machine, as one of the novel electric machines, which has been applied in electric
vehicle propulsion [9–12] with inherent advantages of efficiency enhancement [13], noise
reduction [14], and vibration attenuation [15]. However, generalized MGMs also have
the inherent drawback of low torque density caused by poor space utilization with mod-
ulation rings. To solve the torque density issue, researchers proposed many solutions
based on magnetic-geared topologies. According to the magnetized orientations of the
permanent magnets (PMs), the solutions are mainly divided into axial flux MGMs and
coaxial flux MGMs.

As for the coaxial flux MGMs, Ref. [13] optimizes the magnetic circuit design of spoke-
type PMs with a slot-inserted structure, which improves the torque density. Reference [14]
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improves space utilization by installing the armature winding between the modulation
rings without external drivings. However, the inherent contradiction of the design in [14]
will restrict its performance, for the length of the modulation rings is proportional to the
excitation current but inverse to the modulation effect of the magnetic gear. Refs. [15–17]
investigate the integration of PMs and modulation rings, which improve the torque per-
formance of the MGMs. However, the performance enhancement in torque or torque
density is not significant. The torque improvement in Refs. [15,16] reach 8.05% and 6.58%,
while the improvement in torque density of Ref. [17] is 5.35%. A double-stator single-rotor
topology was proposed in Ref. [18] with a single modulation ring. The winding in the outer
stator employs the modulation effect while another set of winding with the fractional-slot
structure is without modulation rings. This design optimizes the performance of the dual
stator MGM but the spaces between modulation rings are not fully utilized.

As for the axial flux MGMs, Ref. [19] reuses the modulation rings as stator slot to
install the armature winding, which shares the design thought with [14] but together with
its inherent drawbacks. Ref. [20] integrates and installs the electric machine in the bore of
the axial flux magnetic gear, requiring no external volume. However, the design concept
is similar to the coaxial flux MGMs and the spaces between modulation rings are not
utilized properly.

As for the control strategy of the MGMs, ref. [21] proposes a maximum torque control
strategy, verifying that the MGM can share the control strategy with generalized PM
machines. Ref. [22] proposes a nonlinear position controller for MGM with improved
tracking and disturbance rejection properties. A rotor position detection method for
senseless control is proposed in Ref. [23], which verifies the feasibility of senseless control
in MGMs. In general, MGMs can share the control strategies with generalized PM machines,
providing strong generalization in EVs propulsion systems.

In this paper, to solve the abovementioned issue of the MGMs, a dual-series-winding
(DSW) magnetic geared machine and its design approach are proposed. The main contribu-
tion of this paper is given as follows.

(1) The torque and space utilization are enhanced with the proposed dual-series-
winding design.

(2) The design approach of the dual-series-winding is proposed and verified, which
allows the auxiliary winding and armature winding to be driven by one set of three-
phase inverter solely.

(3) The relationship between the winding phase and mechanical rotation angle is given,
investigating the impact of the relative position between modulation rings and stator,
on the phase of the induced voltage.

2. Machine Configuration and Analysis
2.1. Machine Configuration

The overall structure of the proposed machine is indicated in Figure 1a while the
parameters and the 3D cross-section are shown in Figure 1b, which consists of a stator
integrated with modulation rings, armature winding, auxiliary winding, and rotor with
surface-mounted permanent magnets (PMs). The detailed parameters of the proposed
machine are given in Table 1. The fixed parameters include the non-physical parameters of
the proposed machine except the outer diameter, stack length, and air gap length, which
is selected for conducting a better optimization under a fixed size and topology of the
proposed machine. As shown in Figure 1a, the modulator ring is combined with the
stator, which eliminates the air gap between modulation rings and the stator, accordingly,
enhances the mechanical stability of the MGMs. The distributed windings are employed in
the armature winding with the pitch of 4 and auxiliary winding with the pitch of 3.
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Figure 1. Structure configuration of the proposed machine (a) 3-D and exploded view. (b) 3-D cross-
section of machine components. 

Table 1. Fixed parameters of the proposed machine. 

Symbol Quantity Value 
𝑝𝑝𝑟𝑟 rotor PM pole pair numbers 20 
𝑝𝑝𝑚𝑚 pole pair number of modulation rings 24 
𝑝𝑝𝑠𝑠 pole pair number of armature winding 4 
𝑁𝑁𝑠𝑠 number of stator tooth 36 
𝑑𝑑𝑜𝑜 outer diameter of machine (mm) 184 
𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟 length of air-gap (mm) 0.5 
𝑑𝑑𝑙𝑙 stack length (mm) 60 
𝐽𝐽 current density (A/mm2) 6 
𝐾𝐾 slot filling factor 0.45 
𝑦𝑦𝑠𝑠 pitch of armature winding 4 
𝑦𝑦𝑚𝑚 pitch of auxiliary winding 3 
𝛺𝛺𝑟𝑟 mechanical rotation speed (rpm) 300 

The winding configuration of the armature winding and auxiliary winding is given 
in Figure 2a,b, respectively. The A, B, C in Figure 2 represent the A, B, C phase of winding. 
For the winding configuration to be symmetrical, the configuration is presented with half 
of the slots. The detailed parameters of the proposed machine are given in Table 1. The 
changeable parameters are given and used to optimize the performance of the proposed 
machine in Section 3. 
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Figure 2. Winding configurations. (a) Armature winding. (b) Auxiliary winding. 

The powertrain system configuration of the electric vehicle with the proposed ma-
chine is given in Figure 3. As shown in Figure 3, the powertrain system consisted of the 

Figure 1. Structure configuration of the proposed machine (a) 3-D and exploded view. (b) 3-D
cross-section of machine components.

Table 1. Fixed parameters of the proposed machine.

Symbol Quantity Value

pr rotor PM pole pair numbers 20
pm pole pair number of modulation rings 24
ps pole pair number of armature winding 4
Ns number of stator tooth 36
do outer diameter of machine (mm) 184

dair length of air-gap (mm) 0.5
dl stack length (mm) 60
J current density (A/mm2) 6
K slot filling factor 0.45
ys pitch of armature winding 4
ym pitch of auxiliary winding 3
Ωr mechanical rotation speed (rpm) 300

The winding configuration of the armature winding and auxiliary winding is given in
Figure 2a,b, respectively. The A, B, C in Figure 2 represent the A, B, C phase of winding.
For the winding configuration to be symmetrical, the configuration is presented with half
of the slots. The detailed parameters of the proposed machine are given in Table 1. The
changeable parameters are given and used to optimize the performance of the proposed
machine in Section 3.
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The powertrain system configuration of the electric vehicle with the proposed machine
is given in Figure 3. As shown in Figure 3, the powertrain system consisted of the proposed
machine, inverter, and power battery. The battery is charged by the power grid and
corresponding AC-DC converter [24].
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2.2. Operating Principle

The pole pairs of the rotor PMs pr, modulation rings pm, and armature winding ps are
20, 24, and 4, respectively. The relationships [25] among them should follow Equation (1).

pm = pr ± ps (1)

Based on Equation (1), the relationship between the angular velocity and pole pairs of
those components is given as follows.

pmωm = prωr ± psωs (2)

In this paper, ωs, ωm, and ωr are the angular velocity of armature winding, modulation
rings, and the rotor.

Considering the torque performance, the pole pairs of modulation rings are selected
and equal to the summation of that of armature winding and rotor PMs [26]. Hence, the flux
frequency of the armature winding and auxiliary winding under the mechanical rotating
velocity Ωr (rp/m) is expressed as.{

farm = (pm−ps)Ωr
60

faux = prΩr
60

(3)

where the farm and faux is the flux frequency of armature winding and auxiliary winding,
respectively.

Based on Equations (2) and (3), the flux frequency of those two sets of winding is
equal, which built up the foundation of the proposed dual-series-winding design.

2.3. Dual-Series-Winding Design and Analysis

For a magnetic-geared machine with surface-mounted PMs, the magnetic motive force
(MMF) Fr generated by PMs, and permeance Λ caused by modulation rings and stator
teeth are shown in Figure 4. Based on Figure 4a, the Fourier series expansion of MMF
generated by rotor PMs is expressed as Equation (4).

Fr(θ, t) =
∞

∑
n=1, 2,3···

Fn cos[npr(θ −Ωrt)] (4)

where Fn is the n-th harmonics of the MMF generated by PMs.
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Similarly, the Fourier series expansion of the permeance of the modulation rings with
the air gap Λm(θ) and stator teeth Λs(θ) can be concluded as Equations (5) and (6).

Λm(θ) =
∞

∑
k=1, 2,3···

Λm cos(kθpm)dθ (5)

Λs(θ) =
∞

∑
p=1, 2,3···

Λs cos(pθpm)dθ (6)

where Λm and Λs is the permeance of the modulation rings and stator tooth.
Hence, the flux density in the air gap can be found via Equations (4) and (5), which is

given in Equation (7).

Bs(θ, t) = F(θ, t)Λm(θ)

=
∞
∑

n=1
Fn cos[npr(θ −Ωrt)] +

∞
∑

n=1
,

∞
∑

k=1
FnΛk cos[npr(θ −Ωrt)] cos(kθpm)

=
∞
∑

n=1
,

∞
∑

k=1
0.5FnΛ|k|Fn cos(nprθ − nprΩrt + kθpm)

(7)

The order, amplitude, and angular velocity of harmonics of the flux density can be
concluded in Table 2, which is based on Equation (7). The flux in stator tooth/modulation
rings can be calculated with air gap area S and magnetic induction intensity B, which is
shown as follows.

φ =
∫

BdS = lr
∫

Bdθ (8)

where r is the radius of the air gap and l is the length of the domain of integration. The area
S equals the product of l, r and θ.

Table 2. Modulated harmonics in air-gap.

Harmonic Orders Harmonic Amplitude Harmonic Angular Velocity

npr + kpm
Λ|k|Fn

2
nprΩr

npr+kpm

Accordingly, as for the modulation rings, the flux in i-th modulation ring can be
defined as Equation (9).

φmi = lr0

∫ π
pm (2i−1)

π
−pm (2i−3)

B(1,1)(θ, t)dθ =
R0Λm0F1

pr
sin
(

π
pr

pm

)
cos
(

2π
pr

pm
(i− 1)− prΩrt

)
(9)

where r0 is the radial of the outer air gap.
Based on Equation (9), the amplitude Ma and the phase Mp of flux in the i-th modula-

tion ring can be found as follows.{
Ma =

roΛm0F1
pr

sin
(

π
pr
pm

)
Mpi = 2π

pr
pm

(i− 1)
(10)
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As for the stator, the flux in the stator tooth can be found and the derivation is given
as follows. When the stator and modulation rings are installed at the position shown in
Figure 5, the flux in the first stator tooth is defined as follows.

φs1 = lr1

∫ π
ns

π
−ns

B(1,1)(θ, t)dθ =
r1Λs0F1

pr − pm
sin
[
(pr − pm)

π

ns

]
cos(−prΩrt) (11)

where ri is the radial of the inner air gap.
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𝜋𝜋
𝑛𝑛𝑠𝑠
+△𝜃𝜃

𝜋𝜋
−𝑛𝑛𝑠𝑠

+△𝜃𝜃

𝑙𝑙1𝛬𝛬𝑠𝑠0𝐹𝐹1
𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑚𝑚

sin �(𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑚𝑚)
𝜋𝜋
𝑛𝑛𝑠𝑠
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𝑛𝑛𝑠𝑠

(2𝑎𝑎−1)+△𝜃𝜃

𝜋𝜋
−𝑛𝑛𝑠𝑠

(2𝑎𝑎−1)+△𝜃𝜃

𝑙𝑙1𝛬𝛬𝑠𝑠0𝐹𝐹1
𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑚𝑚

sin �(𝑝𝑝𝑟𝑟 − 𝑝𝑝𝑚𝑚)
𝜋𝜋
𝑛𝑛𝑠𝑠
�

∗ cos �[△ 𝜃𝜃 +
2𝜋𝜋
𝑛𝑛𝑠𝑠
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Figure 5. Two-dimensional cross-section at average diameter and winding configuration of A phase
of armature winding and auxiliary winding.

When the stator is rotated to the degree of 4θ, the flux in the first stator tooth is
redefined as follows.

φs1 = lr1

∫ π
ns +4θ

π
−ns +4θ

B(1,1)(θ, t)dθ =
r1Λs0F1

pr − pm
sin
[
(pr − pm)

π

ns

]
cos(4θ(pr − pm)− prΩrt) (12)

As indicated in Equations (11) and (12), when the stator is rotated by4θ, the phase
of flux in the stator tooth will vary with (pr − pm)4 θ while the amplitude is unchanged.
Moreover, the flux in the j-th stator tooth can be found in Equation (13).

φsi = ri
∫ π

ns (2i−1)+4θ
π
−ns (2i−1)+4θ

B(1,1)(θ, t)dθ = r1Λs0F1
pr−pm

sin
[
(pr − pm)

π
ns

]
∗ cos

([
4θ + 2π

ns
(i− 1)

)
](pr − pm)− prΩrt

) (13)

Based on Equations (12) and (13), the phase difference between 1st and i-th tooth is
[ 2π

ns
(i− 1)](pr − pm). The fixed parameters of the proposed machine are given in Table 1.

The phase angle of the 1st modulation ring is selected as the reference vector. 4θ is defined
as the phase difference between 1st modulation ring of the auxiliary winding and 1st stator
tooth of the armature winding, which is indicated in Figure 6.
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As shown in Figure 6 and Table 1, the pitch of the auxiliary winding and the armature
winding is 3 and 4. Based on Equations (10) and (13), the phase of flux in the i-th modulation
ring Mpi and the j-th stator tooth Spj is concluded as follows.{

Mpi = 2π 24
20 (i− 1)

Spj=44 θ + 2
9 π(j− 1)

(14)

Based on Equation (12) and Figure 5, the resultant vector of the A phase of the auxiliary
winding is 60 deg, while that of the A phase of the armature winding is 44θ + 80 deg. For
ensuring the resultant vector of armature winding matches that of the auxiliary winding,
the4θ is selected as −5 deg.

3. Parameters Configuration and Optimization

To better confirm the superiority of the proposed design, the generalized surface-
mounted PM machine is selected as the comparison model, which will be optimized and
compared comprehensively with the proposed design. The parameters and the correspond-
ing 2D cross-section at average diameter are shown in Figure 7 and Table 3.
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Table 3. Optimized parameters and optimization range.

Symbol Quantity Optimization Range Optimized Value

dry rotor yoke length (mm) 5–10 6.7
dpm surface-mounted PMs depth (mm) 2–5 3
dmr modulation rings length (mm) 10–15 13.9
dsth slot opening depth (mm) 1–2 1.5
dst stator tooth length (mm) 20–30 27.7
dsy stator yoke length 8–15 11.9

θmr/θm modulation ring angle 0.8–1.2 0.97
θsth/θs stator tooth head angle 0.7–1 0.88
θst/θs stator tooth head angle 0.6–1 0.71

The optimization procedure of the proposed machine is shown in Figure 8. The
genetic algorithm (GA) is employed as the optimization algorithm. The process is given
as follows. First, the optimization targets are set as the output torque and ripples while
the population quantity is selected as 100 considering the computing power. Secondly,
the models with different parameters are generated, selected, and calculated. Then, the
parameter combinations with better performance are saved and used for the optimization
of the next generation, otherwise, those solutions will be removed and new models will
be supplemented. Thirdly, if the iterations reach the setpoint, the optimization progress is
finished and the optimized solutions are saved. After optimization, the relationship among
torque, ripple, and torque versus PM consumption is given in Figure 9.
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The optimized parameters and optimization range are given in Table 3, which can
achieve a torque of 107.2 N·m with a ripple of 0.12. To conduct a fair comparison, the
contrast models, including the generalized coaxial-flux MGM [27,28], axial-flux MGM [29],
and surface-mounted PM machine, are optimized which have the same fixed parameters
given in Table 1. The optimization results are given in Figure 10. As shown in Figure 10, the
output torque of the generalized coaxial-flux, axial-flux MGM machine, and PM machine is
83.9, 82.1, and 69.8 N·m, respectively.
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4. Performance Analysis and Comparison
4.1. Magnetic Field Analysis

The magnetic field data analysis and performance evaluation was conducted via
Ansys/Maxwell. Figure 11 indicates the magnetic field distribution and magnetic flux
density of the proposed structure calculated by finite element analysis (FEA) under the
no-load and full-load conditions. As shown in Figure 10, the iron indicates no saturation
under the rated condition.
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The calculated air-gap harmonics distribution of the proposed machine with 4θ
of 0, −5, and −10 deg are presented in Figure 12. As shown in Figure 12, the air gap
harmonics distribution is stable with different values of4θ, indicating the deviation given
in Equation (9)—the flux in air gap will not be affected by4θ.
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Figure 12. Air gap flux distribution with different4θ. (a)4θ = 0 deg. (b)4θ = −5 deg (selected4θ).
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The harmonics spectrum conducted by FFT (Fast Fourier Transform) is given in
Figure 13, indicating the operating harmonics of the proposed machine. As shown in
Figure 13, the 4th and 20th are the operating frequency of the proposed machine.
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Figure 14. Induced voltages of the proposed machine with △ 𝜃𝜃 of −5 deg. 
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Figure 15. Induced voltages of the proposed machine with different △ 𝜃𝜃. (a) 0 deg. (b) −10 deg. 

To verify the proposed design approach, the △ 𝜃𝜃 versus the phase difference and 
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4.2. Stator Position Modulation

Based on Equation (14), the phase difference between auxiliary winding and armature
winding of the proposed machine can be found via the stator rotation angle 4θ. As for
the proposed combination, the phase difference is zero when the4θ equals −5 deg. The
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induced voltages of the auxiliary winding and armature winding with the4θ of −5 deg
are given in Figure 14.
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As shown in Figure 14, the induced voltage of the auxiliary winding is in phase
with that of the armature winding when 4θ equals −5 deg. Moreover, the induced
voltage of those two sets of windings with the4θ of 0 and −10 deg are given in Figure 15
as supplementary.
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To verify the proposed design approach, the4θ versus the phase difference and in-
duced voltage amplitude are given in Figure 16a,b, respectively. As shown in Figure 16a, the
finite element analysis (FEA) results correspond with the deviation given in Equation (14).
Moreover, as shown in Figure 16b, the amplitude of induced voltages is slightly affected by
the4θ, verifying the deviation given in Equations (10) and (14).
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Figure 16. Phase difference and induced voltage versus rotation angle. (a) Phase difference versus
rotation angle4θ. (b) Effective value of induced voltages versus rotation angle4θ.
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With the 4θ of −5 deg, the topology of the driving system can be simplified into a
single three-phase inverter, which is given in Figure 17. Otherwise, the driving system
requires two sets of a three-phase inverter.
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4.3. Torque Performance Comparison

To conduct a detailed comparison, the proposed machine will be compared to the
optimized surface-mounted PM machine (pole pair is 20/4 and slot number is 36) and
generalized magnetic-geared machine, including the rated torque, overload capability, and
cogging torque. The torque performance of the proposed machine, the PM machine, and
generalized coaxial-flux and axial-flux MGM is given in Figure 18.
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Figure 18. Torque of proposed machine and contrast models.

As shown in Figure 18, the output torque of the proposed machine reaches 106.2 N·m
while that of the generalized PM machine, coaxial-flux, and axial flux MGM only reaches
77.9, 83.1, and 82.1 N·m with the same copper loss, respectively. Under that condition, the
current density of the proposed machine, PM machine, and magnetic geared machine is 6,
6.76, 6.38, and 6.53 A/mm2, respectively. In addition, the torque ripple of the proposed
machine is higher than that of the PM machine but lower than that of the magnetic geared
machine, reaching 12.9% compared to the output torque.

The cogging torque of the proposed machine and contrast models are given in
Figure 18. As shown in Figure 19, the cogging torque of the proposed machine is larger
than that of the PM machine but lower than that of the magnetic geared machine, which
takes up 0.13 compared to the rated output torque.
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To better illustrate the effectiveness of the dual-series winding design, Figure 20
indicates the torque versus electrical angle of the proposed machine with the sole armature
winding excitation, auxiliary winding excitation, and dual winding excitation with the
4θ of −5 deg. As shown in Figure 20, the torques generated by armature winding and
auxiliary winding are totally in-phase under different electrical angles.
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The overload capability of the proposed machine and the corresponding comparison
machines are shown in Figure 21. As shown in Figure 21a, Under the rated current density
of 6 A/mm2, the torque of the proposed machine, PM machine, coaxial flux, and axial flux
MGM are 106.6, 69.8, 83.5, and 82.1 N·m, respectively. As for the torque improvement of
the proposed machine compared to contrast models, the corresponding results are given in
Figure 20b. As shown in Figure 20b, the improvement compared to MGMs are stable under
different current density, reaching 30%. However, compared to the PM machine, the torque
improvement will decrease with the increase of the current density.
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4.4. Efficiency and Loss Comparison

A comprehensive comparison between the proposed machine, surface-mounted PM
machine, coaxial flux, and axial flux MGM is shown in Table 4, including the loss, efficiency,
torques, and detailed parameters. As shown in Table 4, the proposed machine can improve
the torque, torque density, and torque per PM consumption compared to the PM machine
and coaxial flux and axial flux MGM, from 77.5, 83.9, 82.1 N·m, 9.72, 8.88, 8.43 N·m/kg,
127.68, 94.41, 114.02 N·m/kg to 107.2 N·m, 10.81 N·m/kg, and 150.7 N·m/kg, respectively.

Table 4. Comprehensive performance comparison.

Proposed Machine PM
Machine

Coaxial Flux
MGM

Coaxial Flux
MGM

Weight (kg) 9.92 8.02 9.49 9.73
Copper consumption (kg) 2.71 1.89 2.52 2.43

Steel consumption (kg) 6.51 5.52 6.08 6.58
PM consumption (kg) 0.70 0.61 0.88 0.72

Core loss (W) 109.2 98.2 104.5 106.3
Copper Loss (W) 187.92 184.23 176.91 179.3

Output torque (N·m) 107.2 77.5 83.9 82.1
Ripple 0.13 0.04 0.15 0.11

Torque density (N·m/Kg) 10.81 9.72 8.88 8.43
Torque density per weight of PMs

(N·m/Kg) 150.7 127.68 94.41 114.02

Efficiency (%) 93.2 90.1 90.6 90.0

Moreover, the proposed machine has a higher efficiency of 93.2% than that of the PM
machine of 90.1%, coaxial MGM of 90.6%, and axial flux MGM of 90.0%. Even if the weight
of the proposed machine is the largest, the overall performance of the proposed machine
still indicates an obvious superiority. Furthermore, to better investigate the efficiency
performance of the proposed machine, the efficiency versus current density is given in
Figure 22. As shown in Figure 21, the efficiency of the proposed machine and contrast
models will decrease with the increase of the current density. Under the current density
of 20 A/mm2, the proposed machine still has the highest efficiency among those three
machines, reaching 66.8%.
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Based on the abovementioned analysis, in the future, the proposed machine has a
strong potential for electric vehicles powertrain with improved performance, which will
promote the establishment of an environmentally friendly society [30,31].

5. Conclusions

In this paper, a dual-series-winding magnetic geared machine (MGM) and its design
approach are proposed and verified. The proposed design improves torque performance
and space utilization of the MGM with the introduction of the auxiliary winding. The
stator of the machine is rotated by 5 deg to ensure the excitation of the auxiliary winding
is in phase with that of the armature winding, accordingly, can be driven by a single
three-phase inverter. Compared to the coaxial flux, axial flux MGM, and surface PM-
mounted machine (SPM), the output torque can be improved from 83.9, 82.1, and 77.5
to 107.2 N·m with the same copper loss. Moreover, the torque density versus machine
weight and PM consumption compared to the coaxial flux, axial flux MGM, and PM
machine are enhanced from 8.88/8.43/9.72 N·m/kg, and 94.41/114.02/127.68 N·m/kg
to 10.81 N·m/kg, and 150.17 N·m/kg, respectively. In addition, the proposed machine
indicates a good overload capability. When the current density overloads more than
3 times compared to the nominated condition, the proposed machine still indicates a 19%
torque improvement compared to the PM machine and near 30% compared to MGMs.
Furthermore, the proposed machine has the highest among contrast models, reaching 93.2%
under the nominated conditions while that of the coaxial flux, axial flux MGM, and PM
machine only reaches 90.6%, 90.0%, and 90.1%, respectively. Based on the abovementioned
results, the proposed machine has superiority in electric vehicle powertrain, indicating a
strong scale-up feasibility in the future.
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