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Abstract: Power Quality (PQ) has become a significant issue in power networks. Power quality
disturbances must be precisely and appropriately identified. This activity involves identifying,
classifying, and mitigating power quality problems. A case study of the Awada industrial zone in
Ethiopia is taken into consideration to show the practical applicability of the proposed work. It is
found that the current harmonic distortion levels exceed the restrictions with a maximum percentage
Total Harmonic Distortion of Current (THDI) value of up to 23.09%. The signal processing technique,
i.e., Stockwell Transform (ST) is utilized for the identification of power quality issues, and it covers
the most important and common power quality issues. The Support Vector Machine (SVM) method
is used to categorize power quality issues, which enhances the classification procedure. The ST
scored better in terms of accuracy than the Wavelet Transform (WT), Fourier Transform (FT), and
Hilbert Transform (HT), obtaining 97.1%, as compared to 91.08%, 88.91%, and 86.8%, respectively.
The maximum classification accuracy of SVM was 98.3%. To lower the current level of harmonic
distortion in the industrial sector, a Distribution Static Compensator (D-STATCOM) is developed in
the current control mode. To evaluate the performance of the D-STATCOM, the performance of the
distribution network with and without D-STATCOM is simulated. The simulation results show that
THDI is reduced to 4.36% when the suggested D-STATCOM is applied in the system.

Keywords: current distortion; distribution static compensator; stockwell transform; support
vector machine

1. Introduction

Electricity is delivered from the transmission system to individual consumers at the
electric power distribution stage, which is the last in the process. Power transformers, dis-
tribution conductors, distribution feeders, and main service conductors make up a typical
power distribution system [1]. Circuit breakers, protection devices, reclosers, capacitor
banks, voltage regulators, metering equipment, etc. are also included in a distribution
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system. Through the distribution system, the power travels to industrial, commercial, and
residential centers. From the distribution substation, feeders extend outward to transport
electricity to clients [2]. Distribution transformers at strategic points along the distribution
system reduce voltage to the standard 400 volts three-phase or 230 volts single-phase
supply needed by the majority of customers [3]. For assessing the level of power quality
and implementing effective alleviation measures, numerous power quality evaluations
must be carried out at various points along the distribution system [4].

To analyze power quality and its disturbances, it is required to quickly, accurately, and
correctly identify these disturbances. In order to take action and eliminate these disruptions,
it is also critical to classify them in accordance with their norms [5,6]. Therefore, in order to
ensure that these occurrences are understood, an advanced algorithm is required for the
detection, feature extraction, and categorization of this data [7,8]. Algorithms for signal
processing offer a mathematical approach for handling signals, particularly in the electrical
power system [9,10].

1.1. Related Work

The following studies are some of the earlier works on power quality issues and
mitigation strategies. In the literature, many methodologies of signal processing algorithms
and their capabilities, in terms of detection and feature extraction, are studied.

The authors of [1] presented a new, ant colony-based, optimal feature selection method
for classifying power quality issues. The authors of [2] used wavelet multiclass support
vector machines to detect and categorize various power quality issues. The identification
and categorization of individual and combined power quality issues were carried out by the
authors in [3], utilizing fuzzy systems guided by the particle swarm optimization technique.
The evaluation of the utility grid’s power quality with wind energy generation integrated
was conducted by the authors in [4]. The detection of power quality disturbances based on
time–frequency analysis and decision trees were demonstrated by the authors in [5].

The recognition of power quality disturbances based on a multiresolution Stockwell
Transform (ST) and decision tree was described by the authors in [6]. The power quality
disturbance feature selection and pattern identification based on picture enhancement
approaches were given in [7] by the authors. Authors in [8] proposed the ST and fuzzy
clustering-based power quality assessment and event detection in distribution networks
with wind energy penetration. The authors of [9] offered a hybrid soft computing technique
based on clustering, rule mining, and decision tree analysis for the problem of customer
segmentation in real-world industries that place a high priority on the needs of the con-
sumer. The real-time cross-correlation-based technique for detecting and categorizing
power quality disturbances was demonstrated by the authors in [10].

The coordination of Distributed Flexible AC Transmission System (DFACTS) com-
pensators and distributed generation units in contemporary distribution networks was
presented in [11] by authors using a Basic Open-Source Nonlinear Mixed Integer Program-
ming (BONMIN) solver. The islanding detection approach utilizing a potential energy
function-based criterion was published in [12]. The optimal sizing of a smart hybrid re-
newable energy system was provided in [13] by authors utilizing several optimization
algorithms. In [14], authors developed a novel method based on an iterative Lambert
W function for mathematical modeling and parameter estimation of Polymer Electrolyte
Membrane (PEM) fuel cells. The hybrid sine–cosine artificial rabbits’ algorithm was used by
the authors of [15] to present the maximum hosting capacity estimation for renewables in
power networks, taking energy storage and transmission line expansion into consideration.

A modified energy management strategy was published in [16] by the authors to assist
phase balancing in grid-interfaced photovoltaic and fuel cell systems. The active/reactive
energy control technique for a grid-connected fuel cell system with local inductive loads
was proposed by the author in [17]. The enhanced instantaneous power theory-based
current harmonic extraction for unbalanced electrical grid circumstances is given in [18] by
the authors. The Interline Fuel Cell (I-FC) system with dual-functional control capability
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was presented by the author in [19]. The performance enhancement of a dynamic voltage
restorer, based on a bidirectional dc–dc converter, was given in [20].

The event-triggered-based distributed cooperative energy management for multi-
energy systems was presented by authors in [21]. The investigation of the dynamic voltage
fluctuation mechanism in an interconnected power grid with stochastic power disturbances
was reported by the authors in [22]. In [23], the authors described how to use a better
common-mode voltage injection to minimize capacitor voltage fluctuations for four-level
hybrid clamped converters.

1.2. Organization of the Manuscript

The remaining paper is organized as follows: Section 2 discusses data analysis and
system modeling. Section 3 presented the methodology of the performed research. In
Section 4, results and discussion are presented, followed by the conclusion.

2. Data Analysis and System Modeling

Various steps are utilized to develop the research model.

2.1. Data Collection

Primary and secondary data will be gathered for this work from the Yirgalem substa-
tion, Ethiopian Electric Utility (EEU), and Ethiopian Electric Power (EEP). The data would
be gathered by interviewing each of the 47 substation employees, physically observing the
substations, and obtaining historical data on feeder loading (peak load and hourly load) for
the substation and distribution feeder roots from the engineering offices of EEU and EEP.
As a rule of thumb, it is essential to test each location at the Points of Common Coupling
(PCC) for at least seven days [24]. To maintain high reliability, the factory’s electrical power
is delivered to the installation via a single incoming feeder from the Yirgalem substation.

2.2. Data Analysis
2.2.1. Electric Power Supply System to Awada Industry Zone

One inbound 132 kV transmission line will feed power to the Yirgalem substation from
the Hawassa substation. The 33 kV and 15 kV feeders scale down the incoming 132 kV
and distribute it. Three 132/33 kV, 25 MVA, and three 132/15 kV, 25 MVA step-down
transformers (TR II and I) serve the study area, and the substation has six outgoing feeds.
Feeders one, two, and three are powered by Transformer one (TR I). Feeders four, five,
and six are all powered by Transformer Two (TR II), with the first three’s nominal voltage
being 15 kV and the last three’s being 33 kV. Figure 1 presents the single-line diagram of
the Yirgalem substation [24].

2.2.2. Electrical Power Distribution Network of Awada Industry

An overhead distribution system connects the 33-kV primary distribution feeder
line at the Yirgalem substation to the Awada industrial zone. The industry is supplied
by a powerhouse that is built inside the plant. The distribution feeder line is integrated
into the subsurface system of the powerhouse. One 33/0.4 kV, 800 kVA, %Z is 5.03,
and three 33/0.4 kV, 1250 kVA, %Z is 5.05, and the Delta-Wye step-down net distribution
transformers are linked to the 33 kV feeder line to provide a maximum demand of 2.85 MVA,
as indicated in Figure 2 below.

Power for the factory is distributed by four Central Main Distribution Boards (CMDBs),
as shown in Figure 2 below. These four CMDBs serve a range of different and scattered
loads through the Main Distribution Boards (MDBs) and Sub Distribution Boards (SDBs),
which are positioned in various locations across the plant adjacent to the loads they supply.
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Power for the majority of the production equipment in the facility is provided by
CMDB-1, CMDB-2, and CMDB-3. On the other hand, loads including sizable Air Condi-
tioning (AC) units, lighting loads, and office and kitchen equipment make up the majority
of the connected loads to CMDB-4. One 200 kVA Standby Diesel Generator (SDG) is present
in the factory for backup. The factory employs highly developed and powerful machinery,
which is sensitive to even the smallest variation in the quality of the energy provided and,
at the same time, has the propensity to contaminate the given pure sine wave. The loads in
the sector can be inverters, 1-Φ and 3-Φ supplies, controlling units, lamps (fluorescent and
gas discharge), and other equipment [24].

2.2.3. Power Quality Issues in the Industry Zone

In order to identify power quality problems, the authors examined weekly and
monthly maintenance reports for the industry. Further investigation into power qual-
ity disturbance issues that may not have been reported in reports owing to various factors
has also been conducted in thorough discussions with the factory engineers. The power
quality and reliability issues that the industry has experienced over the past few years are
harmonics, voltage sag, voltage swell, and interruption.

2.3. Distribution Network Modeling

The MATLAB/Simulink software is utilized in this work to develop the studied system.
The Awada industry distribution network’s power quality performance is modeled and
examined using this simulation software environment. It represents the distribution system
using an equivalent circuit (an impedance diagram). The following subtopics present the
calculations and presumptions used to represent various distribution network components.
The computed values for the four-distribution transformer’s resistances and reactances are
shown in Table 1 [24].

Table 1. Calculated values of Rtr and Xtr for T1–T4.

Transformer Transf. Rating Rtr Xtr Ltr

T1, T2 and T4 1250 kVA 2.037× 10−2 8.81× 10−1 0.0202 Mh

T3 800 kVA 8.8× 10−2 Ω j4.5× 10−1 0.0314 Mh

Electrical Demand Modeling

The factory’s monthly energy consumption information for each cost center is used
to determine the real power factor of the loads. For this research, the power factor values
of each cost center are averaged over a 12-month period (April 2021–March 2022). Table 2
presents the connected demand for each transformer [24].

Table 2. Each transformer connected demand.

Transformer
Category Load Category Active Power

(kW)
Reactive Power

(kVAr)
Apparent

Power (kVA)

TR1
Load 1 652.8 229.6

1250
Load 2 234.1 231.3

TR2

Load 3 392 319.2

1033Load 4 255 106.0

Load 5 82.1 306.4

TR3
Load 6 368.2 371.0

723
Load 7 200.6 75.7
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Table 2. Cont.

Transformer
Category Load Category Active Power

(kW)
Reactive Power

(kVAr)
Apparent

Power (kVA)

TR4

Load 8 95.6 56.4

1135

Load 9 40.8 30.6

Load 10 210.7 19.0

Load 11 67 4.2

Load 12 202.5 46.5

Load 13 261 177.6

Load 14 154 113.3

Load 15 8.5 6.4

3. Methodology

The proposed technique for the Power Quality (PQ) problem detection and classification
is discussed in this section. Figure 3 presents the flow chart of the proposed methodology.
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3.1. Proposed Algorithm for PQ Disturbance Identification

In this work for the PQ issue detection, the ST technique is utilized [25].

3.1.1. Stockwell Transform (ST)

The ST of a continuous time signal h(t) has been presented in Equation (1) as

S(ζ, f) =
∫ ∞

−∞
h(t)

|f|
α
√

2π
.e(
−f2(ζ−t)2

2α2 ) , (1)

where, f is the frequency, t is the time, and the ζ is the control parameter that controls
the Gaussian window position on the t-axis [25]. Time and the frequency resolution are
controlled by α. In this work, α is selected as 0.5.

The discrete version of FT is given by Equation (2) [25],

H
[ n

NT

]
=

1
N ∑N−1

k=1 h(kT).e(
−i2πk

N ) , (2)

where, h(kT) discrete form of power signal h(t), n is 0, 1, 2, . . . , N− 1, k = 1, 2 . . . N− 1, and
T is the sampling interval. The ST of a discrete time series h(kT) is expressed by assuming.

f→ n NT and ζ→ jT is represented as

S
[
jT,

n
NT

]
= ∑N−1

m=0 H
[

m + n
NT

]
G(m, n)e

i2πmj
N , (3)

G(m, n) = e
(i2πmj)2

N2 , n 6= 0, where j, m = 0, 1, 2, . . . , N − 1
By assuming n = 0,

s[jT.0] = ∑N−1
m=0 h

[ m
NT

]
. (4)

S-matrix is the name of the ST’s output. The frequency is represented by the row and
the time by the column in the S-matrix results. Additionally, each matrix component is a
complex value. A Fourier spectrum is produced by averaging the S-amplitude matrixes
across time [25].

3.1.2. Feature Extraction

Feature extraction is the critical step in machine learning-based techniques for PQ
problem identification and classification. The measured information that is extracted from
sample signals to create a vector is referred to as an “extracted feature.” Sub-stages utilized
in the feature extraction process are as follows:

A. Energy Feature
Using Perceval’s Theorem,

Esig(j) =
1
N ∑N

j=1|X[j]|2 , (5)

EDi =
1
N ∑N

j=1

∣∣Di,j
∣∣2 , (6)

where Aj and Dj are wavelet coefficients, i is 1, 2, 3, . . . , L.

EAi =
1
N ∑N

j=1

∣∣∣Dl,j

∣∣∣2 , (7)

Ei =
[
EA1 EA2 . . . EAl EAl , ED1 ED2 . . . EDl EDl

]
, (8)

where EAj and EDj are the energies of wavelet-approximation and the detail coefficients
up to level j and Ei are the energy feature vector.
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B. Entropy Feature
The detailed and approximated level coefficients of the relations for the Shannon

entropy are as follows:
EntDi = −∑N

j=1 Di,j
2 log(Di,j

2) , (9)

EntAi = −∑N
j=1 Ai,j

2 log(Ai,j
2) , (10)

where Ai, and Di, are the probability of the occurrence of feature values {D1 . . . 8, A8} and
i = 1 . . . 10.

So, the overall entropy features are given by:

Enti =
[
EntD1 EntD2 . . . EntDl EntAl , EntA1 EntA2 EntA8

]
. (11)

C. Standard Deviation
It is given by,

S.DDj =

√
∑N

j=1
(

Dj −mean
)2

N − 1
, (12)

S.DAj =

√
∑N

j=1
(

Aj −mean
)2

N − 1
, (13)

SDi = Ei =
[
SDD1 SDD2 . . . SDDl SDDl

]
, (14)

Featurei =
[
EiEntiSDDi

]
. (15)

3.2. Proposed Classifier Algorithms

This section discusses the proposed classifier for the PQ problem classification based
on the support vector machine.

3.2.1. Support Vector Machine (SVM) Classifier

SVM functions as a discriminative classifier commonly specified as an ideal hyperplane
for two or more categorized classes of disturbance data, as follows:

g(x) = x′θ + b = 0 for ∈ R . (16)

A linear decision boundary called a hyperplane divides the space for categorization
into two halves. Kernel functions are employed for persistent and complex data. In this
study, feature mapping and binary classification are related to localizing Gaussian kernels.
The following is the mathematical relationship for the Gaussian kernel:

f
(

xi, lj
)
=

(
exp

[
−
(
‖ xi − lj ‖ 2

)])
2δ2 , (17)

where xi represents feature, lj, landmark point, and δ is a Gaussian kernel parameter, which
features f

(
xi, Ij

)
to vary more smoothly.

The objective function is to minimize and subject to ∑ αj.yj, which is equal to zero,

min(0.5 ∑a
j=1 ∑n

k=1 ajakyjykG
(

xj, xk
)
−∑n

j=1 aj) , (18)

where aj ≥ 0 and j = 1, 2, . . . , n,

aj
[
yjg
(
xj
)
− 1 + δj

]
= 0 , (19)
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δj
(
C− aj

)
= 0 , (20)

whereas,
g
(
xj
)
= ϕ

(
xj
)′

θ + b. (21)

Further, ϕ represents a kernel function, δj is entitled slack parameter, and C is regular-
ization parameter. Figure 4 presents the SVM classification schematic diagram [2].
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3.2.2. Classification Stage

Figure 5 shows the one versus one SVM binary classification schematic diagram [2].
The feature vector comprises 27 dimensions of the feature dataset for 250 samples of each
PQ disturbance class, i.e., 27 × 250. From 250 samples of each disturbance class, half of
the data set has been used for training the SVM classifier, and the rest of the data is for
testing purposes. For classification training with SVM, the 1 vs. 1 approach is adopted, as
shown in Figure 5. In this approach, each SVM training node with i = 1 class is trained
against all classes. Similarly, for the next SVM training node, the aforesaid i = 1 class is
replaced with a i = 2 class, and training is conducted with all other classes. This process
was iterated until all classes had passed through training. With this training process, SVM
develops algorithm functions, i.e., Cn, for binary data classification, and outlier detection
for n classes. Therefore, a one vs. one approach may allow the SVM classifier to have
a very upright training performance with this multiclass classification problem. Testing
of the classifier for each class, results in positive and negative scores for classified, and
misclassified class samples, are performed. A label of one was assigned to a classified
disturbance sample, and a label of zero was assigned to a misclassified sample. The time
domain disturbance is fed into the classifier [2].
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3.3. Mitigation of PQ Disturbance Using DSTATCOM

This work proposed the D-STATCOM for the mitigation of PQ disturbances identified
and classified in this work [26].

3.3.1. Mitigation of Current Harmonic Distortion Using D-STATCOM

Figure 6 illustrates the Awada industry zone distribution system with three indepen-
dently Current Control Mode (CCM) operated D-STATCOMs.
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Figure 6. Simulink model of Awada industry zone network with D-STSTCOM.

3.3.2. D-STATCOM Capacity, Specifications and Measured Values

Based on the measured values of the electrical system of the Awada industry zone,
the voltage at PCC is (VPCC=) 0.4 kV, apparent power is (S=) 1250 kVA, and power factor is
(cosΦ=) 0.9. Moreover, maximum 3-Φ Total Harmonic Current Distortion (THDI) response
is 75%, harmonic duration to protect is 250 msec.

It is advised to use D-STATCOM technology to harmonically correct the bus volt-
age and restore it to 100% of the rated value. Therefore, the compensating voltage of
D-STATCOM should be 80% when the harmonic depth is less than 75%. By taking into
account this consideration, for peak load of 1250 kVA with power factor of 0.9, compensa-
tion power required is (0.9 × 1250 kVA=) 1125 kVA. The duration of harmonic to protect is
250 msec. so, the required energy is ((1250 × 0.9) × 0.25=) 281.255 kJ.
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For sufficient operating capacity, D-STATCOM capacity is selected with 1150 kVA,
300 kJ. In addition to this, it should be installed at the 33 kV side of the system.

4. Results and Discussion

In this section, the results obtained from the ST for PQ problem detection, SVM
results of PQ problem classification, and D-STATCOM results of PQ problem mitigation are
discussed. Furthermore, a comparison with other techniques is presented to demonstrate
the efficacy of the proposed method.

4.1. Identification of PQ Issues Using Stockwell Transform

This section presents the results of the identification of various PQ issues using the ST.

4.1.1. PQ Disturbances Pattern Generation

Figure 7 demonstrates the instantaneous waveform of measured phase voltages at the PCC.
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Figure 8 presents the measured voltage at bus 33 kV side bus.
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Furthermore, Figure 9 presents the instantaneous waveform of measured voltage at
PCC phase A in the interruption case.
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4.1.2. Detection of Harmonics

Based on phase voltage A presented in Figure 8a, Figure 10a presents the contour
plots of S-transform absolute value coefficients in phase A sag with harmonics. Figure 10b
presents the signal contaminated with the instantaneous voltage of phase A and S-transform
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contours of the absolute value. Figure 10c presents the 3D mesh time-frequency-amplitude
of phase A voltage.
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Figure 10. (a) Contour plots of ST absolute value coefficients in phase A sag with harmonics,
(b) Signal contaminated with Harmonics and instantaneous voltage and ST contours absolute value,
(c) 3D mesh time-frequency-amplitude.

Between the intervals of 0–600 and 600–1200 milliseconds, respectively, the ST con-
tours demonstrate the presence of various voltage disturbances. This model can assist in
identifying voltage change disturbances and recognizing all voltage variances.

4.1.3. Voltage Swell

Figure 11 presents the results of the voltage swell power quality issue. Figure 11a
presents the contour plots of ST absolute value coefficients in phase A swell. Figure 11b
presents the signal contaminated with instantaneous voltage and ST contours absolute
value, and Figure 11c presents the 3D mesh time-frequency-amplitude.
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4.1.4. Interruption

Figure 12 presents the results of interruption related power quality issues. Figure 12a
presented the contour plots of ST absolute value coefficients in phase A. Figure 12b pre-
sented the signal contaminated with interruption voltage and ST contours absolute, and
Figure 12c presents the 3D mesh time-frequency-amplitude.
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Additionally, the ST will produce temporal frequency contours that can show the
patterns of the individual single-power quality disturbances. Figure 10 displays the ST con-
tours of a single power quality disturbance. The instantaneous waveform of the measured
voltage at PCC phase A is shown in its original waveform in Figures 7 and 9, respectively.
The ST contours of the presence of various voltage disturbances between the times of
0–600 and 600–1200, 0–250 and 0–100, and 100–200 milliseconds, respectively, were shown
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in Figures 10a, 11a and 12a. Figures 10c, 11c and 12c demonstrate how ST contours can
be employed in 3D mesh time-frequency-amplitude analysis to identify both single and
numerous disturbances. This model can assist in identifying voltage change disturbances
and recognizing all voltage variances.

4.1.5. Comparative Analysis between ST and Other Algorithms

When compared to other time-frequency representations, such as the FT, WT, and HT,
the ST is preferable, as shown in Figures 13 and 14. In terms of their operation parameters
and effectiveness, the proposed ST is compared in this section to previous signal processing
methods used for PQ disturbances.
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Detecting power quality disturbances using ST demonstrated the ability to correctly
recognize these disturbances.

4.2. Classifications of PQ Disturbances Using Proposed Technique

This section presents the results of the proposed SVM technique for PQ disturbances’
classification. Table 3 presents the confusion matrix for the proposed SVM technique of PQ
disturbance classification.

True Positives (TP), or disturbances that were correctly recognized, are represented
by the diagonal elements in the confusion matrix, while off-diagonal components show
the disturbance data samples that were incorrectly classified. All row elements in the
matrix (except the diagonal element) are False Negatives (FN), meaning that the sample is
supposed to be in the predicted class but is not. The same is true for all column elements,
with the exception of diagonal elements. From Table 3, it is concluded that,

• Predicted classes are displayed in the columns. The true positive rate for correctly
identified points in this class is 97%, as demonstrated in the green cell color in the true
positive rate column in the top row, where more than 99% of the power quality issues
from flicker are correctly classified.

• Less than 1% of the other power quality problems in the flicker row are wrongly
categorized as coming from the pure signal. The red cell in the false negative rate
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column displays the false negative rate for improperly categorized points in this class,
which is less than 1%.

Table 3. Confusion matrix.

Actual class
in (%)

Predicted class in (%)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 247 0 0 0 3 0 0 0 0 0

C2 0 250 0 0 0 0 0 0 0 0

C3 0 0 250 0 0 0 0 0 0 0

C4 0 0 0 250 0 0 0 0 0 0

C5 0 0 0 0 249 0 0 1 0 0

C6 0 0 0 0 0 250 0 0 0 0

C7 0 0 0 0 0 0 250 0 0 0

C8 0 0 0 0 0 0 0 232 0 8

C9 0 0 0 0 0 0 0 0 250 0

C10 0 0 0 0 0 0 0 1 20 229

Table 4 displays a performance summary for the classifier. The accuracy is found to be
98.3% overall.

Table 4. Classifier performance summary.

Classes True Positive
Rates (%)

False Negative
Rates (%)

Positive Predictive
Rate (%)

False Discovery
Rate (%)

Correct Classified
out of 250 Patterns

C1 >99 <1 100 ----- 247

C2 98 2 100 ----- 250

C3 100 s ----- 100 ----- 250

C4 >99 <1 100 ----- 250

C5 100 ----- 100 ----- 249

C6 100 ----- 99 1 250

C7 100 ----- >99 <1 250

C8 92 8 92 8 232

C9 100 ----- 100 ----- 250

C10 97 3 93 7 229

Overall accuracy 98.3%

Table 4 demonstrates unequivocally that the eight separate and two hybrid PQ con-
cerns were successfully classified using the suggested techniques. Classifier performance is
deemed satisfactory. Sample patterns for each of the ten kinds of disturbances were used
as 250 disturbances for the SVM classifier’s testing purposes. As a result, 245.7 samples, on
average, out of 250 are correctly classified, whereas 4.3 samples are incorrectly classified.
The classification results demonstrate the effectiveness of the suggested technique, which is
acceptable and nominally applicable due to its simplicity and low processing requirements.

Comparative Analysis between Proposed Classifier and Other Techniques

A comparative examination of the suggested technique’s classification accuracy com-
pared to other methods is shown in Figure 15. The figure makes it evident that the proposed
strategy offers greater accuracy when compared to other methods currently in use.
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Figure 15. Performances Assessment of Classifier.

Where DT represents decision trees, DS represents discriminators analysis, SVM represents
support vector machine, KNN represents nearest neighbor, and EN represents ensembles.

4.3. Mitigation of Harmonic Current Distortion Caused by Induction Motor Using D-STATCOM

The harmonic current distortion brought on by starting a high-power industrial in-
duction motor is simulated by the induction motor beginning model. Once the motor
starting contactor is closed at 0.02 s, a 75 kW (100 hp) induction motor starts, producing
a three-phase harmonic current instantaneous waveform. The induction motor’s starting
speed is set to 1 rad/sec. Through the transformer and upstream to the 33 kV feeder bus,
the harmonic current at the 0.4 kV bus travels. Figure 16 presents the harmonic current
distortion waveform results.

Sustainability 2023, 15, x FOR PEER REVIEW 19 of 22 
 

 
Figure 15. Performances Assessment of Classifier. 

Where DT represents decision trees, DS represents discriminators analysis, SVM rep-
resents support vector machine, KNN represents nearest neighbor, and EN represents en-
sembles. 

4.3. Mitigation of Harmonic Current Distortion Caused by Induction Motor Using  
D-STATCOM 

The harmonic current distortion brought on by starting a high-power industrial in-
duction motor is simulated by the induction motor beginning model. Once the motor 
starting contactor is closed at 0.02 s, a 75 kW (100 hp) induction motor starts, producing a 
three-phase harmonic current instantaneous waveform. The induction motor’s starting 
speed is set to 1 rad/sec. Through the transformer and upstream to the 33 kV feeder bus, 
the harmonic current at the 0.4 kV bus travels. Figure 16 presents the harmonic current 
distortion waveform results.  

 
Figure 16. Harmonic current distortion waveform. 

Figure 17 presents the results of voltage and current waveforms with and without D-
STATCOM, which is connected to the system at 0.02 s. Furthermore, Figure 18a displays 
the harmonic spectrum result of the source current in the absence of D-STATCOM. Figure 
18b presents the harmonic spectrum result of the source current with D-STATCOM. 

Vo
lta

ge
(V

ol
t)

Figure 16. Harmonic current distortion waveform.

Figure 17 presents the results of voltage and current waveforms with and without
D-STATCOM, which is connected to the system at 0.02 s. Furthermore, Figure 18a dis-
plays the harmonic spectrum result of the source current in the absence of D-STATCOM.
Figure 18b presents the harmonic spectrum result of the source current with D-STATCOM.
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Figure 17. Voltage and current waveforms with and without D-STATCOM.
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Figure 18. (a) Harmonic spectrum of the source current without D-STATCOM, (b) Harmonic spectrum
of the source current with D-STATCOM.

The simulation findings demonstrate that within 0.02 s (one cycle) of the D-STATCOM
being turned on for the system makes the current waveform sinusoidal and in phase with
voltage. Furthermore, THDI level falls below 4.36%, as shown from the harmonic spectrum,
once the D-STATCOM is in use, below the limitations advised by IEEE standards [27].

5. Conclusions

The authors in this study used the ST, SVM algorithm, and D-STATCOM position-
ing, respectively, to identify, categorize, and mitigate PQ irregularities. In the MAT-
LAB/Simulink environment, a real distribution network of the Awada industrial zone in
Ethiopia is used for this. The PQ disturbances are detected with around 98% accuracy by
the utilized ST. Additionally; the SVM method has a 98% confidence level for classifying PQ
disturbances. In this study, D-STATCOM is used to mitigate PQ difficulties. The simulation
findings demonstrate that within 0.02 s (one cycle) of the corresponding D-STATCOM being
enabled, the system makes the current waveform sinusoidal and in phase with the voltage.
Furthermore, the THDI level falls below 4.36%, as shown from the harmonic spectrum,
once the D-STATCOM is in use, below the limitations advised by IEEE standards.

The unviability of the hardware model, which can be used to perform future enactment
of this work, is a limitation of this work.

Moreover, as a future enhancement of this work, more advanced hybrid signal pro-
cessing techniques can be utilized to detect PQ disturbances. Furthermore, recent artificial
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techniques can be utilized for the classification of PQ disturbances. Moreover, mitigation
of PQ emissions can be performed by optimally coordinated flexible AC transmission
system controllers.
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