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Abstract: Environmental emissions, global warming, and energy-related concerns have accelerated
the advancements in conventional vehicles that primarily use internal combustion engines. Among
the existing technologies, hydrogen fuel cell electric vehicles and fuel cell hybrid electric vehicles
may have minimal contributions to greenhouse gas emissions and thus are the prime choices for
environmental concerns. However, energy management in fuel cell electric vehicles and fuel cell
hybrid electric vehicles is a major challenge. Appropriate control strategies should be used for
effective energy management in these vehicles. On the other hand, there has been significant progress
in artificial intelligence, machine learning, and designing data-driven intelligent controllers. These
techniques have found much attention within the community, and state-of-the-art energy manage-
ment technologies have been developed based on them. This manuscript reviews the application
of machine learning and intelligent controllers for prediction, control, energy management, and
vehicle to everything (V2X) in hydrogen fuel cell vehicles. The effectiveness of data-driven control
and optimization systems are investigated to evolve, classify, and compare, and future trends and
directions for sustainability are discussed.

Keywords: intelligent energy management; artificial intelligence; machine learning; fuel cell vehicle;
intelligent control; optimization system

1. Introduction

The problems of air pollution, global temperature rise, and the volatility of traditional
fossil fuels have impacted the globe over the past three decades. A major share of this is
attributed to the logic that the world’s transportation sector still largely depends on fossil
fuels to meet its energy requirements. As per the report by the International Energy Agency
(IEA), the transportation sector contributes 30% of the global carbon dioxide emissions, of
which almost 70% is from road-based vehicles [1,2]. In addition to the resulting emissions,
excessive utilization of fossil fuels in the transportation industry is the major cause of the
depletion of underground fossil fuel resources [3,4].

Research studies have shown that Internal Combustion Engine (ICE)-based automo-
biles are among the most significant contributors to air pollution [5]. This goes against
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the requirement of utilizing clean energy and achieving the objective of zero emissions,
which is expected from the transportation industry in the modern world [6]. Today, Electric
Vehicles (EVs) are recognized as a highly viable key to tackling the issue associated with
environmental contamination and increased fossil fuel dependency [7]. The powertrain
of an EV utilizes a mishmash of sources, such as ultracapacitors (UC), batteries, and fuel
cells (FC) [8]. In addition to protecting the environment, EVs have reduced long-term
costs associated with the operation of automobiles [9]. In terms of energy cost, EVs cost
approximately 2 cents per mile, whereas studies show that gasoline-powered vehicles have
a cost of around 12 cents per mile [10].

In general, an EV is more energy efficient as compared to an ICE-based vehicle [11].
According to the report published by the United States Department of Energy, ICE-based
vehicles utilize only 30% of the total energy of the fuel to operate the vehicle, while this
percentage is around 75% for EVs, indicating the degree to which EVs are more efficient
than fossil fuel-based vehicles [11,12]. ICE-based vehicles waste 85% of the fuel energy as
CO2, which is the main culprit contributing to global warming [13,14].

Currently, EVs are more expensive than ICE-based vehicles with the same specifica-
tions. The battery and its associated energy management systems take up almost one-third
of the vehicle cost. One may significantly reduce costs by using hybrid energy sources, more
efficient energy storage systems, and improved Energy Management Strategies (EMS) [15].
Based on the energy sources utilized to run the vehicle, EVs are mainly categorized into
Battery Electric Vehicles (BEVs), Fuel Cell Electric Vehicles (FCEVs), and Fuel Cell Hybrid
types, utilizing an effective hybrid structure of battery/UC and FC-based energy source to
run the vehicle [16].

This manuscript provides a comprehensive review of the recent advances in intelligent
EMS for FCHEVs. We review how intelligent control systems can be effectively used to
design EMS. The manuscript opens with a review of vehicle technology, followed by a
brief discussion of the major energy sources and their characteristics. The discussion then
progresses with the review of EMS and control strategies associated with FCEVs/FCHEVs.

2. Fuel Cell Vehicle (FCV)
2.1. Operating Principles of Fuel Cells

A vital worldwide issue, environmental pollution, may be addressed with the help of
fuel cell (FC) technology since fuel cells can produce energy efficiently while not releasing
any pollutants (the final product is water if hydrogen is applied as the fuel) [17–19]. The
chemical energy of a fuel and an oxidant is directly converted into electrical energy by a fuel
cell, an electrochemical device [20]. The fundamental physical composition of a single cell
is made up of an electrolyte layer in contact with a porous anode and cathode on each side.
Fuel cells typically produce electric current by electrochemical reactions at the electrodes in
which gaseous fuels are regularly supplied to the anode (negative electrode), and oxygen
from the atmosphere is continually supplied to the positive electrode (cathode) [21]. Figure 1
shows the basic concept of fuel cells [22].

The following electrochemical processes occur in a fuel cell with an acid electrolyte:

Anodic reaction: H2 → 2H+ + 2e (1)

Cathodic reaction: 1/2O2 + 2H+ + 2e−→ H2O (2)

The fuel cell’s total reaction results in the following production of water, heat, and
electrical energy:

Overall reaction: H2 + 1/2O2 → H2O + Water + Qheat (3)
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Figure 1. The basic concept of hydrogen fuel cell. 
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German scientist C. F. Schönbein developed the fuel cell’s basic operating concept in 
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named Francis Thomas Bacon exhibited the first completely functional fuel cell in 1959. 
His work was sufficiently outstanding to receive NASA’s approval and adoption. How-
ever, fuel cells are now used in stationary, portable, and transportation applications; the 
public and private sectors are gradually adopting them; they are becoming more reliant 
and long-lasting for operation; and they can operate using air and hydrogen produced 
through reformation as an oxidant and fuel, respectively. 

The principle of fuel cells is to convert chemical energy into electrical energy by re-
verse electrolysis. The two reactants of Polymeric Electrolyte Membrane Fuel Cells 
(PEMFC) are hydrogen, stored in high-pressure tanks, and oxygen, extracted from the air.  

Figure 2 shows fuel cell voltage and power density over current density [25]. In the 
case of a fuel cell, power density is highly dependent on the reaction area of the electrodes, 
meaning a highly porous surface area is favorable [26]. 

Figure 1. The basic concept of hydrogen fuel cell.

For ideal electric power generation, constant isothermal operation must be continual,
eliminating the heat and water byproducts. Therefore, fuel cells’ efficient design and
operation depend heavily on water and thermal management [23].

German scientist C. F. Schönbein developed the fuel cell’s basic operating concept in
1838. Based on this research, Welsh scientist Sir W.R. Grove exhibited the first fuel cell in
1839 [24]. Through the 20th century, further research was conducted. An English engineer
named Francis Thomas Bacon exhibited the first completely functional fuel cell in 1959. His
work was sufficiently outstanding to receive NASA’s approval and adoption. However,
fuel cells are now used in stationary, portable, and transportation applications; the public
and private sectors are gradually adopting them; they are becoming more reliant and
long-lasting for operation; and they can operate using air and hydrogen produced through
reformation as an oxidant and fuel, respectively.

The principle of fuel cells is to convert chemical energy into electrical energy by reverse
electrolysis. The two reactants of Polymeric Electrolyte Membrane Fuel Cells (PEMFC) are
hydrogen, stored in high-pressure tanks, and oxygen, extracted from the air.

Figure 2 shows fuel cell voltage and power density over current density [25]. In the
case of a fuel cell, power density is highly dependent on the reaction area of the electrodes,
meaning a highly porous surface area is favorable [26].

The polarization curve is mainly characterized by three types of losses, causing a
decrease in voltage at different currents. These losses are activation losses, ohmic losses,
and concentration losses. At low currents, activation losses arise from electrochemical
reactions. Then, ion transport and electronic conduction induce ohmic losses. At high
currents, the curve is characterized by concentration losses generated by mass transport.
The thermodynamic cell potential U0 is the maximal voltage that can be reached in the
whole operating range, as the ideal voltage is a theoretical value for an ideal process [27].
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Figure 2. Current-voltage and power-density curve of a fuel cell.

2.1.1. Fuel Cell Types

Today’s market offers a wide variety of fuel cells that can be classified based on the
type of electrolyte. Their outputs of power, operating conditions, electrical efficiency, and
common applications are different. Figure 3 displays the Classification of Fuel Cells (based
on the type of electrolyte, power, and working temperature) [28].
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PEMFCs are the most flexible and have the widest range of applications. The following
are the most common technologies on the market [29]:

• Polymeric Electrolyte Membrane Fuel Cells (PEMFC);
• Direct Methanol Fuel Cells (DMFC);
• Alkaline Fuel Cells (AFC);
• Phosphoric Acid Fuel Cell (PAFC);
• Molten Carbonate Fuel Cell (MCFC);
• Solid Oxide Fuel Cell (SOFC).

Due to their high power density, quick startup time, great efficiency, low operating
temperature, and simple and secure handling, PEMFCs are the most attractive choices
for transport applications. Although pure hydrogen and oxygen provide the highest
performance in AFCs, their short lives and intolerance to contaminants, particularly carbon
oxides, limit their use in terrestrial applications. The most established fuel cell technology
for use at intermediate temperatures is phosphoric acid fuel cells (PAFC). High-temperature
fuel cells suitable for cogeneration and combined cycle systems include molten carbonate
(MCFCs) and solid oxide fuel cells (SOFCs). In a size range of 250 kW to 20 MW, MCFCs
have the highest methane-to-electricity conversion efficiency, but SOFCs are best used for
base-load utility applications using coal-based gasses. The key distinctions between the
market’s most popular fuel cell types are outlined in Table 1 [30].

Table 1. The most popular fuel cell types on the market.

AFC PEMFC DMFC PAFC MCFC SOFC

Operating temp. (◦C) <100 60–120 60–120 160–220 600–800 800–1000

Electrolyte KOH Nafion membrane Nafion membrane H3PO4 Li2CO3-K2CO3 YSZ

Charge carrier OH− H+ H+ H+ CO3
2− O2−

Anode reaction H2 + 2OH− →
2H2O + 2e−

H2 → 2H+ + 2e−
CH3OH + H2O→
CO2 + 6H+ + 6e− H2 → 2H+ + 2e− H2 + CO3

2− →
H2O + CO2 + 2e−

H2 + O2− →
H2O + 2e−

Cathode reaction
1⁄2O2 + H2O + 2e− →

2OH−
1⁄2O2 + 2H+ + 2e− →

H2O
3/2O2 + 6H+ + 6e− →

3H2O
1⁄2O2 + 2H+ + 2e− →

H2O
1⁄2O2 + CO2 + 2e− →

CO3
2− 1⁄2O2 + 2e− → O2−

Electrode materials Anode: Ni
Cathode: Ag

Anode: Pt, PtRu
Cathode: Pt

Anode: Pt, PtRu
Cathode: Pt

Anode: Pt, PtRu
Cathode: Pt

Anode: Ni-5Cr
Cathode: NiO(Li)

Anode: Ni-YSZ
Cathode: LSM

Power 5–150 kW 5–250 kW <5 kW 50 kW–11 MW 100 kW–2 MW 100–250 kW

2.1.2. Fuel Cells System Characteristics

Fuel cell systems have many benefits over conventional fossil fuel-powered electric
generators [20]:

• Higher efficiencies;
• Low emission;
• Fast setup and modularity;
• Easier to maintain;
• Fuel adaptability.

Using sustainable fuels such as hydrogen and chemical energy directly into electrical
energy, which improves overall efficiency and eliminates the system’s mechanical parts, is
the fuel cell’s most significant advantage over conventional combustion engines [31].

Higher Efficiency

Since electric energy is directly (chemically) created from the fuel utilized, fuel cells
have greater efficiency. The Carnot thermic cycle restrictions that plague all combustion-
based electric generating systems are, therefore, applicable to the technology. For example,
a fuel cell-powered vehicle is approximately twice as efficient as one driven by an internal
combustion engine in light vehicles [32].

Reduced Emissions

Hydrogen-fueled fuel cell stacks only produce water, heat, and DC power. A hydrogen
fuel cell stack is also emission-free, excluding high-temperature fuel cells’ manageable
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NOx emissions. Furthermore, the fuel cell’s ability to operate cleanly depends on how the
fuel is produced (e.g., hydrogen). A complete fuel cell system produces greenhouse gases
with a fuel reforming stage (e.g., CO and CO2). This factor is pressuring academics and
businesses to create clean water electrolysis-based hydrogen-generating technologies that
are efficient and renewable to replace the current reformation-based ones. Systems that
combine fuel cells with renewable hydrogen production are clean energy production and
conversion systems that mirror what the energy sector aims for. It is important to note that
certain heat engine systems seem less polluting than fuel cell systems when the emissions
from the fossil fuel reformation process are considered [33]. This merely serves to highlight
the relevance of the above conclusions on using renewable-based water electrolysis to
produce hydrogen.

Modularity and Fast Startup

A single fuel cell may produce less than one volt of electrical potential. Thus, fuel
cells are layered on top of one another and linked in a series to generate larger voltages.
Repeating fuel cell units made up of an anode, a cathode, an electrolyte, and a bipolar
separator plate makeup cell stacks. The intended power output and the performance of each
cell determine how many cells should be in a stack. The sizes of the stacks range from a few
hundred W to several hundred kW (up to several MW) [21]. Additionally, fuel cell systems
often have excellent dynamic load-following properties; the fast electrochemical processes
partly cause this within a fuel cell. Once more, the slower nature of the reformation process
causes the load-following capabilities of the system to diminish dramatically when the fuel
cell system has a fuel reformation step [34].

Low Maintenance

For the same type of fuel cells, it is generally simple to pinpoint and replace a damaged
or malfunctioning cell enclosed inside a stack due to the great flexibility of generating
systems. This trait results in decreased maintenance expenses [21].

Fuel Flexibility

Fuel cells have various uses, from micro fuel cells with power outputs of less than 1 W
to multi-MW prime power production facilities. This is explained by their modular design
and wide range of fuel cell varieties. As a result, the batteries used in consumer electronics
and auxiliary vehicle power can be replaced with fuel cells. A fuel cell can replace heat
engines used in transportation and power production due to their similar characteristics.
The majority of renewable energy-producing methods may easily be integrated with fuel
cells. Short warm-up periods are necessary for fuel cells that work in low-temperature
ranges, which is crucial for portable and emergency power applications. Utilizing waste
heat improves the system’s overall efficiency for fuel cells that operate in the medium- to
high-temperature ranges while also providing an extra source of power output for Domestic
Hot Water (DHW) and space heating in residential applications as well as CHP industrial-
level applications. Methanol, methane, and hydrocarbons, such as natural gas and propane,
are all acceptable fuels for reformation-based fuel cell systems. Through a process known
as fuel reformation, these fuels are transformed into hydrogen. Alternative fuel cells that
run on alcohol include direct methanol and direct alcohol fuel cells. Additionally, while
water electrolysis produces the most hydrogen for fuel cells, a fuel cell system that uses
natural gas reformation also has advantages over other methods [35]. However, even if fuel
cells can offer significant benefits, the technologies are still in research. They are plagued
by issues, making their usage less convenient than other technologies. Ref. [36] highlighted
the following issues:

• The costs of stationary electric generation using fuel cells ((EUR /Wh)) are still too
high and make them an appropriate replacement for technologies based on fossil fuels.

• There is still much to learn about the lifespan and rate of deterioration of many fuel cell
technologies, particularly the high-temperature ones that are ideal for generating electricity.
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• Hydrogen, one of the primary fuels for fuel cell technologies, is costly, and there is
currently no system in place for its distribution and manufacture.

• The difficulty of containing a sufficient amount of hydrogen in small fuel containers
and the hydrogen is a combustible and possibly explosive gas limit the usage of
low-temperature fuel cells in the automotive industry (especially if compressed in
small containers).

These factors prevent fuel cells from replacing many other less efficient technologies
and have a more negative environmental effect.

2.2. Fuel Cell Vehicle
2.2.1. Electric Vehicle

EVs utilize electric energy storage systems, such as batteries, FCs, and UCs, as shown
in Figure 4 [37]. EVs are still in their infancy and far from ICE vehicles in terms of carrying
capacity, payload, boot space, etc. EVs exceed the ICE vehicles by a serious margin [38]. The
main hurdles associated with using EVs include the relatively high price of the purchase,
long charging duration, and short range [39–42]. EVs, despite their disadvantages, have
several advantages as well. The main benefit of this type of vehicle is that it has minimal
mechanical degradation due to a lack of mechanical and moving parts. However, the fact
that these vehicles require high-torque traction motors reduces their overall efficiency. These
motors are associated with an increased flow of current in armature windings, which causes
heat loss [43,44]. To improve the driving speed and travel distance, gearbox mechanisms
are introduced into EVs. However, this impacts efficiency because of mechanical energy
loss associated with these mechanisms [13].
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2.2.2. Fuel Cell Electric Vehicle (FCEV)

Similar to Battery Electric Vehicles (BEVs), FCEVs also utilize an electrical source
to power the vehicle. Still, the difference lies in the fact that, unlike BEVs, which use
a battery as the power source, FCEVs utilize an array of hydrogen fuel cells to power
the vehicle [45,46]. An FC can be defined as a source of energy that utilizes a chemical
reaction involving hydrogen as fuel to generate electricity. In an FC, hydrogen and oxygen
are combined to produce water and energy. Since the byproducts of a fuel cell reaction
emit no byproducts other than water, waste heat, and energy, FCEVs are generally cate-
gorized as zero-local emission vehicles [13]. Low pressure and temperature FCs, such as
a Polymer Electrolyte Membrane Fuel Cell (PEMFC), are generally utilized for designing
an FCEV since they show characteristics such as low operating temperature (60–80 ◦C),
superior power density characteristics, and lower corrosion characteristics as compared
to other fuel cell types [47,48]. In an FCEV, hydrogen is sometimes stored in a fuel tank
onboard the vehicle or, in other cases, is extracted in real-time utilizing a hydrogen fuel
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processor [13,48,49]. The major merits of FCEVs include faster fueling, zero emissions, easy
maintenance, better fuel efficiency, and a silent drive. However, their main disadvantages
include challenges associated with safety, storage, and a general lack of hydrogen fuel
stations and the associated cost and complexity of the technology [1]. FCEVs are ideally
suitable for low-speed, constant-power vehicles and driving conditions [13].

The size and number of the FCs are utilized to determine the power generation
capacity of the FC stack. Additionally, since the fuel cells generate heat and water along
with electricity, a co-generation system could be employed to advance the overall system
efficiency [50]. The powertrain configuration of an FCEV is shown in Figure 5. An FC
system comprises an anode, an electrolyte layer, and a cathode. In an FC, hydrogen is
allowed to pass through the anode, and oxygen is delivered through the cathode. In the
anode, the hydrogen molecules are split into protons and electrons by using a catalyst.
The protons are allowed to move through the electrolyte layer while the electrons are
compelled to pass across an external circuit generating heat and electricity. At the site of
the cathode, the electrons, protons, and the supplied oxygen combine to produce water.
Since no moving parts are involved, FCs are quiet and highly reliable.

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 40 
 

2.2.2. Fuel Cell Electric Vehicle (FCEV) 
Similar to Battery Electric Vehicles (BEVs), FCEVs also utilize an electrical source to 

power the vehicle. Still, the difference lies in the fact that, unlike BEVs, which use a battery 
as the power source, FCEVs utilize an array of hydrogen fuel cells to power the vehicle 
[45,46]. An FC can be defined as a source of energy that utilizes a chemical reaction in-
volving hydrogen as fuel to generate electricity. In an FC, hydrogen and oxygen are com-
bined to produce water and energy. Since the byproducts of a fuel cell reaction emit no 
byproducts other than water, waste heat, and energy, FCEVs are generally categorized as 
zero-local emission vehicles [13]. Low pressure and temperature FCs, such as a Polymer 
Electrolyte Membrane Fuel Cell (PEMFC), are generally utilized for designing an FCEV 
since they show characteristics such as low operating temperature (60–80 °C), superior 
power density characteristics, and lower corrosion characteristics as compared to other 
fuel cell types [47,48]. In an FCEV, hydrogen is sometimes stored in a fuel tank onboard 
the vehicle or, in other cases, is extracted in real-time utilizing a hydrogen fuel processor 
[13,48,49]. The major merits of FCEVs include faster fueling, zero emissions, easy mainte-
nance, better fuel efficiency, and a silent drive. However, their main disadvantages in-
clude challenges associated with safety, storage, and a general lack of hydrogen fuel sta-
tions and the associated cost and complexity of the technology [1]. FCEVs are ideally suit-
able for low-speed, constant-power vehicles and driving conditions [13]. 

The size and number of the FCs are utilized to determine the power generation ca-
pacity of the FC stack. Additionally, since the fuel cells generate heat and water along with 
electricity, a co-generation system could be employed to advance the overall system effi-
ciency [50]. The powertrain configuration of an FCEV is shown in Figure 5. An FC system 
comprises an anode, an electrolyte layer, and a cathode. In an FC, hydrogen is allowed to 
pass through the anode, and oxygen is delivered through the cathode. In the anode, the 
hydrogen molecules are split into protons and electrons by using a catalyst. The protons 
are allowed to move through the electrolyte layer while the electrons are compelled to 
pass across an external circuit generating heat and electricity. At the site of the cathode, 
the electrons, protons, and the supplied oxygen combine to produce water. Since no mov-
ing parts are involved, FCs are quiet and highly reliable. 

FC

D
GBC

FT

EM

PCU

 

 
Figure 5. Fuel cell electric vehicle and its components. 

Of the different fuel cells, polymer electrolyte membrane fuel cells (PEMFC) are the 
most suitable for automotive applications. Mobile operation capability and lower working 
temperatures are requirements for vehicle fuel cell applications. In addition, they bring 
along advantages, including highly efficient operation of up to 55%, zero harmful local 
emissions, and low noise emissions due to no moving parts within the fuel cell [51]. Du-
rability, cost, and heat management are internal challenges that have to be worked on, 

Figure 5. Fuel cell electric vehicle and its components.

Of the different fuel cells, polymer electrolyte membrane fuel cells (PEMFC) are
the most suitable for automotive applications. Mobile operation capability and lower
working temperatures are requirements for vehicle fuel cell applications. In addition, they
bring along advantages, including highly efficient operation of up to 55%, zero harmful
local emissions, and low noise emissions due to no moving parts within the fuel cell [51].
Durability, cost, and heat management are internal challenges that have to be worked on,
while energy management strategy has a big impact on characteristics such as durability
and fuel consumption [47,51,52].

Various FCEV configurations rely on the required hybridization level, FC type utilized,
and battery [48]. The system typically consists of a power source (primary), i.e., the FC
system, and an ESS, such as a battery [53]. Similar to BEVs, FCEVs utilize an all-electric
type of powertrain; nevertheless, the energy source is an FC stack [13].

The electricity produced in the FC stack of an FCEV usually follows any one of the two
paths as per specific driving demands. It either courses to the EM and directly powers the
FCEV or flows to charge the battery pack, which acts as energy storage until it is demanded.
The function of the Power Distribution Unit (PDU) is to effectively distribute the power
either to the battery pack or to the EM as demanded. Apart from this, a PDU also powers
the associated auxiliary systems. The Peak Power Battery used in FCEVs, as continuously
charged by the FC, is considerably smaller and thus lighter than the typical battery used
in a BEV. A DC/DC converter is utilized to increase the voltage. The configuration also
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employs an inverter to achieve the DC to AC conversion to control the output of the electric
drive [54]. The general configuration of an FCEV is shown in Figure 6.
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2.2.3. Fuel Cell Hybrid Electric Vehicle (FCHEV)
Powertrain Configurations

This article focuses on options for combining fuel cells and batteries. Hence, two
powertrain configurations for FCHEVs have been described that are mainly in use. These
are series and parallel hybrid configurations. Before going into more detail, it is important
to state why using a fuel cell as the only power source in a vehicle (see Figure 3) is not
favorable.

If the only power source in a vehicle is a fuel cell, it must cover all loads derived from
the road power demand and auxiliaries. This brings along a fluctuating power demand,
leading to higher fuel cell degradation. In addition, the fuel cell’s overall efficiency is
lowered due to operation at low power demands. Using a hybrid powertrain with a battery
as a secondary power source, the fuel cell acts as a support power source and can run in
highly efficient operation. This results in reduced overall energy consumption [51].

In both hybrid configurations, the fuel cell is connected to a unidirectional DC/DC
converter that changes the output voltage of the FC to the desired voltage. Hence, the
battery is connected to a bidirectional DC/DC converter since it can provide and recuperate
energy (see Figure 4). Power electronics convert the DC to AC and operate the asynchronous
induction motor [55].

The parallel hybrid configuration (see Figure 7) shows the fuel cell and battery adding
up to provide power for the electric motor. The fuel cell usually has a higher power
output, while the battery is smaller than the series configuration. A more intelligent energy
management system is needed to realize the power distribution and ensure the fuel cell’s
longevity while minimizing fuel consumption. Nevertheless, it can be used to decrease
the size of the battery and further reduce the costs of the vehicle [56]. The parallel hybrid
configuration is used in this paper as it is considered to be more efficient and future-oriented
than the series hybrid. As the energy management strategy takes an important role in
this hybrid powertrain, it will be discussed in more detail in the next chapter. Often, this
configuration is used similarly to a range-extended vehicle with a comparably high battery
capacity. The disadvantage is that a bigger battery brings more weight into the vehicle,
increasing fuel consumption and total production costs. In addition to the less complex
control strategy, running costs and fuel consumption can be lowered by designing the
FCHEV as a Plug-In HEV [47].
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Figure 8 shows a simplified powertrain structure. At first, information is forwarded
from the driver to the controller using gas and brake pedals, which is then translated into a
torque demand. Following, the controller establishes the power distribution between the
fuel cell and battery based on the control method, which has information about the current
operation point of the power sources through the EMS. The electric power is transferred to
the EM, which translates it into mechanical power for the wheels.
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Energy Management Strategy

Energy Management is the coordination of power sources and energy storage to
minimize fuel consumption and emissions and the durability of components and systems.
The main task is the determination of control values for the power sources. In the case of
a hybrid powertrain, an EMS is required to control the power distribution between the
fuel cell and the battery. Intelligent EMS can drastically reduce fuel consumption and thus
prolong the lifespan of the power sources. More benefits are the extended range of the
vehicle and fewer emissions [57].

The desired power distribution for an FCHEV is as described in previous sections.
The fuel cell works efficiently under a stationary load while the battery absorbs the power
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peaks of the power demand. The power demand consists of road power, influenced by
environmental conditions, driver behavior, internal demands, and the auxiliary system
of the vehicle and fuel cell. If the EMS could adapt to various road and environmental
conditions, such as road geometry, wind, and weather parameters, the vehicle performance
would be improved. These influences can be further divided into slope and bend of the road,
direction and speed of wind and temperature, solar radiation, and humidity in the ambient
air. The environmental parameters also influence the thermal comfort of the vehicle, which
is difficult to control. The air conditioning system ideally needs to be integrated since it
plays a major role in the energy efficiency of auxiliaries [58].

3. Artificial Intelligence (AI) and Machine Learning (ML) Methods

Artificial intelligence is a constellation of many different technologies working to-
gether to enable machines to sense, comprehend, act, and learn with human-like levels
of intelligence. Maybe that is why it seems as though everyone’s definition of artificial
intelligence is different: AI is not just one thing. Technologies such as machine learning and
natural language processing are all part of the AI landscape. Each one is evolving along its
path and, when applied with data, analytics and automation, can help businesses achieve
their goals, be it improving customer service or optimizing the supply chain [59].

3.1. Fuzzy Logic System (FLS)

The idea of FL aims to mimic human feelings and interpretation methods. Unlike
the classic point-to-point type approach, FLC is a range-to-point or range-to-range control.
The fuzzy controller output is obtained by fuzzifying the inputs and the defuzzification
of outputs employing the associated membership functions [15]. A crisp input is first
converted to fuzzy values using appropriate fuzzy membership functions. Then, the
inference is made through a fuzzy inference system similar to a look-up table. The output
of the fuzzy inference system is a fuzzy value. Finally, the output is de-fuzzified to obtain a
crisp control action [60]. Fuzzy control systems have numerous purposes in the motorized
industry, such as transmission shift control and antilock brake control [61,62].

3.2. Model Predictive Control (MPC)

MPC is a feedback control algorithm that uses the model plant to predict the future
outputs of a process. It also uses the optimizer, which guarantees that the predicted plant
output tracks the desired reference [63]. By solving an optimization problem, the MPC
controller tries to minimize the error between the reference and the predicted output
over a future horizon, possibly subject to constraints on the manipulated inputs and
outputs [64–66].

3.3. Genetic Algorithm (GA)

The idea of the GA is founded on Darwin’s theory of evolution and is commonly
utilized to find the optimum in non-convex optimization problems. The genetic algorithm
can solve constrained and unconstrained optimization problems with natural selection
based on biological evolution [67]. In this strategy, the population, which is a collection
of candidate solutions, is made to evolve into a new set of the optimal population that
relies on operators that are inspired by biological processes such as crossover, selection, and
mutation [68]. During the evolution process, the fitness concept is employed to calculate
the objective function; the fitter population remains, and there is more chance for it to
produce more population [69]. The process of iteration is utilized to reach the optimal
solution [70].

3.4. Machine Learning (ML)

Machine Learning (ML) is a type of Artificial Intelligence (AI) method that uses
software applications to predict outcomes more accurately without being explicitly pro-
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grammed [71]. The ML algorithms utilize previous data as input to predict new output data.
There are four categories of ML methods based on what types of data need to predict [72].

Supervised learning: in this algorithm, the labeled data and defined variables correlate
with allowing the software to predict the output data. The input and output data are
specified in this method.

Unsupervised learning: this algorithm trains unlabeled data by scanning the data set
to find any meaningful connection. The predetermined output comes from trained data to
predict or recommend more data.

Semi-supervised learning: this algorithm is a mix of two previous methods. It has
labeled training data, but the algorithm is free to explore through data on its own and
develop knowledge of the data set [73].

Reinforcement Learning (RL): this algorithm tries to teach a machine to complete
a multi-step process based on reward and punishment to complete a task. Because this
algorithm utilizes for control and energy management systems in a vehicle in lots of papers,
in the following section, the algorithm will define in more detail.

RL is inspired by living things, such as humans and animals, as a control system.
The idea is to learn from experiences by setting rewards and punishments for each action
taken [74]. In control engineering, the goal is to minimize a certain control cost, equal to
maximizing the agent reward in reinforcement learning. As a result, an RL agent attempts
to develop an optimal policy suitable for control theory as a heuristic method [75]. RL is one
of the machine learning techniques where agents learn how to deal with the environment
through the rewards or penalties associated with each action (see Figure 9). In more detail,
an RL algorithm learns optimal behavior by interacting with the state through an action [76].
Once the action is complete, a reward is retrieved, which can be either positive or negative.
A positive reward is an indicator of a correct action [76].
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Figure 9. Schematic of Reinforcement Learning [76].

In RL, policy, value function, reward function, and the environment are the main
elements of the model (see Figure 9). One of the essential parts of RL is the policy, which
is defined as an agent’s behavior at a specific time. The policy is usually calculated by
minimizing the value function over time. The optimal policy should be obtained through
the RL process. The reward function is defined for each action the agent performs, and the
agent tries to maximize its reward over time. The value function tries to predict the future
reward based on the agent’s actions for a higher reward. There are two value functions: the
state-value function and the action-value function. The state–value function is used for known
environments, similar to Dynamic Programming (DP) methods.

On the other hand, the action–value function is used for the unknown environment,
such as the Monte Carlo-based and Temporal Difference (TD) methods. The value function
predicts the total future reward. In contrast, the reward function works only on the
immediate reward, so all the actions will be considered depending on the state or action-
value function.

As suggested in [76], dynamic programming (DP), Monte Carlo (MC), and temporal
difference (TD) are three main variations of RL. DP requires an environment model, MC is
entirely model-free, and TD combines DP and MC. Indeed, TD is model-free and can be
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easily used online with step-by-step calculation [77]. RL algorithms can also be classified
into three types depending on how the optimal policy is calculated:

Value Iteration (VI) algorithms can be either model-based or model-free. VI Algorithms
can find the optimal policy based on the optimal value function.

Policy Iteration (PI) algorithms evaluate policies to obtain value functions and use
these value functions to improve policies. The PI algorithms also can be model-free and
model-based.

Policy Search (PS) algorithms find an optimal policy with optimization techniques. PS
algorithms can be either gradient-based or gradient-free.

4. AI and ML in EVs
4.1. Prediction of Fuel Cell Behaviour Using AI

The widespread adoption of fuel cells in mobile applications is limited due to their
cost and durability. The Department of Energy United States of America has set the target
of reducing the cost to 14 USD/kWnet and increasing the durability to 5000 h of active
operation and substantial improvement in start/stop durability as well [78].

However, due to the inherent complexity of FC systems, their optimization is a multi-
disciplinary challenge. It would require improvement on multiple fronts, such as material
science, model-based system design, failure diagnosis, and system control. This section cov-
ers the literature on AI and ML algorithms to improve fuel cell systems’ failure prediction
and fault diagnosis. The methods for predicting faults begin with system modeling. Two
main system modeling approaches are widely used –model-based and data-based tech-
niques. In addition, some hybrid strategies combine both model- and data-based methods.

The model-based methods, also known as residual-based diagnosis, differ from data-
based in certain vital aspects. The fundamental approach relies on creating a system model
that runs parallel to the physical system. It periodically records the residuals, i.e., the
difference in the predicted and actual system behavior. This residual measurement is then
used to identify and classify the fault. A system model represents the physical system,
which must be characterized by different parameters that must be correctly identified to
ensure high model accuracy. This type of analytical model, also called the white box model,
often uses a series of algebraic and differential equations to exploit well-known physics,
such as Nernst–Planck, Butler–Volmer, and Fick’s law, to capture the charge transport
and mass transfer phenomena. Ref. [79] has presented a concise review of the model-
based diagnosis of proton exchange membrane fuel cells. A summary combining different
non-model-based fault prediction methods from [79] and [80] is shown in Figure 10.
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On the flip side, non-model-based algorithms tend to circumvent the physical mod-
eling approach by using the data obtained from extensive testing of the target system.
Ref. [80] has presented a systematic classification of different data-based, also referred to as
non-model-based methods. It highlights AI-based techniques and statistical procedures,
such as PCA and PDA, which can be used for dimensionality reduction and purely signal-
based methods. Over the years, AI and ML methods have increased considerably in the
data-driven modeling of FC systems. Many novel concepts such as genetic algorithms,
particle swarm optimization (PSO), artificial neural networks and deep learning, random
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forest method, and support vector machine have improved the state of data-driven mod-
els used for classifying and identifying different failure conditions [82]. Moreover, these
advanced AI methods are often augmented by combining ML algorithms with genetic
algorithms and statistical methods for feature reduction.

The methods enlisted above can be used to create FC system models that take are
used to predict the behavior of a fuel cell system. The behavior can vary subject to various
factors encountered while operating in a real environment, for example, temperature
variation, humidity changes, and drastic changes in power demand. Using an accurate
FC system model, one can accurately predict system properties, such as the state of health
(SOH) or remaining useful life (RUL), or identify and classify faults in the FC system.
In addition, it can sometimes predict the short-term power demand and rate power for
optimal energy management.

4.1.1. State-of-Health (SOH) and Remaining Useful Life (RUL) Prediction Using AI

Over the years, many model-based methods have been used to estimate the SOH
of an FC system. However, recently there has been an upward trend in the use of AI
to model the incredibly complex FC degradation mechanism. Advanced AI techniques,
such as Recurrent Neural Networks (RNNs), have successfully created accurate models.
Raeesi et al. [83] compared the accuracy of Deep Neural Networks (DNNs), Recurrent
Neural Networks (RNNs) and Long Short-term Memory (LSTM), and Bidirectional Long
short-term Memory (BiLSTM). The results favored DNN in terms of model accuracy.
Ma et al. [16] created an aging model using LSTM and Grid-LSTM and compared it to other
data-driven models. The results showed higher accuracy and better real-time performance.

Similarly, Lin et al. [84] compared the LSTM networks with other popular AI methods
such as Support Vector Regression (SVR), Gaussian Kernel–SVR (GK-SVR), and Artificial
Neural Networks (ANNs) to predict the high-frequency resistance of a Fuel cell stack
subject to different parameters. The HFR resistance is an important indicator for estimating
degradation performance losses. The results showed that the LSTM networks generated
a more accurate HFR prediction model. Moreover, using feature extraction techniques
reduced the computational cost, making the model real-time feasible.

On the other hand, considerable research is being carried out to test the combination
of Genetic Algorithms (GAs) with advanced AI methods for accurate modeling. For ex-
ample, Chen et al. [85] compared augmented Multi-kernel Relevance Vector Regression
(MRVR) with Whale Optimization algorithm (WOA), Particle Swarm Optimization (PSO),
and Genetic algorithm with several conventional AI methods. The results showed that a
considerable improvement was possible by using the augmented WOA + MRVR approach.
Furthermore, Yue et al. [86] created an RUL prediction model that utilized particle filtering
and fuzzy logic controller optimized using GA. At the same time, Chen et al. [87] combined
GA with Extreme Learning Machines (GA + ELM) to predict voltage degradation over
time. The resulting models have low computational cost and higher accuracy than con-
ventional methods such as support vector machine (SVM) and Back Propagation Neural
Networks (BPNNs).

Other studies have combined different AI concepts to improve accuracy and reduce
computational costs. For example, Yang et al. [88] combined Multivariate Polynomial
Regression (MPR) with ANN, and Huo et al. [89] combined Random Forest (RF) and
Convolutional Neural Networks (CNN) to predict the performance changes in a fuel cell
due to degradation. A summary of the reviewed works related to State-of-health (SOH)
and Remaining Useful Life (RUL) prediction using AI in FCHEVs is listed in Table 2.
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Table 2. Summary of reviewed works related to State-of-health (SOH) and Remaining Useful Life
(RUL) prediction using AI in FCHEVs.

Author AI Method Pros Cons

Vichard et al. [90] Echo State Neural Network (ESN)

A representative experimental test is conducted on a 1 kW
fuel to simulate realistic operation as a Postal delivery

vehicle (start–stop and temperature variations)
Highlights the influence of ambient temperature and

Energy throughput in Ah on the State-of-health (SOH)
Online application possible

Lack of representative test cycles,
such as NEDC and UDDC.

The selected fuel is air-cooled and
self-humidifying, which could
have amplified the dependence
between the ambient condition

and SoH

Raeesi et al. [83]

Deep Neural Network (DNN)
Recurrent Neural Network (RNN)

Long Short-Term Memory
Bi-directional LSTM (BLSTM)

Systematic comparison of different AI algorithms
Experimental data used to train and compare the outputs

Inadequate information about the
validation and generality of the

fitted models

Ma et al. [16]

LSTM & G-LSTM
Relevance Vector Machine (RVM)

Non-linear Autoregressive,
Elman

Rigorous testing data of 8 different FC systems
Systematic improvements to a long-established RNN
framework by adding LSTM nodes and Grid-LSTM

Both short-term and long-term degradation is predicted is
documented

The test profiles are simple steps
or stationary inputs. A more

dynamic loading could trigger
different degradation.

The use of standardized drive
cycle power demand scaled
appropriately could be more

appropriate

Lin et al. [84]

LSTM with multi-layer perception
(MLP)

Linear support vector regression
(L-SVR),

Gaussian Kernel Support Vector
Regression (GK-SVR),

Artificial Neural Network (ANN)

Theoretical background on shortcomings of conventional
CNNs and advantages of LSTM are well documented

Experimental test data from a PROME P390 92 kW
self-humidifying fuel cell system

The model works better than other regression-based
models

By reducing the dimensionality and the computationally
time

The lack of a standardized test
cycle makes it difficult to

compare the results with other
literature

The analysis understates the
importance of inlet and outlet
temperature and airflow rate,

which contradicts the theoretical
understanding

Wang et al. [91] Navigation Sequence Driven LSTM
(NSD-LSTM)

Fuel cell failure is predicted using the degradation trends
Predicting RUL

Prediction is quite inaccurate at
some points

Zuo et al. [92] LSTM
Gated Recurrent Unit (GRU)

Dynamic durability test data are used to test the prediction
capability of the models

The lack of a standardized test
cycle makes it difficult to

compare the results with other
literature

Yue et al. [86] Particle filters, Fuzzy logic controller,
and Genetic algorithm

Combining advanced concepts, such as particle filters for
online estimation and using fuzzy logic controller

optimized by Genetic Algorithm.
Non-linear FC systems and battery models are considered

Objective function includes fuel cell degradation, change in
SoC, and H2 consumption

The total cost of ownership approach to evaluate the final
EMS results

Charing and discharging and SoC
estimation model of the battery

are straightforward
Lack of experimental data and

validation

Chen et al. [87]

GA + ELM
Elman

SVM, Adaptive Neuro-fuzzy
Inference System (ANFIS)

The extreme learning method has a low computational cost.
To increase the model’s accuracy, a GA algorithm is used to

tune the parameters of the hidden layer.
The method performs better than SVM and Elman network
trained. Additionally, the prediction error is compared with

the Adaptive neuro-fuzzy inference system (ANFIS)

Some other AI algorithms, such
as LSTM, perform better with

time-series data than SVM and
Elman network. A comparison

between LSTM and the proposed
method would be more fruitful.

Yang et al. [88] ANN-MPR & Rectified Linear Unit
Artificial Neural Network (ANN)

Dead-ended anode (DEA) and anode recirculation are
explained in detail in this paper

Detailed representation of physical interaction in the GDL
and electrodes is presented

Huo et al. [89] CNN + RF
Deep Neural Network (DNN)

Serious consideration of important design factors by
preprocessing the data using the RF method

The dataset is based on 64 high-quality research articles
k-Fold cross-validation method due to the small size of the

training data set

Lack of representative test cycles
or loading cycles for independent

comparison between different
modeling approaches from the

literature

Meraghni et al. [93]

Digital Twin
Deep Transfer Learning (DTL)

Stacked autoencoder
Particle filter-based exponential

empirical model

State-of-the-art DT prognostics methods and their
industrial use is presented

An evaluation study is carried out using real system
measurements from the long-term PEMFC degradation

experiment

Chen et al. [85]

Multi-kernel Relevance Vector
Regression (MRVR)

Whale Optimization Algorithm
(WOA)

Particle Swarm Optimization—MRVR
(PSO-MRVR)
GA-MRVR

Back Propagation Neural Network
(BPNN)

K-Nearest Neighbors (kNNs)
Support Vector Regression (SVR)

Decision Tree (DT)

The proposed method is compared against several
reference modeling methods, and the results show that a
positive step up can be made using the MRVR approach

Different combinations of MRVR with WOA, PSO, and GA
are presented

Both experimental and lab data are used to train multiple
AI algorithms, and the results of the comparison are shown

clearly
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In summary, the degradation prediction of the fuel cell depends on many system-
level parameters, material properties, control parameters, and operation strategies. To
achieve an accurate estimation of system health, one must use an optimal AI approach
or a combination thereof. LSTM shows good prediction capability and works well with
time series data. GAs can be used to update the hyperparameters for online optimization
and to improve the accuracy of data-driven models over time. Another important factor is
using feature engineering to recognize essential features and reduce the model dimensions.
This step can reduce the computational cost and make the algorithms real-time feasible,
increasing their market useability drastically. Therefore, based on the data, a three-layer
AI model can be applied to create a low-cost and accurate data-driven degradation model.
The first layer is used to identify the critical model parameters using feature engineering,
which is then used by the second layer comprised of popular AI algorithms, such as
RNN, CNN, or DL to create a degradation model. Finally, the last layer adds another GA
optimization step that can be used to optimize the hyperparameters during offline training
or subsequently improve the model’s accuracy during its online application.

4.1.2. Fault Prediction and Classification Using AI

A fuel cell system comprises many interacting sub-systems and physical phenomena.
For example, the water movement inside a PEM fuel cell occurs because of transport
mechanisms such as Electro-osmotic Drag (EOD), which carry water from the anode to
the cathode side. In contrast, Thermal-osmotic Drag (TOD) and Back Diffusion (BD) carry
water in the opposite direction. In addition, Hydraulic Permeation (HP) can result in
water transmission in either direction depending on the internal state of the membrane.
Each of these transmission mechanisms depends on multiple system control and operating
parameters such as electric load and current density, H2 supply, coolant temperature
and flow rate, air temperature and flow rate, and possibly other system properties [94].
As improper water management can result in flooding, drying, or fuel starvation of the
membrane, it is crucial to predict such failures accurately.

Gu et al. [94] used LSTM networks to process the time-series data from onboard
sensors to predict flooding faults in fuel cells. Ref. [94] shows the advantage of using
memory-based networks compared to classic or “memory-less” networks, such as Support
Vector Machine (SVM). Similarly, Zhou et al. [95] compared the SVM, BPNN, LSTM, and
Wavelet Packet Decomposition (WPD) to predict flooding, drying, and starvation faults in
a fuel cell system. In conclusion, based on simulated training–testing and experimental
verification, the LSTM algorithm performed better than the rest in terms of accuracy and
computational time in a subsequent paper.

In addition to LSTM, CNN has also shown considerable improvement in predicting
flooding faults. Zuo et al. [96] created a CNN for flooding diagnosis. A batch normalization
step was added to the pipeline to reduce the computational burden making the model
feasible for online application. Zhou et al. [97] created a prediction model using Binary
matrix Encoding and a convolutional network (BinE-CNN). The Binary encoder extracts
essential features for the modeling, which is carried out by CNN using experimental data.
Upon comparison, the BinE-CNN approach outperforms LSTM and SVM. Both these
studies highlight the importance of feature engineering when creating online diagnosis
models. Other methods, such as reservoir computing (Echo state networks), used to predict
failures such as stoichiometry value fault, pressure drop, temperature drop, and failure
on the cooling circuit are presented in [98] and XGBoost fault classifiers in [99]. The fault
prediction and classification using AI in FCHEVs in listed in Table 3.



Sustainability 2023, 15, 5249 17 of 38

Table 3. Fault prediction and classification using AI in FCHEVs.

Author AI Methods Pros Cons

Zhou et al. [95]

SVM Metaclassifiers
Back_Propagation Neural Networks

(BPNN)
LSTM neural Networks

Wavelet Packet Decomposition (WPD)

Addresses multiple FC system faults such as flooding,
starvation, and drying

Use of PCC to reduce the data dimensions reduction
The selected algorithm showed good precision and low

computational time
LSTM algorithm is suggested as the optimal

Only simulated data are used.
However, Gaussian noise is added to

data to simulate realistic
environmental conditions

The prediction accuracy and
complexity are traded-off to decrease

the computational cost

Gu et al. [94] LSTM
SVM

Information from the literature and understanding based
on physical phenomena is used to decide the model

input parameters, as shown in the figure
Shows the advantage of memory-based algorithms, such

as LSTM, over traditional “memoryless” algorithms,
such as SVM

The results were validated using experimental data
Experimental test on a large 92 kW vehicle fuel cell

system used for validation

Lack of validation with the untrained
data set

Zuo et al. [96]

CNN with Batch Normalization
Conventional ML

Decision trees
Gaussian Naïve Bayers

Support Vector Machine (SVM)
K-Nearest Neighbor

A real experimental FC fault dataset is adopted to
evaluate the performance of the diagnostic method. The

results indicated a 99% accuracy in predicting faults
The proposed model has a low computational cost and

online diagnosis functionality

Scaled-down prototype test rig (only
80 W) and lack of representative test

cycles to create model results that can
be objectively verified against similar

models available in the relevant
literature

Zhou et al. [99]

XGBoost
CNN
LSTM

CNN-SVM
CNN-LSTM

Novel fault classification algorithm using XGBoost
classifier

The data comes from a Fuel cell vehicle tested in the field
over a period of many months

Although a good background on the
algorithm is provided. The type of
faults that can be detected and how

their detection occurs is not well
documented.

Non-standardized test cycles are used,
making it difficult to objectively
compare the results with other

literature.
Labeling of faulty data into different

levels is poorly explained

Morando et al. [98] Reservoir Computing based on
non-linear delayed feedback dynamics

Good description of RC computing for fault classification
of FC system

Lack of comparison with established
AI-based fault classifiers

Lack of experimental data for training
and validation

Zhou et al. [97]

Binary matrix encoding and
convolutional neural networks

(BinE-CNN)
LSTM
SVM
WPN

Predicting the seven different fault mechanisms is
diagnosed

Better time-series performance compared to SVM and
LSTM

Real-time feasible
Model is experimentally validated

In summary, it can be gleaned from the articles cited above that typically, memory-
based algorithms outperform memory-less algorithms in accurately predicting the onset
of faults. Additionally, the RNN method, which works well with time-series data, is
commonly used, and CNN, which can be used for time-series classification. An important
factor for online fault prediction is to use appropriate measures to ensure that only the most
essential factors are considered for the online system modeling. As mentioned before, water
management faults depend on various systems, material properties, and control parameters.
Creating a model that considers all the parameters can be highly time-consuming and yield
only a tiny improvement in accuracy.

4.2. Optimization

The optimization Based Control Approach is the most frequent type of EMS found
in the literature. A cost function that represents durability and fuel economy quantifies
the objective of this particular EMS [100,101]. Minimization of the fuel consumption as-
sociated cost of the architecture or their combination is identified as the main objective
for the optimization task. Various approaches, such as Stochastic Dynamic Programming
(SDP), Dynamic Programming (DP), and Equivalent Cost Minimization Strategy (ECMS),
have been proposed to achieve the aim of optimal control [102]. To ensure the optimum
integration of the power sources and the control systems, many inequality and equality con-
ditions are also considered in the optimization-based strategies [69]. This strategy is mainly
classified into global and real-time optimization or local optimization strategies [100,101].
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4.2.1. Genetic Algorithm

Some of the recent works conducted in the domain of GA concerning FCHEV are
reviewed in this section (summarized in Table 4).

Table 4. Summary of reviewed works related to GA in FCHEVs.

Author Research Pros Cons

Odeim et al. (2015) [103]

Proposed an experimental
analysis of EMS incorporating

PI, multi-objective, and
proportional employing GA

designed for FCHEV.

The result of the study obtained
through simulation and

experimentation were the same, which
validates the authenticity of the study.

The study did not
provide any relevant

data on the
improvement of

battery life.

Odeim et al. (2016) [104]

Conducted investigation on
both real-time and offline
optimization of a power

management method of an
FC/battery/SC hybrid system

(vehicular).

The study showed that the
real-time-based strategy consumes

slightly more amount of hydrogen fuel
as compared to the offline optimum
while considerably improving the

durability of the system.

The study only
utilized

NurembergR36 and
Manhattan driving

cycles.

Zhang et al. (2017) [105]

Studied a genetic
algorithm-based fuzzy EMS
designated for FC-SC-based
hybrid vehicle architectures.

The study showed that the proposed
EMS provides less hydrogen fuel

consumption (close to 9%) in
comparison to other EMS based on

fuzzy logic.

The study lacked
experimental

validation and was
limited to simulations

only.

Ahmadi et al. (2018) [106]

Designed a structure of
FCHEV and suggested a new
EMS (optimized) to advance
the dynamic performance of

the vehicle while maintaining
requirements (vehicle) and

extended battery life.

Enhancement of fuel economy,
improvement of vehicle performance,

sustaining capability of battery
charging, and optimal distribution of

energy are a few of the important
consequences attained by the suggested

optimized EMS.

The study did not
consider reducing the
size of the components

(FC/ Battery/UC)
associated.

Zhou et al. (2019) [107]

Suggested a constrained
programming parameter

(nonlinear) based model of
optimization aiming at

reducing consumption of fuel
in FCHEVs.

The suggested strategy was able to
reduce the total consumption of fuel

associated with FCHEVs by 17.6% and
9.7%, correspondingly, under the

UDDS and HWFET cycles, without
negotiating the performance (dynamic)

of the vehicle.

The study considered
only HWFET and

UDDS driving cycles.

In a study, Odeim et al. [104] proposed an experimental analysis of EMS incorporating
PI, multi-objective, and proportional using GA designed for FCHEV. The NSGA-II was
utilized as the simulation tool. The study used the Manhattan driving cycle to collect ex-
perimental data. The result of the study obtained through simulation and experimentation
were the same. However, the major drawback of the study is that it did not provide any
data on the improvement of battery life.

In another study, Odeim et al. [104] investigated real-time and offline optimization of
an FC/battery/SC hybrid architecture (vehicular) power management method. The study
initially compared two optimization-based algorithms (offline), namely DP and PMP. The
optimum (offline-based) is then utilized as a standard for developing a real-time-based
strategy, which is necessary since the optimum (offline) strategy is not capable of real-
time management and is focused on reducing the hydrogen fuel consumption only could
cause unnecessary battery overloading. The development and associated optimization of
the real-time-based strategy utilizes a GA (multi-objective) while considering, other than
hydrogen fuel consumption, other significant factors, such as reducing the burden on the
battery and the slow dynamics associated with the FC system. The study showed that the
real-time-based strategy consumes slightly more hydrogen fuel than the offline optimum
while considerably improving the system’s durability.
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Zhang et al. [105] studied a genetic algorithm-based fuzzy EMS designated for FC-SC-
based hybrid vehicle architectures. The study was conducted using ADVISOR for HWFET
(The Highway Fuel Economy Test), UDDS (Urban Dynamometer Driving Schedule), and
NEDC (New European Driving Cycle) driving cycles. The study showed that the proposed
EMS provides less hydrogen fuel consumption (close to 9%) compared to other EMS
centered on fuzzy logic.

Ahmadi et al. [106] designed a structure of FCHEV and suggested a new EMS (opti-
mized) to advance the dynamic performance of the vehicle while maintaining requirements
(vehicle) and extended battery life. In the study, the optimization of the suggested EMS is
achieved by employing a GA through a joined highway/city drive cycle with various initial
conditions. The study defined a full function (multi-objective) to identify the vehicle’s
targets, requirements, and performance constraints. The simulation results demonstrated
that the suggested approach affects (progressively) the vehicle’s characteristics. A few of
the important consequences attained by the suggested optimized EMS are enhancing fuel
economy, improving vehicle performance, sustaining the capability of battery charging,
and optimal energy distribution.

In a recent study, Zhou et al. [107] suggested a constrained programming parameter
(nonlinear) based model of optimization aiming to reduce fuel consumption in FCHEVs.
In this study, the parameters (principal) associated with the power tracking-based control
approach are fixed as the variables (optimized), with the performance index (dynamic)
of FCHEVs being restricted as the limiting condition. The study then utilized a GA in
designing a control strategy to find an optimal solution to the task. The GA is then in-
tegrated with the vehicle’s model in ADVISOR to optimize parameters associated with
the control strategy for two driving cycles, namely UDDS and HWFET. Conclusively, the
strategies after and before the optimization process are simulated, associated performances
are equated, and the control parameters (optimal) under various driving cycles are exam-
ined. The simulation outcomes showed that by employing the suggested control strategy,
the total fuel consumption associated with FCHEVs could be decreased by 17.6% and
9.7%, correspondingly, under the UDDS mentioned above and HWFET cycles, without
negotiating the performance (dynamic) of the vehicle.

Fang et al. [108] proposed an artificial intelligence-based multi-objective optimization
method to optimize PEMFC components, kinetics, thermodynamics, and overall perfor-
mance in Hybrid systems. Technical, economic, environmental and socio-political objectives
have been considered in this study. The genetic algorithm and MOO are used to optimize
components in FC.

4.2.2. Particle Swarm Optimization (PSO)

PSO is another heuristic population-based optimization strategy. The method starts
with a population and is iterated to search for a suitable solution, focusing on a particular
quality measure [103,109]. In this method, a search space is considered in which particles
wander around under the guidance of the best-known positions. The swarm particles move
when improved positions are identified. PSO can search very vast areas associated with
candidate solutions. Although identified to be non-casual, this method does not demand a
differentiable type of optimization problem, making it suitable for optimization problems
possessing irregularity or noise [110]. A further improved model of PSO is Dynamic
Particle Swarm Optimization (DPSO), which can avoid the issues of being trapped in local
optima and associated stagnation without compromising the quick convergent abilities of
PSO [111]. Some of the recent works conducted in the field of PSO concerning FCHEV are
reviewed in this section (summarized in Table 5).
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Table 5. Summary of reviewed works related to PSO in FCHEVs.

Author Research Pros Cons

Trovao et al. (2013) [112]
Suggested rule-based

meta-heuristic energy management
and optimization method.

The suggested approach was able
to achieve effective and fast

splitting of power between the
battery and SC.

The study considered
only ARTEMIS and

ECE15 driving cycles.

Hegazy et al. (2013) [113]

Proposed a method for sizing of
components associated with FC/SC,

FC/Battery, and FC/Battery/SC
hybrid architectures employing a

control strategy founded on an
efficiency map and PSO.

The study was able to
demonstrate that the

FC/Battery/SC-based topology
provides improved performance

as compared to the other two
topologies.

The study considered
only NEDC and FTP75

driving cycles.

Chen et al. (2018) [114]
Suggested an online EMS and
gear-shifting method utilizing

DPSO.

The proposed study was able to
achieve reliable characteristics

related to power splitting among
different sources of energy. The

suggested strategy also achieved
a considerable decrease

associated with hydrogen fuel
consumption as compared to

classic rule-based controls.

The study considered
only FTP and ECE40

driving cycles. The focus
of the study was mainly

concentrated on gear
shifting rather than on

EMS.

Song et al. (2019) [115]

Suggested a multi-objective-based
optimization design strategy

depending on the PSO algorithm,
aiming at optimizing the fuel

economy, vehicle cost, and
improved vehicle performance

(dynamic).

The study was able to obtain the
optimal scheme (hybrid) of the

FCHV.
The study can provide valuable

insights toward the design of
improved powertrains for

FCHVs.

The study lacked
experimental validation

and was limited to
simulations only.

Tifour et al. (2020) [116]

The study utilized a PSO for
optimization and monitoring of the
parameters (fuzzy) under various
conditions, aiming at identifying

the finest sets that can provide great
improvement in the domain of fuel

economy while considering the
SOC (battery) maintenance

associated.

The suggested approach showed
an improved fuel economy when

compared with the
Power-Tracking-Controller-based
Adviser under all circumstances

and also the efficiency (overall) in
most circumstances.

The study did not
consider the sizing factor
associated with power

sources. The study
lacked experimental
validation and was

limited to simulations
only.

Trovao et al. [112] explained the rule-based meta-heuristic energy management and
optimization method. Two cycles of driving were used in the study, namely, ARTEMIS and
ECE15 cycles. The proposed study was able to achieve effective and fast splitting of power
between the battery and SC. Nevertheless, the lack of experimental validation is the major
disadvantage of this study.

In another study, Hegazy et al. [113] proposed a method for sizing components
associated with FC/battery, FC/SC, and FC/battery/SC hybrid architectures employing a
control strategy founded on an efficiency map and PSO. The study used NEDC and FTP75
driving cycles. The study demonstrated that the FC/battery/SC-based topology provides
superior performance compared to the other two topologies in terms of fuel efficiency,
volume, mass, and associated costing.

Chen et al. [114] proposed an online EMS and gear-shifting method utilizing DPSO.
The study used two driving cycles, namely, FTP and ECE40. The proposed study achieved
reliable characteristics related to power splitting among different sources of energy and
a considerable decrease associated with hydrogen fuel consumption compared to classic
rule-based controls. Nevertheless, the study’s focus was mainly on gear shifting compared
to energy management and optimization.
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In a recent study, Song et al. [115] suggested a multi-objective-based optimization
design strategy depending on the PSO algorithm to optimize fuel economy, vehicle cost, and
improved vehicle performance (dynamic). Integrated with a simulation environment, the
suggested algorithm can search for the optimal solution in the whole reasonable collection
of the degree of hybridization. This enabled the study to obtain the optimal scheme
(hybrid) of the FCHV. The study provides a basis for the design of an improved powertrain
for FCHVs.

In another recent study, Tifour et al. [116] suggested an EMS depending on first-
order Sugeno fuzzy developed for FCHEV. The study utilized a PSO for optimization
and monitoring of the parameters (fuzzy) under various conditions, aiming at identifying
the finest sets that can provide great improvement in fuel economy while considering
the associated SOC (battery) maintenance. The results of the study demonstrated an
improved fuel economy when compared with the Power Tracking Controller-based Adviser
under all circumstances and efficiency (overall) in most circumstances. The study also
demonstrated that fine-tuning the suggested EMS under a single condition will not ensure
the same performance (evaluated in terms of battery SOC) as when tested under different
conditions. The study also identified that if the suggested EMS is fine-tuned under different
circumstances, it can attain an improved fuel economy with smooth variations in battery
SOC and a minimal change associated with SOC, which is critical to battery life extension.

4.3. Control

Mane et al. [117] suggested an MPC strategy for the two-loop control system in FC/UC-
based HEV that is able to achieve constant DC-bus voltage and efficient power splitting
between UC and FC. However, in this paper, hydrogen fuel consumption and the cost
associated with hydrogen fuel consumption have not been considered.

4.4. Energy Management System (EMS)

Energy Management is an essential operating requirement of an FC vehicle. As
previously explained, the FCEV powertrain can draw power from two or three energy
sources—Battery, Ultracaps, and FC. The EMS decides the optimal source for the given
duration and power demand. For a simpler understanding, one can assume that the battery
fulfills all short-duration pulse power requirements for quick acceleration due to a low
run-up period. However, longer-duration steady power is delivered by the fuel cell system,
which is slowly driven up to meet the power to prevent damage. This description is too
simple but can be used for initial understanding. In reality, the EMS has to make many
crucial decisions based on vehicle data and driver input quite quickly. The EMS can be
broadly classified into Online and Offline EMS, as explained in the following section.

4.4.1. Offline EMS
Fuzzy Logic Control

Chen et al. [118] proposed an EMS for a hybrid energy-based system comprising a
PEMFC, a Lithium-Ion battery (LIB) pack, and DC/DC converters. The objective of the
suggested EMS is to ensure a proper FC current to reduce hydrogen fuel consumption with
restrictions on SOC and power. Additionally, the study ensures that by altering the SOC
and the demand (load), the battery current (actual) can be kept up with the reference value.
The effectiveness of the suggested EMS was validated by conducting a simulation.

Zhang et al. [119] proposed an EMS for achieving power split with an FL-based
controller for the FCHEV powertrain. The study presents a power control (regenerative)
and battery-based controller (local energy) to ensure that the battery SOC is modifiable
without under-voltage and over-voltage. The simulation result demonstrated that the
suggested method could retain SOC associated with the battery at expected levels. It can
effectively absorb braking energy (regenerative) and minimize the load (dynamic) related
to the FC to reduce/minimize fuel starvation.
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In another study, Saib et al. [120] suggested an FL-based EMS applied on an FCHEV.
The FL-based control approach has been designed to regulate the power flow in the system
(hybrid) under two restrictions: the battery SOC and the FC response (low dynamic).
Simulation studies have been performed in the MATLAB/Simulink setting to study the
performance associated with the suggested EMS. The outcomes demonstrated reasonable
improvement in the hybrid system’s performance: the battery supplies power to the
system when peak power is demanded, which helps to create a smooth FC response while
sustaining the battery SOC within a suitable window.

In a recent study, Essoufi et al. [121] proposed an EMS for an FCHEV (considering fuel
cell and Lithium-Ion batteries as primary and secondary power sources, respectively). The
suggested strategy depends on fuzzy logic. It aims to reduce fuel consumption (hydrogen)
while improving the durability associated with the power sources by considering their
associated constraints (dynamic) and the battery SOC. The simulation of FCHEV and
the suggested EMS were established using a MATLAB/Simulink setting. The results of
the simulation demonstrated the viability of the suggested model and showed that the
suggested control strategy provides a good enhancement in reducing fuel consumption
and in achieving a further improved and efficient energy distribution between the sources.

This approach is utilized to compute the real-time optimal power splitting possibilities
among the available power sources. It is achieved by replacing the commonly utilized
global cost function with the instantaneous cost function [13]. This strategy tackles the
issues associated with the lack of real-time road data availability and the associated com-
putation burden. A summary of reviewed works related to fuzzy rule-based strategy in
FCHEV is listed in Table 6.

Table 6. Summary of reviewed works related to fuzzy rule-based strategy in FCHEV.

Author Research Pros Cons

Mohammedi et al. (2014) [122]
Proposed a fuzzy logic system

dependent on passivity
control.

The suggested approach
improved the robustness of

the system, reduced the
consumption of hydrogen fuel,

and reduced the overshoot
associated with the system.

The study lacked
experimental validation.

No proof associated with a
reduction in the consumption

of hydrogen fuel was
provided in the study.

Hemi et al. (2014) [123]

Suggested a fuzzy logic-based
control on three

configurations depending on
the UDDS cycle of driving.

The study identified a
practical configuration-based

method to reduce the
consumption of hydrogen

fuel.

The study focused on hybrid
configuration comparison

only. The study lacked
experimental validation.

Saib et al. (2017) [120]
The study suggested an

FL-based EMS applied on an
FCHEV.

The study demonstrated that
the restrictions are respected

effectively by the hybrid
system.

The study lacked
experimental validation.

Chen et al. (2018) [118]
The study suggested an EMS

for an FC/ Battery hybrid
energy system.

The study ensures that by
altering the SOC and the

demand (load), the battery
current (actual) can be kept up
with the reference value. The
viability of the suggested EMS

was validated through
simulation results.

The study lacked
experimental validation and
was limited to simulations

only.
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Table 6. Cont.

Author Research Pros Cons

Zhang et al. (2018) [119]

The study proposed an EMS,
towards achieving power-split
with an FL-based controller,
for the FCHEV powertrain.

The study showed that the
suggested method could

retain SOC associated with the
battery at levels expected, can

effectively absorb braking
energy (regenerative), and

minimize the load (dynamic)
associated with the FC to

evade fuel starvation

The study lacked
experimental validation and
was limited to simulations

only.
The study only focused on the
power-split characteristics of

the EMS.

Essoufi et al. (2020) [121]

Suggested an FL-based EMS
for an FCHEV (Considering

fuel cell and Li-Ion based
battery as a primary and

secondary source of power
correspondingly).

The simulation of FCHEV and
the suggested EMS were

established by employing a
MATLAB/Simulink setting.

The simulation outcomes
demonstrated the viability of

the suggested EMS.

The study lacked
experimental validation.

4.4.2. On-Line EMS
Equivalent Consumption Minimization Strategy (ECMS)

The ECMS converts the electrical energy stored in the ESS into its equivalent con-
sumption of hydrogen fuel [69]. Reduction in the total equivalent consumption and the
sum of consumption of hydrogen fuel are the main objectives of ECMS. The value of the
equivalent factor, which is crucial for ECMS, is usually affected by the SOC limits of the
battery and the driving cycles [122]. Research shows that the lifetime associated with the
power sources and fuel consumption efficiency can be enhanced by utilizing the possibility
of equivalent factor adjustment [124]. Some of the recent works conducted in the field of
ECMS concerning FCHEV are reviewed in this section (summarized in Table 7).

Table 7. Summary of reviewed works related to ECMS in FCHEVs.

Author Research Pros Cons

Hemi et al. (2015) [123]

Proposed an ECMS based
on PMP, integrated with
the approach of Markov

chain.

The study was able to achieve the
power demands of the hybrid system.

The study only considered the
UDDS driving cycle.

The study failed to show any
difference in the consumption

of hydrogen.

Feroldi et al. (2016) [53]

Suggested a hierarchical
EMS based on ECMS and
low-pass filter, aiming at
improving the lifespan of

energy sources,
performance, and fuel
efficiency for FCHEVs.

The study showed a reduction in the
consumption of fuel when compared to

a conventional oversized fuel cell.
The suggested strategy was able to

improve the global efficiency associated
with the FC and propulsion system.

The suggested strategy
Displayed an increased

consumption of hydrogen fuel
associated with a smaller-size

SC.

Li et al. (2018) [125]
Suggested a SECMS for
FCHEV powered by FC,

battery, and SC.

The study demonstrated that the
suggested SECMS has the minimal

hydrogen fuel utilization and provides
the highest FC durability.

The study considered only
WVUCITY, LA92, and New

York Bus driving cycle.
The study lacked

experimental validation and
was limited to simulations

only.
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Table 7. Cont.

Author Research Pros Cons

Liu et al. (2019) [126]

Proposed an EMS founded
on ECMS aiming at

reducing hydrogen fuel
utilization and enhancing

the battery life of an
FCHEV.

The study demonstrated that when
compared with a RULE-based strategy,

the suggested approach minimizes
hydrogen fuel consumption by 0.87%,

thus improving hydrogen fuel economy
and providing an extended battery life.

The study lacked
experimental validation and
was limited to simulations

only.

Fu et al. (2019) [127]

Proposed a hierarchical
EMS based on ECMS and
low-pass filter, aiming at
improving the lifespan of

energy sources,
performance, and fuel
efficiency for FCHEVs.

The suggested EMS was modeled and
tested by ADVISOR-Simulink and by

utilizing an experiment bench.
The effectiveness of the suggested EMS
was validated both by experimentation

and simulation.

The study did not consider
the driver factor provided that
the conditions of the road for

the EMS suggested in this
study are prior knowledge.

In a study, Hemi et al. [123,128] suggested an ECMS founded on PMP, integrated with
the approach of the Markov chain. The study was conducted using the UDDS driving cycle.
The study was able to meet the power demands of the hybrid system. However, the study
failed to show any difference in hydrogen consumption.

In another study, Feroldi et al. [53] proposed an ECMS to be utilized by employing
the sizing procedure. The method was compared with an optimal strategy of sizing that
depends on deterministic dynamic programming. The study showed a reduction in the
consumption of fuel when compared to a conventional oversized fuel cell. Additionally, it
was identified that the proposed approach could progress the global efficiency associated
with the fuel cell and propulsion system. However, the proposed strategy displayed an
increased hydrogen fuel consumption associated with a smaller supercapacitor (SC) size.

In another study, Li et al. [125] proposed a sequential quadratic programming (SQP)-
based ECMS (SECMS) for FCHEV powered by FC, a battery, and SC. Aiming to decrease
fuel consumption and enhance the durability associated with power sources, FC is selected
as the primary power source and acts as a steady current source, with the battery as
the chief energy buffer and substitute for FC failure. SC is selected to provide peak
demand for power. The study also designed a rule-based control approach and a hybrid
ECMS-based operating mode control strategy (to compare with the suggested SECMS. The
study also designed a test bench (experimental) to substantiate three designed approaches
(comparative). The study demonstrated that, in comparison with the rule-based control
approach and hybrid ECMS-based operating mode control strategy, the hydrogen fuel
consumption of the suggested SECMS shows a reduction of 2.16% and 1.47%, respectively,
and has the smoothest FC current, causing the lowest FC degradation.

Liu et al. [126] proposed an EMS founded on ECMS to reduce fuel utilization and
enhance the battery life of an FCHEV. The study designed a variable equivalent factor of
SOC consistency by considering the SC and battery SOC. The study obtained FC’s output
power (optimal) by employing an ECMS. The study, based on Simulink and ADVISOR
simulation, demonstrated that when compared with the rule-based strategy, the suggested
approach minimizes hydrogen fuel consumption by 0.87%, thus improving hydrogen fuel
economy and also providing an extended battery life.

In a recent study, Fu et al. [127] suggested a hierarchical EMS founded on ECMS and
low-pass filters, aiming at improving the lifespan of energy sources, performance, and fuel
efficiency for FCHEVs. In the higher-layer approach of the suggested EMS, SC is utilized
to supply the demand for peak power and to recycle braking energy by employing the
low-pass filter (adaptive) technique. Additionally, an ECMS is developed to achieve power
allocation between the battery and fuel cell such that FC can work in high-efficiency ranges
to reduce hydrogen consumption in the lower layer. The suggested EMS was modeled
and tested by ADVISOR-Simulink and by utilizing an experiment bench. Through the
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synergistic decay of dual power source lifespan, can the optimal selection range of FCV
power battery capacity manage energy consumption [129]. A power distribution unit in
the modular fuel cell system can manage energy consumption in FCV [130].

Model Predictive Control (MPC)

MPC is a type of local optimization strategy generally utilized to tackle problems
consisting of several constraints. It can accurately predict the changes that are to hap-
pen in the future through the analysis of the dynamic state, current values, MPC model,
and by utilizing process variables [131]. In the MPC strategy, the current state of the
architecture is analyzed, and an associated cost minimization strategy is calculated for
a short time in the future. In other words, MPC allows for the optimization of current
time slots while keeping track of future time slots. This is, in fact, one of the major advan-
tages of MPC [132]. Figure 11 shows a basic block diagram of MPC-based EMS adopted
by Kanchwala et al. [133]. Some of the recent works conducted in the domain of MPC
concerning FCHEV are reviewed in this section (summarized in Table 8).
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Table 8. Summary of reviewed works related to MPC in FCHEVs.

Author Research Pros Cons

Amin et al. (2012) [132] Suggested an MPC EMS
founded on DP.

The proposed strategy was
experimentally validated, and it
demonstrated the presence of a
well-regulated DC-bus voltage.

The proposed strategy was
tested using dSPACE DS1104.

The study only focused on the
voltage regulation of the

DC-bus, and no focus was
given to hydrogen fuel

consumption.

Ahmed et al. (2013) [134]

Suggested an MPC-based
tuning strategy, designed by

comparing a statistically
constrained type controller with

back-off-based control.

The study was able to eliminate
constraint-based violations

virtually.
The study successfully

compared the simulations
among the different statistically
constrained types of controllers.

The study only focused on
feasibility, and no focus was

given to battery life or
hydrogen consumption.

Mane et al. (2016) [117]
Suggested an MPC strategy for
a two-loop control designed for

an FC/UC-based HEV.

The suggested EMS achieved
constant DC-bus voltage and

efficient power splitting
between UC and FC.

The study did not focus on
hydrogen fuel consumption or

its cost.
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Table 8. Cont.

Author Research Pros Cons

Tianyu et al. (2018) [135]
Suggested an MPC-based EMS
employing Markov chain and

NN techniques.

The proposed EMS improved
fuel efficiency, increased the

lifetime of FCs, and sustained
the SOC of SC using NNs.

The study lacked
experimental validation and
was limited to simulations

only.

Liu et al. (2018) [136]

Proposed a hierarchical- MPC
strategy to optimize the

performance and efficiency of a
PEMFC-based HEV.

As per the suggested approach,
7.79% of equivalent fuel

consumption is anticipated.

The study considered only the
US06 driving cycle.

Furquim et al. (2020) [137]

Proposed an EMS for an FCHEV.
The suggested EMS depends on

nonlinear-MPC and utilizes a
neural network (recurrent) for

modeling a PEMFC.

The suggested
nonlinear-MPC-based EMS

provides improved fuel
economy and minimizes FC

degradation.

The study lacked
experimental validation on a

real FCHEV.

In Ref. [134], an MPC-based tunning strategy with back-off-based control was pro-
posed, which could statistically compare all the system constraints. This method could
eliminate constraint-based violations and compare all types of controllers statistically, but
they did not consider battery life and hydrogen consumption. Amin et al. [132] suggested
an MPC energy management strategy founded on Dynamic Programming (DP) that could
demonstrate experimentally and have well-regulated DC-bus voltage. The focus of this
study was on the voltage regulation of DC-bus, and hydrogen consumption was missed. In
another piece of research, Liu et al. proposed a hierarchical MPC strategy to optimize the
efficiency and performance of a PEMFC in the US06 driving cycle only. The study shows
7.79% of fuel equivalent consumption.

Amin et al. [132] suggested an MPC EMS founded on DP. The proposed strategy was
tested using DS1104. The proposed strategy was experimentally validated and demon-
strated the presence of a well-regulated DC-bus voltage obtained by the proposed strategy.
However, the study suffered from the fact that no focus was given to the consumption of
hydrogen fuel, and the focus was only on the voltage regulation of the DC-bus. Ahmed
et al. [134] proposed an MPC-based tuning strategy designed by comparing a statistically
constrained type controller with back-off-based control. The proposed study was able
to eliminate constraint-based violations virtually. Additionally, the study successfully
compared the simulations among the different statistically constrained types of controllers.
However, the focus of the study was on feasibility rather than on battery life or consump-
tion of hydrogen. Mane et al. [117] suggested an MPC approach for a two-loop control
designed for an FC/UC-based HEV. The proposed EMS achieved constant DC-bus voltage
and efficient power splitting between the ultracapacitor and fuel cell.

Tianyu et al. [120] proposed an MPC-based EMS employing Markov chain and NN
techniques in another study. The proposed EMS improved fuel efficiency, increased the
lifetime of FCs, and sustained the SOC of SC using NNs. However, the lack of experimental
validation and worse performance of the Markov chain when compared to neural networks
are the major drawbacks of the proposed EMS. In another study, Liu et al. [136] suggested
a hierarchical MPC strategy to optimize the performance and efficiency of a PEMFC-based
HEV. A control-oriented(linearized) FCHEV is first presented in the study. The study
then develops the hierarchical -MPC strategy-based control, containing a lower and an
upper-level MPC-based controller. The MPC controller (upper level) is developed toward
the power splitting ratio optimization between the battery pack and the PEMFC. In contrast,
the lower-level MPC-based controller is utilized to trace the PEMFC net output power
(maximum) by optimizing the excessive oxygen ratio. The US06 cycle of driving is utilized
in the performance analysis of the suggested method, and up to 7.79% fuel equivalent
consumption is anticipated.
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In a recent study, Furquim et al. [137] proposed an EMS for an FCHEV. The suggested
EMS depends on nonlinear- MPC and utilizes a neural network (recurrent) for modeling a
PEMFC. The suggested EMS was employed on a development board (low-cost), and the
tests were conducted in real-time by utilizing a HIL test bench integrated with a real 3 kW
fuel cell stack. The study results showed that the nonlinear- MPC-based suggested EMS
can meet the vehicle’s energy requirement and ensure the FC’s operation in its highest
efficient region.

Learning-Based EMS

Neural networks (NNs) and reinforcement learning (RL) are the two main parts of a
learning-based energy management system for fuel cell vehicles [138]. The NN-based EMS
must choose the input model considering different environmental data, driver behavior,
and vehicle specification, and then use optimal power distribution as the output model to
train NNs. In most papers for NN-based EMS for fuel cell vehicles, the NN algorithm is
utilized for working condition classification or the prediction of a vehicle’s speed [139–144],
as covered in previous sections. Teng et al. [57] reviewed all different NN methods for
different strategies in fuel cell vehicles. Unlike the NN algorithms utilized for fuel cell
vehicles, the RL methods EMS with small or big data inputs widely. The most common RL
algorithms that are used in EMS are Q-learning, deep Q-network (DQN), deep deterministic
policy gradient (DDPG), and twin delay deep deterministic policy gradient (TD3).

Q-Learning

Zhang et al. [145] proposed a dual reward functions Q-learning algorithm to reduce
operation stress and guarantee safe and stable FCHEV operation. This method utilizes
three-level efficiency optimization and has been tested in experimental conditions, and the
results showed a reduction in hydrogen usage and fuel. Li et al. [146] suggested a speedy
reinforcement learning algorithm based on Q-learning for energy management of fuel
cell vehicles considering fuel cell lifetime. The operation time of the method showed that
this method is adaptable for real-time EMS. Additionally, it is adaptable to three different
driving cycle sources with different conditions. Sun et al. [147] proposed a data-driven
reinforcement learning-based hierarchical energy management strategy for FCHEV based
on a combination of Markov decision and Q-learning algorithms. The results show fuel
consumption economy, optimal fuel cell efficiency, and low computational time, which
have been tested in experimental conditions. The results are compared to DP as an optimal
benchmark to show the method’s efficient performance.

In the Q-learning algorithm, connected state and action spaces lead to poor optimality
and convergence in practical applications, so it is necessary to discrete state space and
action space in algorithms. Under the actual working condition for the fuel cell vehicle, the
state and action spaces are continuous, and the Q-learning algorithm could overestimate
the Q value and have a dimension disaster problem in this situation [148], which will cause
non-optimal results.

DQN

A multi-objective DQN algorithm was proposed by Li et al. [149] to reduce hydrogen
consumption and increase the lifetime of the fuel cell. The suggested DQN algorithm is
compared to the Q-learning algorithm, and the results show significant improvement in
the convergence speed of the algorithm, durability and fuel consumption.

Tang et al. [150] utilized the DQN algorithm to prioritize experimental responses to
energy management to minimize hydrogen consumption. The results were compared to
the DP-based algorithm and showed significant improvement in hydrogen consumption
in unfamiliar driving environments and untrained conditions. Zheng et al. [151] used the
same strategy but tried to reduce hydrogen consumption and fuel cell durability based on
a fuel cell degradation model. Additionally, the algorithm adaptability has been tested,
and the results show that DQN-based EMS is more adaptable than other cited methods. In
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another paper, Zheng et al. [134] introduce a deep reinforcement learning algorithm based
on DQN for fuel cell hybrid buses. The results compare to RL-based and DP-based EMSs
that show 3.63% and 5.69% improvement in hydrogen consumption. The proposed method
decreases the fuel cell degradation rate compared to the one without considering the fuel
cell durability.

The proper definition of state and action spaces is important in reinforcement learning
methods to reduce hydrogen consumption. Based on the review, the DQN performs better
than the Q-learning algorithms. Still, there is a Q value overestimation problem in DQN
because the action space cannot assume continuously, but compared with Q-learning, the
results seem more convergence optimal.

DDPG

Zheng et al. [152] suggested a Deep Deterministic Policy Gradient (DDPG) algorithm
for fuel cell hybrid vehicles that achieves continuous energy management control. The
algorithm utilized the fuel cell system efficiency characteristic to improve the control ef-
fect. In the study, they tried to improve the computational efficiency of DDPG, and the
results showed stable convergence and optimal and adaptive energy management strategy.
Huo et al. [153] proposed DQL and DDPG algorithms to minimize fuel consumption and
prolong the fuel cell stack lifespan in fuel cell hybrid vehicles. In this research, the fuel econ-
omy and power fluctuation combined to create a multi-objective reward function for the
DDPG algorithm to be tested for four different driving cycle sources. The DDPG algorithm
shows adaptability for use in multi-cycles compared to DRL. Zhou et al. [154] designed a
DDPG algorithm to regulate SOC, assisting power consumption in different driving cycle
sources. The same authors in another research [155] utilized the DDPG algorithm for power
distribution based on vehicle speed, acceleration, and SOC to improve fuel economy. The
results showed increased durability of fuel cells and reduced hydrogen consumption. Still,
the DDPG algorithm suffers from Q value overestimation and unstable training.

Twin Delayed DDPG (TD3)

In [156], Deng et al. applied the Twin Delayed DDPG (TD3) algorithm for EMS in
fuel cell hybrid vehicles. Based on the TD3 characteristics, the method is more stable and
economical in stochastic environmental conditions. The problem with this algorithm is
the long learning time which is not suitable for real-time energy management systems
in vehicles. Zhou et al. [157] proposed a TD3 algorithm for intelligent transport systems
consisting of different vehicle topologies to provide more valuable environmental signals
for agents. This method tries to optimize hydrogen consumption with an RL-based strategy.
A summary of the learning-based used in FCHEVs is listed in Table 9.

Table 9. Summary of reviewed works related in FCHEVs.

Author Research Pros Cons

Zheng et al. (2022) [158]

Proposed a Deep
Reinforcement Learning

(DRL) energy
management strategy for
fuel cell hybrid buses to
improve fuel economy

The study compared the DRL result with
DP and RL algorithms which showed

significant improvement.
The degradation rate of fuel cells

decreased by using the DRL algorithm.
The DRL algorithm is adaptable to a new

driving cycle.

The study lacked
experimental validation

and was limited to
simulations only.
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Table 9. Cont.

Author Research Pros Cons

Li et al. (2022) [146]

Suggested a speedy
reinforcement

learning-based energy
management strategy for

fuel cell vehicles
considering fuel cell

lifetime

The algorithm was able to extend the fuel
cell system’s lifetime

The study successfully trained the
algorithm for three driving cycles and
validated it on another driving cycle.

The convergence speed of the algorithm
is increased, and it has the potential to

work in real-time mode.

The study did not
compare its results with

the optimized-based
method as a baseline.

The study lacked
experimental validation

and was limited to
simulations only.

Zhang et al. (2021) [145]

Suggested a
learning-based EMS based
on dual reward functions

Q-learning algorithm,
which can guarantee the
safe and stable operation

of FCHEV.

Suggested a learning-based EMS
optimization with a three-level efficiency.

The method can improve energy
efficiency and slow the FC’s aging by

reducing its operation stress.
The proposed method has been tested on

experimental 1.2 kW FCHEV.

The study has not checked
the method’s adaptability

for different driving
cycles.

Sun et al. (2018) [147]

Suggested a data-driven
reinforcement
learning-based

hierarchical energy
management strategy for

FCHEV

The proposed EMS could achieve low
computation cost, optimal fuel cell
efficiency and energy consumption

economy.
For the simulation, the authors utilized

experimental data.
The method compared to DP as a baseline

shows how much this method can be
near to the optimized-based method.

Zheng et al. (2022) [151]
Tang et al. (2022) [150]

Proposed a DQN energy
management system

considering the priority of
experimental reply

The suggested method shows a
significant impact on hydrogen

consumption
It compared to the DP-based method as a

benchmark
The method is adaptable to unknown

environmental conditions and untrained
situation

The study utilized real
data, but there is not any
experimental validation

for the results

Zheng et al. (2021) [152]

Proposed an EMS for an
FCHEV. Based on the
DDPG algorithm for
continuous control

strategy

The suggested method improves
computational efficiency, and the results
showed stable convergence, optimal and
adaptive energy management strategy

The algorithm suffers from
an overestimation of the Q

value for the algorithm
and creates unstable
training sometimes
The study lacked

experimental validation
on a real FCHEV.

Huo et al.(2022) [153]

Suggested DDPG
algorithms to minimize
fuel consumption and

prolong the fuel cell stack
lifespan in fuel cell hybrid

vehicles

It is utilized for different driving cycle
sources, and it shows the adaptability f
the DDPG as a multi-cycle algorithm

The computational
efficiency is not

convincing, and the
training is unstable.

Zhou et al. (2022)
[154,155]

Proposed DDPG
algorithm to minimize

hydrogen consumption in
FCHVs

This study focuses on SOC and power
distribution, considering vehicle speed

and acceleration.
It can improve fuel economy significantly

There is not any
experimental validation

for the results
The unstable training of
the Q value is another

problem.
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Table 9. Cont.

Author Research Pros Cons

Deng et al. (2022) [156]

Suggested a TD3
algorithm for energy

management control in
transportation systems
with different vehicles

The results show improvement in fuel
economy.

The environmental data
are just stochastic, and
they are not real data.

The long learning time,
which is not working as a

real-time controller

Zhou et al. (2019) [157]
Suggested a TD3-based

energy management
algorithm for FCHVs

The method optimizes fuel consumption
in the transportation system

The data are stochastic.
The learning time or the

algorithm is long.

4.4.3. V2X EMS

This section reflects on another crucial aspect of fuel cell electric vehicles. With a
sizeable onboard battery and a fuel cell system, the cars can do much more than just supply
power to the drivetrain and propel the vehicle. Some studies have focused on integrating
fuel cell systems into “zero-emission buildings” [159,160]. The development of smart grids
using distributed energy resources (DERs), including photovoltaic (PV) systems, wind
turbine, and PEM fuel cells for intermittent energy supply to avoid blackouts, is an essential
aspect of future energy research. The PEMFC from a fuel cell electric vehicle (FCEV) can
be used to support such smart grids. However, the presence of multiple energy sources
requires intelligent energy management. Hafsi et al. [161] carried out a comparative study
based on classical PI CPI and state machine strategy (SM), fuzzy logic controller (FLC), and
Artificial Neural Network (ANN) to optimize the energy demand distribution amongst
multiple energy sources, such as PV, wind turbines, batteries, and a fuel cell. Similarly,
Hassan et al. [162] created a microgrid simulation to integrate and synchronize Solid Oxide
Fuel cells (SOFC), electrolyzers, and Ultracapacitors.

Additionally, the FC systems are equipped with state-of-the-art sensors and high-tech
computers, which allow their integration into the Internet of Things (IoT) or Internet of
Vehicles (IoV) [163]. Furthermore, using the information from the IoV, such as traffic flow
and traffic signals, one can augment the energy management strategy of a fuel cell vehicle
to address parameters beyond the internal state parameters such as power demand and
battery SOC and include traffic flow information. This can further reduce the chances
of a full stop due to traffic lights and traffic congestion, improving consumption and
reducing degradation due to high start-stop frequency. Yan Mei et al. [162] created a
flow diagram (Figure 12) depicting a dual-layer Energy management strategy that utilizes
the IoV and traffic information to improve the utilization of the Fuel cell system. A
combination of a launch control using Deep Reinforcement Learning (DRL) and an Energy
management system based on Model Predictive Control using a Bi-directional Long Short-
Term Memory (BiLSTM) network for power prediction is proposed. This study showed
significant improvement in the H2 consumption and degradation due to start–stop and
idle time.
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5. Remarks and Future Scope for Research

This article provides an in-depth summary of a fuel cell system and the challenges
associated with a fuel cell electric vehicle powertrain. A significant portion of the research
papers reviewed in this article deal with the inherent complexity of a dual-energy source
powertrain. A complex algorithm that optimizes multiple objective functions must be
designed to improve the utilization of the total onboard energy by improving the power
distribution, reducing consumption of H2, and preventing degradation of the fuel cell. AI
and ML algorithms have been applied to this domain with considerable success.

The main advantage of AI and ML algorithms is their model flexibility. These algo-
rithms allow the creation of accurate system models under challenging conditions, such as
limited data or time series data or developing models that require very low computational
power for online applications. Not only this, but adding multiple layers to the algorithm
can allow the system to make modifications to the hyperparameters online to improve its
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accuracy while the system is running, taking new input data in real time and improving
the accuracy.

Today there are several FC vehicles available in the market, such as the Toyota MIRAI,
but the price is still higher than that of a typical family car; further cost reduction is required
for widespread adoption of the FCV. An improved PtCo/C catalyst is applied in the MIRAI,
but the amount of platinum in the catalyst is still quite significant. Physical modeling and
optimization using AI can be key to improving the situation. The challenge of improving
the system is a Multiphysics multidisciplinary problem that requires improvement in
energy management, thermal management, optimal system sizing, vehicle design, and
transmission design. Only by improving on all these fronts can one bring down the cost of
FC vehicles significantly while reducing the operating cost and improving longevity. The
flexibility of AI models make them ideal for modeling and solving such complex problems.
Future work on modeling such interdisciplinary system interactions using AI must be
emphasized to reduce cost and improve the market share of Fuel cell EVs. The future work
on AI could be:

• Improve AI accuracy while the system is running, taking new input data in real time
and improving the performance.

• With using AI methods should reduce costs and improve the share of FCVs

Even with the above improvements and cost reductions, the MIRAI price is still higher
than that of a typical family car; further cost reduction is required for the widespread
adoption of the FCV. An improved PtCo/C catalyst is applied in the MIRAI, but the
amount of Pt in the catalyst is still quite significant. Higher specific activity (SA) and lower
electrochemical surface area (ECSA) or higher Pt utilization in the catalyst with roughly
equal ECSA and SA compared to existing catalysts are being explored, for example, using Pt
nano-frame and core–shell catalysts, respectively. Modeling and simulation are expected to
improve the associated issues. At the same time, non-noble metal catalysts, oxide catalysts,
and carbon alloys are being actively researched. The Pt loading in the anode catalyst layer
is also expected to be reduced after Pt reduction is realized at the cathode. For the per
fluorinated membrane and the GDL, the chemistry and processes for manufacturing are
nearly fixed, and cost reductions will come with scale. FC durability has been and will
be mitigated by operational optimization. For example, the Pt dissolution that causes the
ECSA reduction is minimized through the current operation with slow sweep rates and
upper and lower voltage limits. Technology for efficient exhaust heat management is still
required. The PEMFC is usually operated at around 60 to 80 ◦C, whereas the conventional
ICE vehicle is operated at around 110 ◦C. This smaller temperature gap between the FC and
the ambient air requires a bigger radiator size when the FCV is driven at maximum power.
The high-temperature operation would increase the heat rejection rate from the radiator, so
high-temperature operation is a candidate among many solutions to keep the radiator size
low. Technologies to reduce exhaust heat have not yet received much attention. In terms of
infrastructure, it is imperative to establish and operate hydrogen-fueling stations through
the initial market introduction period of the FCV. To help with this aspect, not only have
governments made plans to subsidize the establishment and operation of these fueling
stations, but also Toyota, Nissan, and Honda have announced partial financial support for
the operation of hydrogen stations in Japan.
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