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Abstract: Regarding the problem of the optimal configuration of self-consistent energy systems based
on a 100% renewable energy supply for expressway electricity demand in no-grid areas, this paper
proposes a multi-objective planning model based on chance-constrained programming (CCP) to
achieve the optimization objectives of low cost and high reliability. Firstly, the number of units of
different types of wind turbines (WT), the capacity of photovoltaic (PV) cells, and the number of sets
of energy storage systems (ESS) are selected for the design variables in our configuration plan. After
defining the load grading shedding and ESS scheduling strategy, the Monte Carlo Simulation (MCS)
method and the backward reduction method are applied to model the uncertainties of electric load
and renewable energy sources. Finally, the set of Pareto solutions are optimized by the non-dominated
sorted genetic algorithm-II (NSGA-II) and its unique best solution is determined by the Criteria
Importance Though Intercriteria Correlation (CRITIC) and the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) approach. Making use of the wind speed and solar radiation
intensity historical data of an area in northwest China in the last five years, eight case studies of two
typical scenarios are designed and carried out to explore in-depth the impact of different confidence
levels and load fluctuation ranges on the planning results. The results verify that the proposed
method can effectively improve the robustness of the system and satisfy the power demand in
confidence scenarios.

Keywords: expressway self-consistent energy system; chance-constrained programming; configura-
tion optimization; NSGA-II; CRITIC; TOPSIS

1. Introduction
1.1. Background

In the context of the global energy crisis and climate deterioration [1], transporta-
tion systems are an important sector of fossil energy consumption. The electrification of
transportation has become an important channel to achieve sustainable development, and
dependence on the electric power system is gradually increasing [2]. With the progress
of high-density battery technology and the increase in charging facilities, the number of
electric vehicles has increased rapidly. By March 2022, the number of pure electric vehicles
in China reached 7.245 million, a year-on-year increase of 138.20% [3]. However, in some
remote or isolated areas without grid access, the spatial layout mismatch between the
expressway road network and the grid makes its electrification development difficult.

At the same time, the Chinese transportation system itself contains rich natural en-
dowments [4]. For example, the natural resource endowment of solar energy along China’s
expressway is 1.023 × 1012 kW·h. If these natural resources can be fully utilized, the
self-consistency level of the expressway system will be significantly improved. Therefore,
the development and popularization of expressway self-consistent energy systems that rely
on 100% renewable energy for power generation have become an inevitable trend.
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Expressway self-consistent energy is mainly composed of distributed power supplies
and energy storage equipment; however, the distributed power sources, mainly WT and
PV, are vulnerable to weather factors such as solar radiation, wind speed, etc., which
have randomness. Moreover, unlike traditional residential and industrial electrical loads,
expressway electrical loads are characterized by shock, volatility, significant temporal
characteristics, and high safety requirements. The uncertainty of renewable energy and
load makes renewable power abandonment and power shortage frequent [5–7]. Since the
flexibility alternatives in the operation stage can be limited, it is necessary to fully consider
the above uncertainties in the planning stage and to strive to improve the economy and
robustness of the planning scheme under the premise of meeting the demand of the traffic
side and the safe and reliable operation of the system, so as to make it suitable for more
complex actual operation conditions.

1.2. Literature Review

At present, although there are few studies on uncertain optimization methods for
expressway self-consistent energy systems, scholars have investigated how to optimize
the design of systems by considering uncertainties. The main solutions include stochastic
planning and robust optimization.

The basic idea of robust optimization is to use the bounded set model to describe the
fluctuation range of uncertain parameters and formulate the optimal decision scheme under
the worst scenario according to the set boundary information [8]. Robust optimization
is usually used to solve electric vehicle charging station planning (EVCS) problems [9],
microgrid optimization dispatch problems [10,11], generation and transmission expansion
planning problems [12,13], and power trading with electricity markets problems [14,15].
One of the key factors which affects the difficulty and accuracy of robust optimization
solutions is the establishment of uncertainty sets. The existing uncertainty sets are repre-
sented by the Box Uncertainty Set [16–18], Polyhedral Uncertainty Set [19], and Ellipsoidal
Uncertainty Set [20]. References [21,22] adopt KL divergence and the Wasserstein measure
to construct the fuzzy set of uncertain variables. On this basis, the uncertain parameters
are taken as optimization variables and solved based on the min-max-min multilayer opti-
mization theory of deterministic optimization. However, in order to avoid the interference
of uncertain parameters on the model, the solution of robust optimization is often obtained
under the most conservative scenario.

Compared with robust optimization, stochastic planning uses the probability distribu-
tion of uncertain variables to model uncertain variables [23] and reduces the conservatism
of decision-making. References [24,25] adopt different scenario generation methods to
generate typical scenery and establish a two-stage stochastic optimization model for the
operation and scheduling of the energy storage system of the hybrid renewable energy
system. Reference [26] considers the increasing uncertainty caused by the widespread use
of electric vehicles and uses the Monte Carlo simulation and Kantorovich method to deal
with the related uncertainties.

However, general stochastic programming is mainly used to deal with optimization
problems where random variables only exist in the objective function, and CCP can change
the hard constraints into probabilistic formal constraints to realize the consideration of
large probability events of random variables. Hence, it can reduce the impact of low-
probability extreme events on the optimal solution and improve the rationality of the
optimal solution to a certain extent. CCP is widely used in the optimal scheduling of
power systems containing renewable energy. Reference [27] applies chance-constrained
programming to the day-ahead scheduling of a multi-microgrid system in an uncertain
environment. Reference [28] establishes a novel bi-level optimal dispatching model for
the CIES with an EVCS in multi-stakeholder scenarios, which optimizes electric vehicles’
charging and discharging behavior. In [29], a multi-objective stochastic planning model
based on chance constraints of the energy network is developed to minimize the investment
cost and the energy pipeline risk. In [30], a unified opportunity-constrained optimization
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framework for island microgrid capacity is proposed and a leader-follower structure is
proposed to solve the optimal capacity problem.

Although there are many pieces of research on the operation scheduling and demand-
side response of microgrids under uncertain conditions, there are few pieces of research that
have been conducted on planning issues considering supply reliability and the hierarchical
control of different levels of loads. Meanwhile, in the above-mentioned literature, the
simulation of uncertain scenes is relatively crude, generating only a set of probability
distribution functions [26] or using Markov Chain Monte Carlo (MCMC) simulation [31] to
generate data for one year, failing to consider the influence of climate seasonal distribution
on uncertain variables.

Since the result of multi-objective optimization is a series of Pareto solutions, decision-
makers are still required to choose the best solution from the Pareto set. Therefore, some
studies adopt multi-attribute decision-making (MADM) technologies to sort these Pareto
solutions and select the best compromise solution. To determine the optimal capacity
of the hybrid energy storage system, Reference [32] uses NSGA-II to obtain the Pareto
set and apply the improved TOPSIS to select the optimal solution from the Pareto set.
In [33], an integrated fuzzy-AHP/TOPSIS/EDAS/MOORA decision-making model for
a 100% renewable energy system is proposed, which considers five indicators: cost, reli-
ability, emissions, and social and terrain standards. Reference [34] proposes an optimal
two-stage decision-making procedure for the site selection of wind-photovoltaic-shared
energy storage projects using veto identification coupled with the fuzzy MCDM method.
Reference [35] investigates hybrid renewable energy systems to find the techno-economic
and environmental trade-off solutions with the usage of HOMER software, and then uses
the TOPSIS method combined with weighting methods to choose the final design among
the Pareto solutions set.

1.3. Contributions and Paper Organization

In this paper, in order to maintain the feasibility of decision-making at a certain
confidence level while minimizing costs and maximizing power supply reliability, CCP,
which can ensure the economy and feasibility of planning results, is used to design the
self-consistent energy system. The main contributions of this article are as follows: (1)
To be as close as possible to the actual scenario, the scenarios in a year are divided into
12 groups by month for simulation, respectively, and the wind speed and solar radiation
are assumed to obey the Weibull distribution and Beta distribution, respectively [36]. (2)
Typical scenarios of 8760 h of a year are generated by using MCS and the backward
reduction method. (3) Based on the characteristics of expressway load classification, with
the operation control strategy combining load grading shedding and the ESS schedule, a
multi-objective optimization model is established with the annual cost of the whole life
cycle as the economic index and the power supply reliability as the reliability index. (4)
The uncertainty model is converted to a scenario-based deterministic model by using CCP
theory, and is solved through NSGA-II and CRITIC-TOPSIS.

The rest of the paper is organized as follows. The mathematical models of expressway
self-consistent energy system components are presented in Section 2. The method for
calculating the probability density of wind speed and solar radiation intensity distribution
and generating random scenes is presented in Section 3. Section 4 presents the proposed
planning methodology and the algorithm of the methodology. The simulation results are
presented and discussed in Section 5. Conclusions and future works are drawn in Section 6.

2. System Architecture and Mathematical Model

The components of the renewable energy-based self-consistent system include WT, PV,
and ESS, which are shown in Figure 1. According to the requirements for power supply
reliability, the electric load of the expressway is divided into three levels [37], of which the
Level I load has the highest requirements for power supply reliability. The electrical load
levels of highway power equipment are shown in Table 1.
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Figure 1. Schematic of expressway self-consistent energy system.

Table 1. Electricity load level of power-using equipment.

Electricity Load Level Electrical Equipment

Level I
Toll systems; Communication systems; Control room emergency alarm

systems for communication systems; Fire protection systems and
emergency lighting systems.

Level II The Lighting of the management center and service area; Fire
protection systems for general facilities; Electric Vehicle Charging Posts.

Level III Other facilities.

2.1. Mathematical Models for the System Components
2.1.1. Wind Turbine

The wind power generated by a wind turbine at time t can be represented by Equa-
tion (1) [38]:

PWT(t) =



0, v(t) < vin, v(t) > vout

Pr
v(t)−vin
vr−vin

, vin ≤ v(t) ≤ vr

Pr, vr ≤ v(t) ≤ vout

(1)

where Pr is the rated power; v(t) is the actual wind speed at time t at the turbine hub; vin,
vr, and vout are the cut-in, rated, and cut-out wind speed, respectively.
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In general, the known wind speed data are at the height of the wind measurement
tower; therefore, the data must be converted to the actual wind speed at the turbine hub
using the following equation, Equation (2):

v(t) = vstd(t)×
(

Hhub
Hstd

)θ

(2)

where vstd(t) is the wind speed at time t at the wind measurement tower; Hhub and Hstd are
the height of the turbine hub and wind measurement tower; θ is the friction coefficient,
which is taken as 0.2 in this paper.

2.1.2. Photovoltaic System

The output power of photovoltaic panels can be calculated by Equation (3) [38]:

PPV(t) = f PV × CPV ×
I(t)
ISTC

[
1 + γ

(
TPV(t)− TPV−R

)]
(3)

where CPV is the rated power of the PV panel under standard test condition (STC); I(t) is
the actual solar radiation intensity on the PV panel at time t and ISTC is the solar radiation
intensity at the STC; f PV is the PV derating factor due to the changing effect of the tempera-
ture and dust on the panels; γ is the temperature coefficient of power; TPV (t) and TPV-R are
the real-time and STC of the PV panel temperatures, respectively.

2.1.3. Energy Storage Battery

The selection of an appropriate size of battery bank requires a complete analysis of the
charge/discharge process of the battery. The main parameter of the battery to be considered
is the EC (equals energy capacity), which is simulated during the charging process as [25]:

E(t + 1) = E(t) +
(

φchPch(t)∆t− 1
φdis Pdis(t)∆t

)
(4)

where Pch(t) and Pdis(t) represent charging power and discharging power; φch and φdis are
charging and discharging efficiency, respectively; ∆t is the simulation step, at 1h.

2.2. Power-Flow Strategy

When the energy storage battery is not put into operation, the value of the power
imbalance is ∆P(t) of the system, as shown in Equation (5):

∆P(t) = PWT(t) + PPV(t)− (L1(t) + L2(t) + L3(t)) (5)

where L1(t), L2(t), and L3(t) are the power of level I, level II, and level III of the electrical
load at moment t, respectively.

The generation power of the energy self-supply system can be simulated with Equa-
tion (6):

Psys(t) =


PWT(t) + PPV(t), (a)

PWT(t) + PPV(t) + Pdis(t), (b)
(6)

(a) If ∆P(t) ≥ 0, the total power generated by wind turbine and PV is sufficient to cover
the load demand.

(b) Otherwise, when PWT(t) and PPV(t) are not sufficient to meet the demand, the battery
supplies the difference. If the energy storage battery cannot meet the load demand,
the load will cut off according to the order of Level III, Level II, and Level I. In this
paper, Ls1(t), Ls2(t), and Ls3(t) are the load shedding of 3 levels of electrical load,
respectively. The situation is classified as follows:

Case 1: Psys(t) ≥ L1(t) + L2(t) + L3(t), there is no power shortage.
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Case 2: Psys(t) < L1(t) + L2(t) + L3(t) ∩ Psys(t) ≥ L1(t) + L2(t), there are power
shortages in the Level III load, with the missing quantity determined based on Equation (7).

Ls3(t) = −
(

Psys(t)− L1(t)− L2(t)− L3(t)
)
× ∆t (7)

Case 3: Psys(t) < L1(t) + L2(t) ∩ Psys(t) ≥ L1(t), there are power shortages in the
level III and Level II loads, with the missing quantity determined based on Equation (8).

Ls3(t) = L3(t)× ∆t

Ls2(t) = −
(

Psys(t)− L1(t)− L2(t)
)
× ∆t

(8)

Case 4: Psys(t) < L1(t), there is power shortage in the Level I to Level III electric load,
with the missing quantity determined based on Equation (9).

Ls3(t) = L3(t)× ∆t

Ls2(t) = L2(t)× ∆t

Ls1(t) = −
(

Psys(t)− L1(t)
)
× ∆t

(9)

The specific operating strategy of the expressway self-consistent energy system is
shown in Figure 2.

Figure 2. Operating strategy of expressway self-consistent energy system.
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3. Uncertainty Consideration
3.1. Preprocessing Uncertain Data

To represent the actual situation, a year is divided into 12 parts by months and each
month is made to be 30 days long for convenience. Therefore, this paper divides the
historical data by month and fits the wind speed and solar radiation intensity data into
Weibull distribution and Beta distribution, respectively, to obtain the probability density
function (PDF) under each time slice. In the proposed model, each uncertainty variable has
12 24 probability distributions. Figure 3 shows the PDF of 24 h of a day in January.

Figure 3. The Probability density function of the renewable resource. (a) PDF of wind speed; (b) PDF
of solar radiation.

3.2. Scenario-Generation Methods

Based on the obtained PDF, the MCS is used to generate a large number of scenarios.
To ensure the processability of the calculation in the planning process, it is necessary
to use the backward method to reduce the scenarios and retain the most representative
typical scenarios in the sample cluster, as well as a few more extreme scenarios to solve
the planning problem in a limited scenario. The implementation of the employed scenario
reduction method for N scenarios can be explained as follows [39,40]:

Step 1: Determine S as the scenarios set. Set πs as the probability of each scenario, and
Dt (Sm,Sn) as the distance of (Sm,Sn).

Step 2: Calculate the distance between every two scenarios:

Dt(Sm, Sn) =

√√√√ d

∑
i=1

(
xsm

i − xsn
i
)2 (10)

where d is the length of the time series of each scenario.
Step 3: Calculate the minimum distance between Sr and Sk, based on the following

equation.
Dtk,r = min

i=1,2,..,N∩i 6=k
Dt(Sk, Si) (11)

Step 4: In this step, Dtk,r and PDk,r are determined based on Equations (12) and (13).

PDk,r = πkDtk,r (12)

PDj = minPDk (13)
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Step 5: Delete scenario Sj and update the probability of each scenario after reduction:

S = S−
{

Sj
}

, πr = πr + πj (14)

Step 6: Repeat steps 2 to 4 until the ideal number of scenarios is obtained.

4. Problem Formulation and Design Methodology
4.1. Objective Function and Constraints

In the proposed optimization process, the equivalent annual cost of the life cycle of the
system and the reliability of the power supply (RS) have been accounted for as objective
functions.

4.1.1. Equivalent Annual Cost in Life Cycle

The objective function of the proposed mathematical model involves minimizing the
total cost, which consists of investment, and operating and maintenance (O&M) costs. To
simplify the calculation, this paper assumes that the load, wind speed, and solar radiation
levels remain consistent from year to year during the project planning period, and sim-
plifies the total cost of the whole life cycle to the cost of one year, which is formulated as
Equation (15):

min TC = CRF
(
i, Rpro

)
CIC + CO&M (15)

CRF
(
i, Rpro

)
=

i(1 + i)Rpro

(1 + i)Rpro − 1
(16)

where TC is the total annualized cost (¥); CIC and CO&M are the investment operation and
maintenance costs (¥), respectively; i is the interest rate, at 0.1; Rpro is the project lifetime, at
20 years. The capital recovery factor is presented by CRF(i, Rpro).

The specific investment costs and O&M costs can be calculated as follows:

CIC = cinv
WT NWT + cinv

PVCPV + cinv
ESSNESS (17)

CO&M = ∑8760
t=1

(
cpro

WT PWT(t)∆t + cpro
PV PPV(t)∆t + cpro

ESS(Pch(t) + Pdis(t))∆t
)

(18)

where cinv is the unit investment cost factor; cpro is the operation and maintenance cost
factor.

4.1.2. Reliability of Power Supply

When planning an independent renewable energy power system based on the power
demand of an expressway, there are specific requirements for power supply reliability.
Moreover, power supply reliability is closely related to the uncertainty of renewable energy
generation. Therefore, this paper takes the power supply reliability rate as the optimization
objective, which is determined as follows:

maxRS =

(
1− Tuser

Tst

)
× 100% (19)

where Tuser is the average power failure time; Tst is the statistical period time, and equals
8760 h.

4.1.3. Area Constraints

Due to the limited available area around the expressway and the influence of ter-
rain, it is necessary to limit the maximum number of allowable configurations of various
distributed power sources.
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0 ≤ NWT1 ≤ NWT1,max

0 ≤ NWT2 ≤ NWT2,max

0 ≤ CPV ≤ CPV,max

0 ≤ Ness ≤ Ness,max

(20)

4.1.4. ESS Operation Constraints

The following denotes the formula for charging and discharging power, in which the
charged energy cannot exceed the maximum energy capacity of ESS.

Pch(t) = max
{

min
{

∆P(t),
NESSEmax − E(t)

φch∆t

}
, NESSPESS,max

}
(21)

Pdis(t) = max
{

min
{
−∆P(t),

φdis(E(t)− NESSEmin)

∆t

}
, NESSPESS,max

}
(22)

NESSEmin ≤ E(t) ≤ NESSEmax (23)

where Emax and Emin are the maximum and minimum energy capacity of a single ESS,
respectively; PESS,max is the maximum charging and discharging power of single energy
storage equipment.

4.1.5. Loss of Power Supply Probability Constraints (LPSP)

In the process of expressway use, the interruption of power supply to Level I and II
loads will cause great economic losses, affect the normal work of important units, or even
cause personal injury. Thus, this paper makes the following constraints on the shedding
amount of Level I and II loads [41].

LPSP1 = ∑T
t=0 Ls1(t)

∑T
t=0 L1(t)

≤ 1%

LPSP2 = ∑T
t=0 Ls2(t)

∑T
t=0 L2(t)

≤ 5%

(24)

4.2. Chance-Constrained Programming

CCP is mainly used to deal with mathematical problems where the constraints or
objective functions contain random variables. Since, in some unfavorable scenarios, the
decisions made may not satisfy the objective function or constraints, a confidence level is
set for the planning, allowing the decisions to not satisfy the constraints to a certain extent;
however, the probability of satisfying the constraints must be guaranteed not to be lower
than this confidence level [42]. The general form of multi-objective chance-constrained
programming is [43]: 

min[ f1, f2, ..., fm]

s.t.

Pr
{

fi(x, ξ) ≤ f i

}
≥ α, i = 1, 2, 3...

Pr
{

gj(x, ξ) ≤ gj

}
≥ β, j = 1, 2, 3...

(25)
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where f is the objective function; g represents the inequality constraints; x and ξ are the
vectors of state and uncertain variables; α and β are pre-defined confidence levels for the
objective function and constraints.

By using CCP, the optimization problem in this paper can be defined as:

min[TC,−RS]

s.t.

Pr
{

TCs ≤ TC
}
≥ α

Pr
{

RSs ≥ RS
}
≥ α

(26)

where TCs and RSs are the values of the objective function under scenario s; x and ξ are the
vectors of state and uncertain variables; α and β are pre-defined confidence levels for the
objective function and constraints.

The probabilistic constraint in Equation (24) can be changed to a deterministic con-
straint as follows: 

Pr(LPSP1,s ≤ 1%) ≥ α

Pr(LPSP2,s ≤ 5%) ≥ α
(27)

where LPSP1,s and LPSP2,s are the values of the constraints under scenario s.
The calculation of the objective function and constraints at specific confidence levels is

shown below:
Step 1: N random scenarios are generated and substituted into the model, and the

objective function values and constraint values are calculated for each scenario.
Step 2: According to the law of large numbers, if the minimum value of the objective

function is required, the values under the N scenarios calculated by Step1 are sorted from
smallest to largest, and the value of the Mth element is used to estimate the minimum value
f of the confidence level α of the objective function; otherwise, the values of the objective
function under each scenario must be sorted from largest to smallest.

Step 3: According to the law of large numbers, the probability measure of constraint
satisfaction Pr is defined as the sum of the probabilities of occurrence of scenarios that
satisfy the constraints. The Pr value of the constraint g(x,ξ) can be calculated by the
following equations.

h
(
ξ j
)
=

{
πj, if g

(
ξ j
)
≤ 0

0, otherwise
(28)

Pr{g(ξ) ≤ 0} =
N

∑
j=1

h
(
ξ j
)

(29)

4.3. Implementation of the Proposed Algorithm

The methodology of finding the optimum size of a standalone WT/PV/battery bank
by following the chance constrained approach is discussed in this section. The procedures
of the proposed algorithm can be summarized in the following steps:

1. All the required data of the problem are inputted, which include historical data on
wind speed, solar radiation intensity and load, microgrid equipment (distributed
power supply and energy storage system) parameters, and market price.

2. Based on the theory described in Section 3.1. and Section 3.2., the wind speed and
solar radiation probability density distribution parameters are obtained, and the MCS
technology is used to generate a certain amount of scenarios (here, 2000 scenarios).
Then, the backward method is applied to reduce the number of generated scenarios
(here, scenarios have been reduced to 20). Figure 4 shows the reduction of the 24-h
wind speed scenario, taking one day in January as an example.
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Figure 4. Wind speed scene set. The 24-h wind speed scenarios represented by colorful lines. (a)
Before reduction (there are 2000 scenarios represented by 2000 colorful lines); (b) After reduction
(there are 20 scenarios represented by 20 colorful lines).

3. In this paper, NSGA-II is used for multi-objective capacity optimization configuration.
The optimization variables of the system are as follows: CPV is the rated power of
photovoltaic panels, NWT1 and NWT2 are the numbers of type I and II wind turbines,
and NESS is the number of batteries. The optimization objectives under the confidence
level are shown in Equation (26). The constraints are shown in Equations (20)–(23)
and (27).

4. The weights quantify the importance and priority of each attribute and have a signifi-
cant impact on the decision results [44]. In this paper, the CRITIC method is utilized
to determine the weights of the two objectives and the TOPSIS method is used to rank
the Pareto solutions, and is widely applied to solve problems in energy planning [45],
system potential assessment [46], robot selection [47], etc.

The flow chart of the above algorithm is shown in Figure 5.
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Figure 5. Algorithm flow chart.
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5. Case Study
5.1. Data Description

In this paper, the planning model is simulated and analyzed based on the data from
2017 to 2022 for a region in northwest China. The input data include wind speed, solar
radiation, and load consumption. Tables 2–4 show the equipment parameters and market
prices for the different devices, respectively.

Table 2. Wind turbine parameters.

Equipment Parameters Type 1 Type 2

Rated power (kW) 100 500
Cut-in wind speed (m/s) 2.5 2.5
Rated wind speed (m/s) 10 10

Cut-out wind speed (m/s) 45 45
Hub height (m) 10.5 18

Investment cost (¥) 280,000 1,450,000
Operation and maintenance cost (¥/kWh) 0.2 0.23

Table 3. PV panel parameters.

Equipment Parameters Numerical Value

PV de-rating factor 0.8
Rated capacity (kW) 1

Electrical conversion efficiency of the PV panel 0.13
Temperature coefficient of power −0.005

STC of the PV panel temperature (◦C) 25
Investment cost (¥) 6195

Operation and maintenance cost (¥/kWh) 0.1

Table 4. Battery equipment parameters.

Equipment Parameters Numerical Value

Emax (kWh) 138.24
Emin (kWh) 0

PESS,max (kW) 50
Charge and discharge efficiency 0.86

Investment cost (¥) 55,200
Operation and maintenance cost (¥/kWh) 0.2

5.2. Optimization Results

The Pareto frontier of NSGA-II under 90% confidence is shown in Figure 6. From
Figure 6a, it is easy to see that there is a clear conflict between the two objectives, and there
is no feasible solution that can simultaneously reduce the cost and increase the supply
reliability. However, as the equivalent annual value cost increases, the growth rate of RS
gradually decreases, i.e., diminishing marginal utility. In order to further analyze the impact
of different optimal configuration results on the system, three representative Schemes are
selected from the Pareto solution set and their economic and reliability indicators are
compared and analyzed. Among the three Schemes in the figure, Scheme 1 has the lowest
annual system cost and Scheme 3 has the highest supply reliability. Scheme 2 is in between
Schemes 1 and 2, and is the optimal compromise obtained by using the CRITIC-TOPSIS
optimization method.
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Figure 6. Pareto solutions. (a) Objective function; (b) design variables.

Figure 7 shows the operation process in a day (24h) under the above three design
schemes. Under Scheme 1, the system will have Level III, II, or even I load shedding, while
under Scheme 2, load shedding rarely occurs. Under Scheme 3, the demand for all loads
can be met; however, the waste of renewable energy is serious, that is, the utilization rate of
renewable energy is low. Therefore, the CRITIC-TOPSIS method is used to select the best
compromise scheme with high power supply reliability and low energy waste to meet the
actual demand.

Figure 7. Distributed energy output and load shedding results in Scenario I.

Table 5 shows the specific system equipment configuration results and characteristic
index values at the confidence level of the three schemes. It can be seen in Table 5 that, from
Scheme 1 to Scheme 2, the number of energy storage batteries increases the most, because
the increase in the number of energy storage batteries can effectively reduce the power
imbalance between the power supply side and the power consumption side, and improve
the system operation stability. However, from Scheme 2 to 3, due to the limitation of the
installed capacity of the energy storage equipment, it is necessary to reduce load shedding
by increasing the installed capacity of the renewable energy.
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Table 5. System configuration of each scheme and evaluation index.

Configuration Results and Metrics Scheme 1 Scheme 2 Scheme 3

Number of Type 1 wind turbine 106 113 114
Number of Type 2 wind turbine 41 61 109

Capacity of PV panel 7682 kW 2797 kW 6348 kW
Number of Energy storage batteries 506 790 766

Equivalent annual cost in life cycle (×107 ¥) 5.7114 7.1890 9.8198
Reliability of power supply (%) 74.28% 94.68% 100%

LPSP/%
Level I 0.24 0.02 0
Level II 5.00 1.12 0
Level III 26.27 4.74 0

Figure 8 shows the variation in the battery EC over the year for each scheme. As can be
seen, although the design schemes are different, the variation in the battery EC in all cases
is similar. In these cases, the battery is charged when the power load is less at night, and
is discharged rapidly during the day, the peak period of power consumption. Moreover,
the value of the EC has obvious seasonal differences. The battery storage system starts to
become fully charged in March. Then, the battery has run down in October. This shows
that the generated random scenarios have modeled the stochastic behavior of uncertainty
sources properly.

Figure 8. The EC of battery changes in a year.

5.3. The Effect of the Confidence Levels of the CCP Model

The level of confidence indicates the degree to which the system is systematic in
different scenarios: the higher the confidence level, the higher the requirement for system
robustness. In this paper, the confidence level α is set as 80%, 85%, 90%, and 95%, respec-
tively. The total cost of optimum solutions of different RS (92%, 94%, 96%, 98%, and 100%)
for different confidence levels are shown in Figure 9.

It can be seen from Figure 9, with the increase in α, that the total cost of the system will
increase. Further, when RS is in the four cases of 92–98%, the growth rate will obviously
increase after 90% confidence and change from less than 1% to about 2% or even 3%;
when RS is taken as 100%, the growth rate will increase significantly after 85% confidence.
Therefore, in order to avoid the high cost caused by the high confidence level of opportunity
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constraints, the best confidence level can be selected according to the degree of demand
for power supply reliability. In this case, the best confidence level is 85% or 90% under
different RS. In practical application, the optimal confidence level will vary depending on
the data and operation control strategy.

Figure 9. The total cost of optimum solutions of different RS for different confidence levels.

5.4. The Effect of the Load Characteristics on Planning Results

In this paper, the load is set to follow the normal distribution, and its distribution is
specifically expressed as Pl ∼ N(µ, k · µ), where k is the coefficient of variance. The larger k
is, the larger the load fluctuation range is. In this paper, the k values are set as 0.1, 0.3, 0.5,
and 0.7, respectively.

Figure 10 shows the design variable values of the Pareto solution set under different
load fluctuation ranges. It can be seen, when the setting of k is different, that the planning
has obvious differences. On the whole, the larger the k is, the larger the load fluctuation
range is, the higher the robustness requirements of the scheme are, and the higher the
number of distributed power generation and energy storage batteries will be.

As can be seen from Figure 10d, the number of energy storage batteries quickly reaches
saturation. This is because only the storage batteries in this system can coordinate the
imbalance between the source and the load, which has a great impact on the reliability
of the system’s power supply; therefore, the capacity of the storage batteries gradually
tends to the maximum installed capacity. In the distributed power supply, type II WT has
the largest installed capacity, followed by type I WT, and, finally, PV. Further, with the
increase in load fluctuation range, the number of type II wind turbines with a rated power
of 500kW increases significantly, while the number of other distributed power sources has
not changed much or even slightly decreased. Therefore, compared with other distributed
power sources, type II WT are more suitable for the application scenarios in this paper, and
when the power demands on expressway increase, priority should be given to increasing
the number of type II WT.
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Figure 10. Pareto value of design variable under different k values which are represented by different
colors. (a) Type I wind turbine installed capacity; (b) type II wind turbine installed capacity; (c) PV
installed capacity; (d) ESS installed capacity.

6. Conclusions and Future Works

In this paper, the multi-objective capacity optimization problem of expressway self-
consistent energy systems based on the uncertainty of wind speed, solar radiation, and
electrical load is studied. With the use of CCP optimization theory, the best solution which
considers both power supply reliability and economy in Pareto solutions is determined by
NSGA-II and CRITIC-TOPSIS. Moreover, the optimization model is an investment decision
and equipment selection problem, which has good engineering applicability. However,
this method must be based on the accurate PDF of uncertain parameters such as wind
speed and solar radiation, as well as electrical load demand. Also, constructing the PDF
requires obtaining a large amount of sample information. For many practical problems,
it may be difficult to obtain sufficient uncertainty information, leading to deviations in
planning results.

In future work, we will carry on further research on the following points:

• The practical engineering application is definitely more complex than the case studies
in this paper, entailing more design variables and constraints as well as a larger system
capacity that even requires a group of microgrids to achieve energy self-consistency.
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• The CRITIC method is highly dependent on sample data and cannot reflect the impor-
tance that decision-makers attach to different attribute indicators. In application, it is
meaningful to obtain a more scientific weight value by utilizing expert experience and
professional knowledge.

• For practical application, it is necessary to obtain the specific and detailed resource data
of wind speed and solar radiation as well as electrical load demand of the planning
area, as the optimized planning results are highly dependent on these data.

Author Contributions: Conceptualization, X.H.; methodology, X.H. and W.J.; software, X.H. and W.J.;
validation, X.H., X.Y. and W.J.; data curation, X.Y. and Z.F.; writing—original draft preparation, W.J.;
writing—review and editing, X.H., X.Y. and Z.F.; visualization, W.J.; supervision, X.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is financially supported by the National Key R&D plan Foundation of China
(Grant No. 2021YFB2601300).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pei, J.; Zhou, B.; Lyu, L. e-Road: The largest energy supply of the future? Appl. Energy 2019, 241, 174–183. [CrossRef]
2. Lv, S.; Wei, Z.; Sun, G.; Chen, S.; Zang, H. Power and traffic nexus: From perspective of power transmission network and

elec3trified highway network. IEEE Trans. Trans. Elec. 2020, 7, 566–577. [CrossRef]
3. The Ministry of Public Security of the People’s Republic of China. Available online: https://www.mps.gov.cn/n2254314/n64093

34/c8451247/content.html (accessed on 7 April 2021).
4. Teng, J.; Li, L.; Jiang, Y.; Shi, R. A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment

to China. Sustainability 2022, 14, 10740. [CrossRef]
5. Hemmati, M.; Mohammadi-Ivatloo, B.; Abapour, M.; Anvari-Moghaddam, A. Optimal chance-constrained scheduling of

reconfigurable microgrids considering islanding operation constraints. IEEE Syst. J. 2020, 14, 5340–5349. [CrossRef]
6. Khodaei, A.; Bahramirad, S.; Shahidehpour, M. Microgrid planning under uncertainty. IEEE Trans. Power Syst. 2014, 30, 2417–2425.

[CrossRef]
7. Narayan, A.; Ponnambalam, K. Risk-averse stochastic programming approach for microgrid planning under uncertainty. Renew

Energy 2017, 101, 399–408. [CrossRef]
8. Yang, J.; Su, C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty.

Energy 2021, 223, 120043. [CrossRef]
9. Li, C.; Zhang, L.; Ou, Z.; Wang, Q.; Zhou, D.; Ma, J. Robust model of electric vehicle charging station location considering

renewable energy and storage equipment. Energy 2022, 238, 121713. [CrossRef]
10. Tan, B.; Chen, H.; Zheng, X.; Huang, J. Two-stage robust optimization dispatch for multiple microgrids with electric vehicle loads

based on a novel data-driven uncertainty set. Int. J. Electr. Power Energy Syst. 2022, 134, 107359. [CrossRef]
11. Li, Y.; Zhang, F.; Li, Y.; Wang, Y. An improved two-stage robust optimization model for CCHP-P2G microgrid system considering

multi-energy operation under wind power outputs uncertainties. Energy 2021, 223, 120048. [CrossRef]
12. Baharvandi, A.; Aghaei, J.; Niknam, T.; Shafie-Khah, M.; Godina, R.; Catalao, J.P. Bundled generation and transmission planning

under demand and wind generation uncertainty based on a combination of robust and stochastic optimization. IEEE Trans.
Sustain. Energy 2018, 9, 1477–1486. [CrossRef]

13. Yin., S.; Wang., J. Generation and transmission expansion planning towards a 100% renewable future. IEEE Trans. Power Syst.
2020, 37, 3274–3285. [CrossRef]

14. Nojavan, S.; Nourollahi, R.; Pashaei-Didani, H.; Zare, K. Uncertainty-based electricity procurement by retailer using robust
optimization approach in the presence of demand response exchange. Int. J. Electr. Power Energy Syst. 2019, 105, 237–248.
[CrossRef]

15. Wang, Y.; Tang, L.; Yang, Y.; Sun, W.; Zhao, H. A stochastic-robust coordinated optimization model for CCHP micro-grid
considering multi-energy operation and power trading with electricity markets under uncertainties. Energy 2020, 198, 117273.
[CrossRef]

16. Gazijahani, F.S.; Salehi, J. Reliability constrained two-stage optimization of multiple renewable-based microgrids incorporating
critical energy peak pricing demand response program using robust optimization approach. Energy 2018, 161, 999–1015. [CrossRef]

http://doi.org/10.1016/j.apenergy.2019.03.033
http://doi.org/10.1109/TTE.2020.3030806
https://www.mps.gov.cn/n2254314/n6409334/c8451247/content.html
https://www.mps.gov.cn/n2254314/n6409334/c8451247/content.html
http://doi.org/10.3390/su141710740
http://doi.org/10.1109/JSYST.2020.2964637
http://doi.org/10.1109/TPWRS.2014.2361094
http://doi.org/10.1016/j.renene.2016.08.064
http://doi.org/10.1016/j.energy.2021.120043
http://doi.org/10.1016/j.energy.2021.121713
http://doi.org/10.1016/j.ijepes.2021.107359
http://doi.org/10.1016/j.energy.2021.120048
http://doi.org/10.1109/TSTE.2018.2789398
http://doi.org/10.1109/TPWRS.2020.3033487
http://doi.org/10.1016/j.ijepes.2018.08.041
http://doi.org/10.1016/j.energy.2020.117273
http://doi.org/10.1016/j.energy.2018.07.191


Sustainability 2023, 15, 5605 19 of 20

17. Zhang, C.; Xu, Y.; Li, Z.; Dong, Z.Y. Robustly coordinated operation of a multi-energy microgrid with flexible electric and thermal
loads. IEEE Trans. Smart Grid 2018, 10, 2765–2775. [CrossRef]

18. Xu, T.; Ren, Y.; Guo, L.; Wang, X.; Liang, L.; Wu, Y. Multi-objective robust optimization of active distribution networks considering
uncertainties of photovoltaic. Int. J. Electr. Power Energy Syst. 2021, 133, 107197. [CrossRef]

19. Abdalla, O.H.; SMIEEE, L.; Adma, M.A.A.; Ahmed, A.S. Two-stage robust generation expansion planning considering long-and
short-term uncertainties of high share wind energy. Elec. Power Syst. Res. 2020, 189, 106618. [CrossRef]

20. Zhang, B.; Li, Q.; Wang, L.; Feng, W. Robust optimization for energy transactions in multi-microgrids under uncertainty. Appl.
Energy 2018, 217, 346–360. [CrossRef]

21. Yurdakul, O.; Sivrikaya, F.; Albayrak, S. A Distributionally Robust Optimization Approach to Unit Commitment in Microgrids. In
Proceedings of the 2021 IEEE Power & Energy Society General Meeting (PESGM), Washington, DC, USA, 26–29 July 2021; pp. 1–5.

22. Wang, Y.; Yang, Y.; Tang, L.; Sun, W.; Li, B. A Wasserstein based two-stage distributionally robust optimization model for optimal
operation of CCHP micro-grid under uncertainties. Int. J. Electr. Power Energy Syst. 2020, 119, 105941. [CrossRef]

23. Li, G.; Sun, W.; Huang, G.H.; Lv, Y.; Liu, Z.; An, C. Planning of integrated energy-environment systems under dual interval
uncertainties. Int. J. Electr. Power Energy Syst. 2018, 100, 287–298. [CrossRef]

24. Garcia-Torres, F.; Bordons, C.; Tobajas, J.; Real-Calvo, R.; Santiago, I.; Grieu, S. Stochastic optimization of microgrids with hybrid
energy storage systems for grid flexibility services considering energy forecast uncertainties. IEEE Trans. Power Syst. 2021, 36,
5537–5547. [CrossRef]

25. Yu, J.; Ryu, J.H.; Lee, I. A stochastic optimization approach to the design and operation planning of a hybrid renewable energy
system. Appl. Energy 2019, 247, 212–220. [CrossRef]

26. Roustaee, M.; Kazemi, A. Multi-objective stochastic operation of multi-microgrids constrained to system reliability and clean
energy based on energy management system. Elec. Power Syst. Res. 2021, 194, 106970. [CrossRef]

27. Aghdam, F.H.; Kalantari, N.T.; Mohammadi-Ivatloo, B. A stochastic optimal scheduling of multi-microgrid systems considering
emissions: A chance constrained model. J. Clean. Prod. 2020, 275, 122965. [CrossRef]

28. Li, Y.; Han, M.; Yang, Z.; Li, G. Coordinating flexible demand response and renewable uncertainties for scheduling of community
integrated energy systems with an electric vehicle charging station: A bi-level approach. IEEE Trans. Sust. Energy 2021, 12,
2321–2331. [CrossRef]

29. Lei, Y.; Wang, D.; Jia, H.; Chen, J.; Li, J.; Song, Y.; Li, J. Multi-objective stochastic expansion planning based on multi-dimensional
correlation scenario generation method for regional integrated energy system integrated renewable energy. Appl. Energy 2020,
276, 115395. [CrossRef]

30. Prathapaneni, D.R.; Detroja, K.P. An integrated framework for optimal planning and operation schedule of microgrid under
uncertainty. Sustain. Energy Grids Net. 2019, 19, 100232. [CrossRef]

31. Kandil, S.M.; Farag, H.E.Z.; Shaaban, M.F.; El-Sharafy, M. A combined resource allocation framework for PEVs charging stations,
renewable energy resources and distributed energy storage systems. Energy 2018, 143, 961–972. [CrossRef]

32. Li, B.; Wang, H.; Tan, Z. Capacity optimization of hybrid energy storage system for flexible islanded microgrid based on real-time
price-based demand response. Int. J. Electr. Power Energy Syst. 2022, 136, 107581. [CrossRef]

33. Ullah, Z.; Elkadeem, M.R.; Kotb, K.M.; Taha, I.B.; Wang, S. Multi-criteria decision-making model for optimal planning of on/off
grid hybrid solar, wind, hydro, biomass clean electricity supply. Renew Energy 2021, 179, 885–910. [CrossRef]

34. Gao, J.; Wang, Y.; Huang, N.; Wei, L.; Zhang, Z. Optimal site selection study of wind-photovoltaic-shared energy storage power
stations based on GIS and multi-criteria decision making: A two-stage framework. Renew Energy 2022, 201, 1139–1162. [CrossRef]

35. Yazdani, H.; Baneshi, M.; Yaghoubi, M. Techno-economic and environmental design of hybrid energy systems using multi-
objective optimization and multi-criteria decision making methods. Energy Convers. Manag. 2023, 282, 116873. [CrossRef]

36. Chen, H.; Gao, L.; Zhang, Z. Multi-objective optimal scheduling of a microgrid with uncertainties of renewable power generation
considering user satisfaction. Int. J. Electr. Power Energy Syst. 2021, 131, 107142. [CrossRef]

37. JTG D80—2006; General Specification of Freeway Traffic Engineering and Roadside Facilities. Ministry of Transport of the
People’s Republic of China: Beijing, China, 2006; pp. 33–34.

38. Xu, C.; Ke, Y.; Li, Y.; Chu, H.; Wu, Y. Data-driven configuration optimization of an off-grid wind/PV/hydrogen system based on
modified NSGA-II and CRITIC-TOPSIS. Energy Convers. Manag 2020, 215, 112892. [CrossRef]

39. Firouzmakan, P.; Hooshmand, R.A.; Bornapour, M.; Khodabakhshian, A. A comprehensive stochastic energy management system
of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs. Renew.
Sustain. Energy Rev. 2019, 108, 355–368. [CrossRef]

40. Bornapour, M.; Hooshmand, R.A.; Khodabakhshian, A.; Parastegari, M. Optimal stochastic coordinated scheduling of proton
exchange membrane fuel cell-combined heat and power, wind and photovoltaic units in micro grids considering hydrogen
storage. Appl. Energy 2017, 202, 308–322. [CrossRef]

41. Bakhtiari, H.; Zhong, J.; Alvarez, M. Uncertainty modeling methods for risk-averse planning and operation of stand-alone
renewable energy-based microgrids. Renew Energy 2022, 199, 866–880. [CrossRef]

42. Li, P.; Arellano-Garcia, H.; Wozny, G. Chance constrained programming approach to process optimization under uncertainty.
Comput. Chem. Eng. 2008, 32, 25–45. [CrossRef]

43. Liu, B. Theory and Practice of Uncertain Programming; Springer: Berlin/Heidelberg, Germany, 2009; Volume 239, pp. 349–363.

http://doi.org/10.1109/TSG.2018.2810247
http://doi.org/10.1016/j.ijepes.2021.107197
http://doi.org/10.1016/j.epsr.2020.106618
http://doi.org/10.1016/j.apenergy.2018.02.121
http://doi.org/10.1016/j.ijepes.2020.105941
http://doi.org/10.1016/j.ijepes.2018.02.033
http://doi.org/10.1109/TPWRS.2021.3071867
http://doi.org/10.1016/j.apenergy.2019.03.207
http://doi.org/10.1016/j.epsr.2020.106970
http://doi.org/10.1016/j.jclepro.2020.122965
http://doi.org/10.1109/TSTE.2021.3090463
http://doi.org/10.1016/j.apenergy.2020.115395
http://doi.org/10.1016/j.segan.2019.100232
http://doi.org/10.1016/j.energy.2017.11.005
http://doi.org/10.1016/j.ijepes.2021.107581
http://doi.org/10.1016/j.renene.2021.07.063
http://doi.org/10.1016/j.renene.2022.11.012
http://doi.org/10.1016/j.enconman.2023.116873
http://doi.org/10.1016/j.ijepes.2021.107142
http://doi.org/10.1016/j.enconman.2020.112892
http://doi.org/10.1016/j.rser.2019.04.001
http://doi.org/10.1016/j.apenergy.2017.05.133
http://doi.org/10.1016/j.renene.2022.09.040
http://doi.org/10.1016/j.compchemeng.2007.05.009


Sustainability 2023, 15, 5605 20 of 20

44. Mukhametzyanov, I. The specific character of objective methods for determining weights of criteria in MCDM problems: Entropy,
CRITIC, and SD. Decis. Mak. Appl. Manag. Eng. 2021, 4, 76–105. [CrossRef]

45. Bilgili, F.; Zarali, F.; Ilgün, M.F.; Dumrul, C.; Dumrul, Y. The evaluation of renewable energy alternatives for sustainable
development in Turkey using intuitionistic fuzzy-TOPSIS method. Renew Energy 2022, 189, 1443–1458. [CrossRef]

46. Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J. Suitability evaluation system for the shallow geothermal energy implementation in
region by Entropy Weight Method and TOPSIS method. Renew Energy 2022, 184, 564–576. [CrossRef]

47. Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM
techniques. Mater. Today Proc. 2022, 50, 709–715. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.31181/dmame210402076i
http://doi.org/10.1016/j.renene.2022.03.058
http://doi.org/10.1016/j.renene.2021.11.112
http://doi.org/10.1016/j.matpr.2021.04.487

	Introduction 
	Background 
	Literature Review 
	Contributions and Paper Organization 

	System Architecture and Mathematical Model 
	Mathematical Models for the System Components 
	Wind Turbine 
	Photovoltaic System 
	Energy Storage Battery 

	Power-Flow Strategy 

	Uncertainty Consideration 
	Preprocessing Uncertain Data 
	Scenario-Generation Methods 

	Problem Formulation and Design Methodology 
	Objective Function and Constraints 
	Equivalent Annual Cost in Life Cycle 
	Reliability of Power Supply 
	Area Constraints 
	ESS Operation Constraints 
	Loss of Power Supply Probability Constraints (LPSP) 

	Chance-Constrained Programming 
	Implementation of the Proposed Algorithm 

	Case Study 
	Data Description 
	Optimization Results 
	The Effect of the Confidence Levels of the CCP Model 
	The Effect of the Load Characteristics on Planning Results 

	Conclusions and Future Works 
	References

