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Abstract: The resilience and sustainability of supply chains are facing new challenges due to the
increasing complexity of supply chains. Compared to traditional supply chain networks, the Physical
Internet (PI) has the potential to address sustainable development challenges and build resilient
supply chain networks by providing interconnected and open logistics services. However, the
interplay between resilience and sustainability has yet to be thoroughly explored in the PI-enabled
supply chain literature. This paper aims to investigate the relationship between resilience and
sustainability in PI-enabled supply chains. An innovative hybrid approach that combines the
resilient-sustainable performance scoring method with mixed-possibilistic programming is proposed
to trade-off and analyze the relationship between the two. Applying the concepts of resilience and
sustainability to PI-enabled supply chains involves optimizing costs, sustainable performance, and
resilience levels simultaneously. This enables coping with unforeseen disruptions from suppliers,
plants, and PI hubs. The results of computational experiments have demonstrated that the PI-
enabled supply chain exhibits stronger sustainable and resilience performance in dealing with
random disruptions compared to traditional supply chains. The fruitful research yielded important
management insights and practical implications, thereby contributing to the reinforcement of the
literature on PI.

Keywords: Physical Internet; resilient-sustainable performance scoring; supplier selection; production–
distribution planning; multi-objective mixed-possibilistic programming

1. Introduction

In today’s globalized and increasingly volatile environment, supply chains are be-
coming more complicated due to multiple links, independent participants, and global
supply and demand relationships. Due to supply chain complexity, many events threaten
operations and jeopardize performance and stability [1,2]. Thus, avoiding and mitigating
the impact of risks can be very challenging. Academics have conducted research on supply
chain risks from multiple perspectives. Supply chain risk is subdivided into operational
risk and disruption risk, with the latter typically resulting from external factors such as
natural disasters and accidents. For example, Erickson caused a shortage of key parts
due to firing a supplier in 2000, resulting in an economic loss of EUR 400 million [3]. In
2001, Land Rover experienced a shortage of key components due to a major supplier’s
bankruptcy, resulting in the termination of 1400 employees [4]. In response to disruptions,
various risk mitigation strategies have been explored in the literature, such as information
sharing [5], buffer inventory [6,7], contracts with backup suppliers, multi-source procure-
ment [8–10], etc. Nevertheless, some of these mitigating factors enhance the resilience
and flexibility of the supply chain, which may not be the best option from a sustainable
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perspective [11]. To be competitive, companies have to make a proper balance between
resilience and sustainability [10,12,13].

Recently, researchers have devoted considerable attention to exploring the relationship
between the resilience and sustainability of the supply chain [14–16]. However, existing
research on combining supply chain resilience and sustainability analysis is focused on
the traditional supply chain network, which is based on the multi-hierarchy, independent,
heterogeneous logistics network structure. Once the network has been identified, each com-
pany will establish and operate its own dedicated logistics resources independently. This
fixation and independence are inherent limitations of traditional supply chain networks
when dealing with disruptions. Due to the limited availability of resources and capabilities
that cannot be shared across different supply networks, traditional supply chain networks
exhibit a range of unsustainable manifestations, including high environmental impacts,
low-cost efficiencies, and negative social outcomes in production, inventory, and trans-
portation activities. These challenges highlight the need for improved sustainable practices
and more effective supply chain management strategies in the field of logistics [17–20].

To better address these issues, PI, as an open and interconnected logistics network that
can seamlessly move entities, is recognized as a paradigm for tackling the challenges of
supply chain resilience and sustainability [17,21,22]. The seamless transmission of digital
data among users over the internet has served as inspiration for the development of the
PI-enabled supply chain. The new logistics paradigm involves the use of standardized and
modular PI containers to encapsulate products, which can then be transported efficiently
across different modes of transportation. Furthermore, the multi-modal transport terminal
allows products to be switched between different transport modes to ensure the effective
transport of products [23,24]. Owing to their ease of handling, storage, transportation,
sealing, interlocking, coupling, loading, unloading, construction, and dismantling, PI con-
tainers can be readily separated and reassembled at one or more PI hubs in accordance with
the specific transportation requirements of each stage [25]. Through the implementation
of PI-enabled supply chains, resources and capabilities can be shared and utilized effi-
ciently [22,23,26]. Previous research has shown that PI-enabled inventory models possess
high levels of flexibility, which can lead to significant improvements in supply chain effi-
ciency and reduced inventory redundancy [26]. Ref. [27] pointed out that, compared with
traditional and horizontal collaborative supply chain networks, PI has strong economic,
environmental, and social performance advantages due to the efficiency and flexibility of
transportation. Additionally, since all PI hubs are open and shared, facilities and vehicles
can be organized and allocated dynamically and flexibly. Therefore, the PI-enabled inven-
tory model has better agility and flexibility than the current classic inventory model in
dealing with random disruptions [28].

To the best of our knowledge, this is the first attempt to establish connections between
resilience and sustainability practices in PI-enabled supply chains. Additionally, since
the PI-enabled supply chain is composed of different elements (suppliers, plants, PI hubs,
retailers), strong coordination is required to ensure the flexibility of product flows. Besides
the interconnectivity of the components, the structure and configuration of the PI-enabled
supply chain play a crucial role in ensuring its resilience and sustainability. Based on
the above gaps, this study proposes a framework to design a resilient and sustainable
PI-enabled supply–production–distribution problem.

This paper presents a two-stage approach to designing a sustainable PI-enabled supply
chain, which is also resilient to disruptions, thus enabling us to contribute to this area. In
the first stage, the probabilistic fuzzy c-means clustering method was employed to identify,
quantify, and summarize general, resilient, and sustainable performance indicators, which
eliminates the influence of noisy data. The resilient-sustainable performance score obtained
in the first phase serves as the input element for the next phase. In the second stage, we
developed a novel multi-objective mixed-possibilistic, two-stage stochastic programming
model to address the ambiguity associated with certain input parameters (e.g., demand,
cost, etc.). This model enables us to determine optimal purchasing strategies, including



Sustainability 2023, 15, 6327 3 of 34

primary/backup supplier selection and order allocation, as well as production–distribution
planning in the PI-enabled supply chain. Finally, the augmented ε-constraint method is
used to optimize the proposed cost, sustainable, and resilience objective, and a set of Pareto
optimal solutions are obtained.

The major contributions of this article are as follows: (1) this paper is the first attempt
to propose a novel PI-enabled supply–production–distribution problem that considers
the main features of PI; (2) it incorporates the concept of sustainable development and
resilience into PI-enabled supply chain; (3) a new multi-objective mixed-possibilistic two-
stage stochastic programming model is proposed for sustainable and resilience planning of
PI-enabled supply–production–distribution system. The model addresses critical decisions
related to supplier selection, production planning, and distribution network design, which
have significant impacts on the overall performance of the system; (4) the superiority of the
resilience and sustainability of backup supplier and PI were investigated by comparing
the numerical experimental results of three logistics systems: multi-source (primary and
backup supplier) PI logistics system (MS-PI), multi-source (primary and backup supplier)
collaborative logistics system (MS-CO), and multi-source (primary supplier) PI logistics
system (PS-PI).

The remainder of this study is organized as follows. Section 2 provides a comprehen-
sive literature review on the supply chain sustainable measurement and modeling, supply
chain resilience measurement strategies, and research gaps and highlighting ability of PI
to marry resilience and sustainability. Section 3 describes the probability fuzzy c-means
method to evaluate suppliers’ resilient-sustainable performance and PI-enabled supply–
production–distribution planning problem. The solution method is presented in Section 4.
The experimental results shown in Section 5 demonstrate the value of backup suppliers
and PI. Finally, Section 6 summarizes the most important research findings and provides
suggestions for future research directions.

2. Literature Review

This literature review examines three major aspects: (1) supply chain sustainable
measurement and modeling, (2) supply chain resilience measurement strategies, and
(3) research gaps and highlighting the ability of PI to marry resilience and sustainability.

2.1. Supply Chain Sustainable Measurement and Modeling

Supply chain sustainable planning is critical to enterprise development. In recent
years, research in the area of supply chain sustainable performance measurement and
modeling has received considerable attention, and the literature in related areas has evolved
rapidly [29–35]. The sustainable design of the supply chain is mainly based on the following
four aspects:

• integrating sustainable supplier selection in supply chain design and planning [36–40];
• modeling supply chain based on the triple bottom line principles of sustainability

(i.e., economic, environmental, and social) [13,30,31,41–50];
• designing and planning the sustainable closed-loop supply chain, focusing on eco-

nomic, environmental, and social dimensions [51–57];
• exploring the interplay of supply chain resilience and sustainability [10–13,15,58].

Inspired by the research of performance measurement, three crucial research issues
were identified that can enhance the sustainable performance of supply chains. First, appro-
priate sustainable indicators are required to measure supply chain sustainable performance.
Second, supply chain modeling considers the three objectives of the sustainable bottom
line, i.e., the economic, environmental, and social dimensions. Finally, optimizing the
sustainable of all activities in the supply chain [59]. Ref. [47] transformed the principle of
sustainable development into a multi-objective mathematical planning problem for the sup-
ply chain. Supply chain sustainable performance can be evaluated by linking sustainable
performance indicators with supply chain decisions and developing consistent measures
at the economic, environmental, and social levels. The three dimensions of sustainability
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were incorporated into sustainable wine supply chain modeling by [60]; they proposed
a multi-objective hybrid integer programming model that comprises economic, environ-
mental, and social objectives. The results show that weighing the three objectives can
help enterprises make informed decisions. Ref. [38] studied that in the era of sustainable
development, supply chain activities such as enhancing supplier selection can effectively
address sustainable concerns. Therefore, although economic and environmental criteria are
considered in supplier selection, social criteria cannot be ignored.

Recently, ref. [31] investigated the relationship between sustainable intensity and firm
performance. They confirmed a positive correlation between sustainable development and
firm performance, which was found to strengthen over time. A sustainable closed-loop
supply chain decision support tool proposed by [45] can explore the relationship between
sustainable objective functions. The model quantifies economic, environmental, and social
objectives using net present value, life cycle analysis methods, and GDP-based metrics,
respectively. Ref. [54] aimed to establish a sustainable closed-loop supply network and
proposed a novel fuzzy robust optimization method to address the model’s uncertainty.
Ref. [13] designed a pharmaceutical supply chain network that integrates resilience and
sustainability under uncertainty. They developed a novel multi-objective mixed-integer
planning model to achieve this goal. Ref. [61] examined the issues of resilience and sustain-
ability in reverse logistics networks. They employed a scenario-based robust optimization
approach to address parameter uncertainty in the model. They demonstrated that appro-
priate recycling techniques can enhance the productivity of the supply chain and improve
resilience and sustainability.

2.2. Supply Chain Resilience Measurement Strategies

Recently, the COVID-19 pandemic caused fluctuations in consumer demand, leading
to disruptions in the global supply chain network and posing significant challenges to
supply chain resilience [62–65]. With the close cooperation between supply chain enter-
prises, the traditional linear structure of the supply chain has evolved into a more complex
networked structure. The more complex the structure of the supply chain, the less stable
and risk resistance the supply chain will be [66–71]. As required by the times, the concept
of a resilient supply chain has emerged, which is designed to withstand various disruptions
with little or no impact [68,72]. An overview paper on supply chain resilience and risk
was completed by [73]. The concept of supply chain resilience is defined as the ability
to mitigate risks to supply chain capacities while maintaining a competitive advantage.
Common resilience strategies include the following: multiple sources [9,74,75], contract-
ing with backup suppliers and fortification of suppliers [8,10,63,76], holding additional
inventory [77–79], adding additional production capacity [10], and developing business
continuity and disaster recovery plans [80,81].

In [9], a mathematical model was investigated that takes into account the risk attitudes
of decision makers, revealing the impact of these attitudes on optimal strategies. They also
analyzed the resilience of single and multiple sourcing strategies under different disruption
situations. In [76], the optimization design of a backup system was studied. The results
demonstrate that a flexible backup system can significantly reduce the risk of dynamic
disruptions. Ref. [8] proposed a dual-objective stochastic optimization model based on
operational and disruption risks. This model introduces a new method for measuring re-
silience as an objective function, demonstrating that the investigated resilience strategy can
significantly improve the supply chain’s robustness. Ref. [82] demonstrated that contracting
with backup suppliers is a preparatory action that can enhance supply chain resilience,
which prepares enterprises for unpredictable supply disruptions. The effects of supply
disruptions have been studied within the framework of game theory by [83]. By comparing
models with and without emergency supply sources, it has been demonstrated that the use
of backup supply sources is a key strategy for pre-disaster recovery, as it can effectively
mitigate the impact of supply disruptions. A vital strategic decision in constructing a
resilient supply chain is resilient supplier selection. Ref. [84] proposed supplier segregation
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as a resilience objective, i.e., minimizing the distance between suppliers. They proposed a
model that considers cost and flexibility to establish an efficient and resilient supply chain.

2.3. Research Gaps and Highlighting Ability of PI to Marry Resilience and Sustainability

The above literature review indicates that most modeling work on designing sustain-
able and resilient supply chains has been conducted independently. In reality, however,
resilience and sustainability are interrelated in supply chain management [12,14,15,85,86].
For instance, some companies set up redundant inventory to improve their product flexibil-
ity and risk response capabilities, but this approach may not be environmentally friendly.
Currently, research on joint resilience and sustainability analysis is focused on traditional
supply chain networks. Ref. [12] designed a supply chain to explore the relationship be-
tween resilience and sustainability. Ref. [13] measured supply chain resilience from five
new perspectives based on the network structure of the supply chain. They constructed
models with resilience and sustainability objective functions and used an evolutionary
algorithm to solve the proposed probabilistic stochastic programming model. A simulation
study proposed by [11] aims to design a flexible supply chain structure that can mitigate
the supply chain ripple effect and enhance sustainable. The simulation study identified
the sustainable factors that can mitigate the supply chain ripple effect and those that can
exacerbate it. Ref. [10] developed a hybrid approach to design sustainable supply networks
that maximize overall sustainable while maintaining resilience under disruptions. How-
ever, the literature on the relationship between supply chain resilience and sustainability
that has been reviewed so far is based solely on traditional supply chains.

In previous studies, the resilience and sustainability of PI-enabled supply chains
have been studied separately. Ref. [87] studied the sustainable performance advantages
of PI-enabled supply chains with the aim of achieving sustainable truck scheduling. By
comparing the costs and environmental performances of PI and conventional logistics
systems, ref. [88] verified the competitive advantage of PI. By balancing economic and
ecological attributes, ref. [24] aimed to achieve sustainable transportation in PI-enabled
urban logistics. Moreover, ref. [88] focused on investigating the resilience of PI as an open
logistics system and constructed a new resilient distribution system to deal with random
disruptions. The study conducted by [28] demonstrated that interconnected PI logistics
services can significantly enhance the resilience of the supply chain. The simulation results
indicated that the PI inventory model exhibited better agility and flexibility compared to
the existing classical inventory model. These studies have illustrated that the PI theory
proposed by [89] represents a new generation of resilient and sustainable logistics systems.
However, the relationship between the resilience and sustainability of PI-enabled supply
chains has not been studied yet.

To provide a comprehensive overview, Table 1 summarizes the relevant literature
on supply chain network design, covering characteristics such as multi-product, network
type, uncertain parameters, resilience, sustainable, and disruption, along with model
characteristics and solution approaches to the proposed problems. To cast light on this
gap in the existing literature, no research has explored the interplay between resilience
and sustainability in PI-enabled supply chains, nor have they considered the trade-offs
between supply, production, and distribution. We aim to determine the integrated and
coordinated optimal decision making in PI-enabled supply chain on the following three
sub-problems: (1) supplier selection and order allocation; (2) production planning; (3) and
distribution arrangements. The proposed approach integrates resilience and sustainability
analysis, which, to the best of our knowledge, has not been explored in PI-enabled supply
chains, particularly in the context of supply–production–distribution planning problems.
The following sections provide a detailed description of each phase.
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Table 1. The reviewed papers.

Reference
Network Multi- Uncertain

Resilience
Sustainability Disruption

Model Solution Approach
Type Product Parameter Economic Environmental Social Supplier Plant PI Hub

[26] PI X SO Simulation Approach
[12] TR X X X X X X X MO Stochastic Fuzzy Goal Programming Approach
[24] PI X SO Heuristic Solution Approach
[28] PI X X X X X SO Simulation-based Optimisation
[90] TR X X X X X MO Hybrid Meta-Heuristic Algorithm
[13] TR X X X X X X MO Hybrid Meta-Heuristic Algorithm
[11] TR X X X X X SO Simulation
[87] PI X X BO Hybrid Meta-Heuristics
[88] PI X X SO Monte-Carlo Simulation
[91] PI X SO Simulation-based Optimisation
[28] PI X X X X X SO Simulation-based Optimisation
[10] TR X X X X X X X BO Stochastic Programming
[92] TR X X X X X X SO Rolling Horizon Simulation
[86] TR X X X X MO Block Programming
[93] TR X X X X X MO ε-constraint Method
[85] TR X X X X X SO Integer Linear Program
[94] TR X X X X X X X MO Benders Decomposition Algorithm
[95] TR X X X X X X MO Multi-Choice Goal Programming with Utility Function
[61] TR X X X X SO Modified Cross-Entropy Algorithm
[14] TR X X X X X SO Robust Optimization Approach
[15] TR X X X X X X MO Hybrid Robust-Stochastic Optimization Approach
[58] TR X X X X SO Data-Driven Decision Making
[96] PI X SO W-Solution

This research PI X X X X X X X X X MO A Novel Two-Stage Hybrid Interactive Solution Approach

Note: MO: Multi-objective, BO: Bi-objective, SO: Single-objective, Pl: Physical Internet, TR: Traditional Network.
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3. A Hybrid Method for the Supply Chain Resilient-Sustainable Design Based on
the PI
3.1. Problem Statement

In this paper, we study an open supply network that consists of geographically
dispersed plants and PI hubs. Each plant is served by several raw material suppliers that
may differ from one another in terms of general, sustainable, and resilient performance.
Raw materials flow from suppliers to plants, where they are transformed into final products
and packed into standardized modular containers (PI containers). These containers can
then be dynamically distributed to market zones through PI hubs, as illustrated in Figure 1.

Primary  Suppliers

Backup  Suppliers

Market zones
Plants

PI Hubs

Raw Materials

 Product

composing

 PI-containers composite  PI-container

 PI-mover

Figure 1. General schema of supply network in PI.

Indeed, to optimize vehicle utilization, products can be processed, stored, and trans-
ported in the form of effective unit loads created by combined algorithms (i.e., composite
PI containers). To transport the final products embedded in PI containers, a fleet of hetero-
geneous vehicles is available, denoted as M = {1, 2, . . . , |M|}. Transportation of products
between nodes can be performed using transport vehicles m ∈ M with varying weight
capabilities. The deconsolidation and reconsolidation of PI containers into, within, and
out of the PI hub are the core processes of PI-enabled multi-segment transportation. After
processing at the PI hub, the reconsolidated PI containers can be shipped to the market
zone or to another PI hub for further consolidation. After one or more PI hubs reconsolidate
the product, the PI container is shipped to the market zone. Furthermore, vehicles may
start their trips from one or more plants and return to the PI hub after completing deliveries
in the market zones. After completing a delivery, the vehicle can return to the plant for
replenishment. The PI containers are then reconsolidated at the PI hub and delivered to the
market zone.

A complete graph, denoted as G = (V∗, A∗), is constructed for the research problem in
this paper. Here, V∗ represents a series of nodes consisting of a set of suppliers Vs = Vp ∪Vb,
where Vp and Vb are primary and backup suppliers, respectively, and are defined as
Vp = {1, 2, . . . , |Vp|} and Vb = {1, 2, . . . , |Vb|}. In addition, V∗ also includes a set of plants
Vn = {1, 2, . . . , , |Vn|}, a set of PI hubs Vh = {1, 2, . . . , |Vh|}, and a set of market zones
Vr = {1, 2, . . . , |Vr|}. The set of arcs, denoted as A∗ = {(i, j) : i, j ∈ V∗, i 6= j}, represents
the connections between nodes, where each arc (i, j) has a non-negative distance dij. The
plant produces different types of products k ∈ K = {1, 2, . . . , |K|} from raw materials or
components supplied by selected qualified suppliers; each supplier s ∈ Vs = {1, 2, . . . , |Vs|}
offers the plant a limited supply capacity. The raw material suppliers, plants, and PI hubs
are susceptible to disruption, in which a set of scenarios Ω ={1, 2, . . . , |Ω|} is developed to
indicate that one or more suppliers, plants, and PI hubs are impacted by the disruption.
Moreover, since the likelihood of each facility (supplier, plant, or PI hub) being affected
by multiple disruption events simultaneously is extremely low, this paper assumes that
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each facility may experience at most one disruption event in each scenario. Additionally,
these facilities are geographically dispersed, meaning that a single disruption event will
not affect all facilities simultaneously. In this paper, the following strategies are employed
to improve the resilience of the supply chain: (1) allowing multiple backup procurement
channels; (2) adding additional production capacity in the plant; and (3) the interconnection
of PI hubs.

Of note, due to the unknown and unpredictable features of the market demand, fuzzy
variables are suitable for realizing the market demand, avoiding the difficulty of obtaining
demand distribution functions [97]. Additionally, cost parameters are difficult to determine
as a function of changes in the international producer price index. In reality, raw materials
may sustain damage during transportation from the supplier to the plant, resulting in an
uncertain defect rate due to technical or human errors. Meanwhile, the supplier’s supply
capacity and the plant’s production capacity after the disruption are uncertain. Thus, these
input parameters are also fuzzy variables. Representing fuzzy variables with triangu-
lar fuzzy numbers is easier to implement, as it only requires estimating the maximum,
minimum, and most probable values of the variables.

This paper employs a hybrid approach consisting of two stages to facilitate effective
decision making. The first stage involves evaluating the resilient-sustainable performance
of potential suppliers based on a variety of general, sustainable, and resilient indicators.
The general, sustainable, and resilient indices were evaluated using the probability fuzzy c-
means clustering method. Based on the resilient-sustainable performance scores, candidate
suppliers were classified into different categories. The second stage involves using the
resilient-sustainable performance score obtained in the first stage as an input parameter
to establish a multi-objective mixed-possibilistic programming model that incorporates
cost, sustainability, and resilience objectives. With different retailers holding different
attitudes towards uncertainty, we use Me(λ) to handle the objective function containing
fuzzy variables. To obtain solutions that contain more information, we use rough set theory
to deal with the feasible region that contains fuzzy variable constraints. On this basis, the
scenario-based multi-objective mixed-possibilistic programming model is converted into
two equivalent accurate models: the lower approximation model (LAM) and the upper
approximation model (UAM). Finally, the Pareto solution is obtained using the augmented
ε-constraint method. Figure 2 shows the process framework of the two-stage approach. In
the following sections, we will describe each stage in detail.

3.2. Supplier Resilient-Sustainable Performance Evaluation

When faced with supply disruptions, relying solely on cooperation with suppliers
who excel in sustainable practices may limit flexibility in supplier switching. Therefore, it
is of great practical significance to evaluate the supplier’s resilient-sustainable performance.
The hybrid approach starts with the evaluation of the supplier’s resilient-sustainable per-
formance. General performance criteria (e.g., cost, quality, delivery, technology capability,
service, flexibility, financial, and trust [98]), sustainable performance criteria (e.g., green
design capability, environmental management system, environmental competencies, pol-
lution control, energy efficiency, eco-design recycling, green R&D and innovation, work
safety/labor health, social management commitment, and the rights of people [99]), and
resilient performance criteria (e.g., responsiveness, risk reduction, backup supplier con-
tracting, geographical segregation, rerouting, cooperation, restorative capacity, and surplus
inventory [84]) are employed. To evaluate the criteria, we invited industry experts to review
the requirements based on previous studies in the literature [100,101]. A team of experts
with at least five years of practical experience in the relevant field assessed the criteria.
After evaluating supplier performance against each metric, we aggregated the results using
the probabilistic fuzzy c-mean clustering method (PFCM) to classify suppliers into different
clusters based on their resilient and sustainable performance scores. The overall resilient
and sustainable performance of suppliers improves as their scores increase. Based on these
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scores, we identified and excluded suppliers with unsatisfactory resilient and sustainable
performance, especially in the presence of supply disruptions.

Obtain clusters of suppliers with corresponding resilient-sustainable 
scores

Exclude suppliers with unsatisfactory scores from further 
consideration

Apply the probability fuzzy c-mean clustering method

 Reduce the number of random disruption scenarios using the PFCM 
clustering technique

  Develop mixed possibilistic two-stage stochastic programming 
model

 Convert the possibilistic objective function into their equivalent 
auxiliary crisp form using expected value operator 

Apply the augmented -constraint to convert the model into a single-
objective formulation

 Identification of potential supplier and sub-criteria for the three sets 
of criteria, e.g., general, resilient and sustainable

Identify supplier performance 

F
ir

st
 P

h
a
se

S
eco

n
d

 P
h

a
se

 Solve the LAM and UAM to obtain 
the interval as a solution 

 Convert the possibilistic constraints 
into the LAM using Me operator

 Convert the possibilistic constraints 
into the UAM using Me operator

 Is decision-maker
 satisfied with the obtained 

solutions? 

Finish

Modify the value of  or i based on 
the decision makers opinion

No

Yes

Start

Figure 2. Flow chart of the proposed solution method.

Herewith, we describe the application framework of PFCM for clustering and evaluat-
ing suppliers’ resilient-sustainable performance. The PFCM was first introduced by [102],
which was proposed to overcome the noise problem in the fuzzy c-mean method (FCM) and
the overlapping clustering problem in the possibility c-mean method (PCM). Compared
with FCM and PCM, PFCM provides a more informative data analysis. The PFCM provides
the membership degree to confirm the data partition and the typical value of each point.
It can be seen that the membership degree and the typical value are two indispensable
measures. Based on the three outputs of PFCM, the supplier’s resilient-sustainable per-
formance was evaluated: (1) the membership matrix represented by uij used for fuzzy
division; (2) the typical matrix in terms of tij used to partition probabilities; (3) the set
of model points vi used to represent cluster centers. Let us assume that to classify the
n suppliers into c clusters. Furthermore, let αj represent a vector of resilient-sustainable
indicators reflecting supplier j performance. The steps are as follows:

Step 1. Initialize iteration L = 1, set threshold ε > 0, clustering numbers c(1 < c < n),
m, η ∈ [1,+∞] are the fuzzier constant, and the constants a, b > 0. Let uij ∈ [0, 1]
be the membership values of the supplier j belonging to cluster i, and tij ∈ [0, 1] be
the typicality value of the supplier j belonging to cluster i.

Step 2. Obtain the objective value of the PFCM clustering method as follows:

min JL =
n

∑
j=1

c

∑
i=1

(auij
m + btij

η)
∥∥xj − vi

∥∥2
+

c

∑
i=1

γi

n

∑
j=1

(1− tij)
η (1)

where the parameters a and b in PFCM are used to indicate the influence of the
membership value and typicality value, respectively. If b > a, the clustering center
will be more influenced by the typicality value [102].
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Step 3. Compute the membership degrees for the current cluster center as follows:

uij =

 c

∑
k=1

( ∥∥xj − vi
∥∥∥∥xj − vk
∥∥
)2/m−1

−1

(2)

Step 4. Calculate the typical value of the current cluster center using the following equation:

tij =

(1 +
b
∥∥xj − vi

∥∥
γi

)2/η−1
−1

(3)

Step 5. Update the clustering centers as follows:

vi =
∑n

j=1

(
aum

ij + btη
ij

)
xj

∑n
j=1

(
aum

ij + btη
ij

) (4)

Step 6. If ‖JL − JL−1‖ 6 ε, then go to Step 7; otherwise go to Step 2, L = L + 1.

Step 7. Exclude suppliers from clusters that are unsatisfactory in resilient-sustainable
performance.

Step 8. Considering both the membership degree and the typical value, the weight of
supplier j belonging to cluster center i is as follows:

wij = uijtij (5)

Step 9. Return the resilient-sustainable score for the remaining suppliers by Equation (6):

αj =
c

∑
i=1
‖vi‖wij (6)

3.3. Mathematical Formulation

In the second phase, we developed an integrated multi-product PI-enabled supply–
production–distribution model, and the supplier’s resilient-sustainable performance score
was obtained in the first phase as input elements. A description of the defined model
variables and parameters is shown in Table 2. Of note, each parameter with the symbol (∼)
represents an imprecise parameter, which can be expressed as a triangular fuzzy number.

Table 2. Notations of the model.

Sets and indices

Vp Set of primary suppliers, denoted by index p
Vb Set of backup suppliers, denoted by index b

Parameter

Vn Set of plants, denoted by index n
Vh Set of PI hubs, denoted by index h
Vr Set of market zones, denoted by index r
V Set of nodes, V = Vn ∪Vh ∪Vr
A Set of arcs, A = {(i, j) : i, j ∈ V, i 6= j}
L Set of types of raw material, denoted by index l
K Set of types of produces, denoted by index k
M Set of vehicles, denoted by index m
Ω Set of disruption scenarios, denoted by index ξ
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Table 2. Cont.

Vehicle common parameter

ε Fuel-to-air mass ratio
g Gravitational constant (m

/
s2 )

ρ Air density ( kg
/

m3)
Cr Coefficient of rolling resistance
η Efficiency parameter for diesel engines
fc Unit fuel cost (£/L)
fe Unit emission cost (£/kg)
fd Driver wage (£/s)
σ Emitted by unit fuel consumption (kg/L)
k Heating value of a typical diesel fuel (kj/g)
vs. Speed (m/s)
ψ Conversion factor (g/s to L/s)
θ Road angle
τ Acceleration (m

/
s2)

Parameter

D̃ikξ Demand of product k ∈ K at market zone i ∈ Vr under scenario ξ ∈ Ω
hlk Quantity of raw material l ∈ L required for production of a unit of product k ∈ K

αp
Resilient-sustainable score of primary supplier p ∈ Vp obtained from the pfcm
clustering method

βb
Resilient-sustainable score of backup supplier b ∈ Vb obtained from the pfcm
clustering method

CPpl Initial supply capacity of raw material l ∈ L by primary supplier p ∈ Vp
SCbl Initial supply capacity of raw material l ∈ L by backup supplier b ∈ Vb
δ̃pl Expected defect rate of raw material l ∈ L primary supplier p ∈ Vp
π̃bl Expected defect rate of raw material l ∈ L backup supplier b ∈ Vb
r̃pξ Percentage supply capacity of primary supplier p ∈ Vp disrupted under scenario ξ ∈ Ω
LTb Lead time of backup supplier b ∈ Vb
f̃ p Fixed cost of evaluating and selecting primary supplier p ∈ Vp
s̃p Fixed setup cost of primary supplier p ∈ Vp
c̃b Fixed cost of contracting with backup supplier b ∈ Vb
p̃spl Unit cost of purchasing raw material l ∈ L from primary supplier p ∈ Vp
p̃rbl Unit cost of purchasing raw material l ∈ L from backup supplier b ∈ Vb
icik Initial production capacity of product type k ∈ K in plant i ∈ Vn
ecik Maximum extendable capacity of product type k ∈ K in plant i ∈ Vn
g̃iξ Percentage production capacity of plant i ∈ Vn disrupted under scenario ξ ∈ Ω
p̃cik Unit production cost of product type k ∈ K in plant i ∈ Vn
ẽik Unit cost of adding extra production capacity of product type k ∈ K to plant i ∈ Vn
LTi Lead time of plant i ∈ Vn
LTj
′ Lead time of PI hub j ∈ Vh

h̃cik Unit handling cost of product type k ∈ K at node i ∈ V
b̃ik Unit lost sales cost of product type k ∈ K in market zone i ∈ Vr
dij Distance between node i and node j, (i, j) ∈ A
pξ Possibility of occurrence of disruption scenario ξ ∈ Ω
wpk Weight of product type k ∈ K
wm Curb weight (kg)
Qm Maximum payload (kg)
km Engine friction factor (kJ/rev/L)
Nm Engine speed (rev/s)
vm Engine displacement (L)
Cdm Coefficient of aerodynamics drag
Am Frontal surface area (m2 )
nm Vehicle drive train efficiency
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Table 2. Cont.

Decision variables

Xp If primary supplier p ∈ Vp selected equals 1, otherwise 0
Xb If backup supplier b ∈ Vb selected equals 1, otherwise 0
Xijmξ If arc (i, j) visited by vehicle m ∈ M under scenario ξ ∈ Ω equals 1, otherwise 0
Eik Extra production capacity of product type k ∈ K added to plant i ∈ Vn

Parameter

Upilξ Quantity of raw material l ∈ L picked up from primary supplier p ∈ Vp to plant i ∈ Vn
under scenario ξ ∈ Ω

Ybilξ Quantity of raw material l ∈ L picked up from backup supplier b ∈ Vb to plant i ∈ Vn
under scenario ξ ∈ Ω

Zikξ Quantity of product k ∈ K production in the plant i ∈ Vn under scenario ξ ∈ Ω

pikmξ
Quantity of product k ∈ K picked up from node i ∈ V by vehicle m ∈ M under scenario
ξ ∈ Ω

qikmξ
Quantity of product k ∈ K delivered to node i ∈ V by vehicle m ∈ M under scenario
ξ ∈ Ω

Vijkmξ Quantity of product k ∈ K by vehicle m ∈ M between arc (i, j) under scenario ξ ∈ Ω
Bikξ Lost sales quantity of product type k ∈ K at retail i ∈ Vr under scenario ξ ∈ Ω

3.3.1. Cost Objective

To estimate fuel consumption and emission costs, we apply the comprehensive model
proposed by [103,104] to approximation calculate fuel consumption, which is further
converted into emission costs. The fuel consumption Fm(L) of a vehicle of type m with
speed v for a distance d can be measured as follows: Fm(L) = λ(kmNmVm

(
d
/

v
)

+ Mmγmαd+
βmγmdv2), in which λ = ε

/
(kψ) , γm = 1

/
(1000nmη), α = τ + gsinθ + gCrcosθ,

βm = 0.5CdmρAm, and Mm for total vehicle weight (kg). The cost objective is proposed
as follows:

f1 = ∑
p∈Vp

Xp

(
s̃p + f̃ p

)
+ ∑

b∈Vb

Xb c̃b + ∑
ξ∈Ω

pξ

∑
l∈L

∑
p∈Vp

∑
i∈Vn

p̃splUpilξ

1− δ̃pl
+ ∑

l∈L
∑

b∈Vb

∑
i∈Vn

p̃rblYbilξ

1− π̃bl

)
+ ∑

ξ∈Ω
pξ ∑

i∈Vn

∑
k∈K

p̃cikZikξ + ∑
k∈K

∑
i∈Vn

ẽikEik + ∑
ξ∈Ω

pξ ∑
i∈V

∑
k∈K

∑
m∈M

h̃cik
(

pikmξ + qikmξ

)
+ ∑

ξ∈Ω
pξ ∑

(i,j)∈A
∑

m∈M

(
dij
/

v
)

fdXijmξ + ∑
ξ∈Ω

pξ ∑
(i,j)∈A

∑
m∈M

∑
k∈K

λ
[
XijmξkmNmVm

(
dij
/

v
)

+ (wmXijmξ + ∑
k∈K

wpkVijkmξ)γmαdij +Xijmξ βmγmdijv2
]
( fc + feσ) + ∑

ξ∈Ω
pξ ∑

i∈Vr

∑
k∈K

b̃ikBikξ

(7)

The components of the cost function comprise the cost of evaluating and selecting the
primary supplier, the cost of contracting with the backup supplier, the cost of procuring
raw materials from primary and backup suppliers, the cost of plant production, the cost of
adding additional production capacity, the cost incurred on loading and unloading, the
cost of drivers’ wages, the cost of lost sales, the cost of fuel consumption and the cost of
emissions for all vehicles at the PI-enabled supply network.

3.3.2. Sustainable Objective

Disruptions in supply chain activities are a significant obstacle to the development of
sustainable supply chain networks. Thus, it is essential for the sustainable development of
the supply chain that the supply chain is resilient and flexible sufficient to deal with supply
disruptions. If the supplier is susceptible to disruptions, the plant will seek an alternative
supplier to manage supply disruptions, regardless of its sustainability, to minimize the
risks associated with disruptions. Hence, it is not comprehensive to use the supplier’s
weighted sustainability score as the sole sustainable objective function in the presence
of supply disruption risks. In this paper, the sustainable objective function is the total
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weighted resilient-sustainable scores of all suppliers under various disruption scenarios, as
shown below:

f2 = ∑
ξ∈Ω

pξ

∑
l∈L

∑
p∈Vp

∑
i∈Vn

αpUpilξ

1− δ̃pl
+ ∑

l∈L
∑

b∈Vb

∑
i∈Vn

βbYbilξ

1− π̃bl

 (8)

In particular, a sustainable objective that is more generic should incorporate the plant’s
score for resilient and sustainable performance into Equation (8). Since our research is
focused on analyzing and investigating supplier performance management in a PI-enabled
supply chain, the objective function only takes into account the supplier’s weighted resilient
and sustainable performance, while excluding the resilient and sustainable performance of
plants from our research scope.

3.3.3. Resilience Objective

The resilience quantitative measurement method of disaster events proposed by [105]
is nonlinear. Hence, Figure 3 illustrates the recovery process settings for disruptions occur-
ring at suppliers, plants, and PI hubs in the PI-enabled supply–production–distribution
problem presented in this paper.

1A
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2A
LT

Time
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a
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1A
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Figure 3. The recovery process of supply network in PI.

In Figure 3, A1, A2, and A3 indicate the number of products recovered from the dis-
ruption by the three resilience strategies of contracting with a backup supplier, adding addi-
tional capacity to the plant, and interconnecting PI hubs, respectively. LTA1 , LTA2 , and LTA3

denote the recovery time from the associated resilience strategy, respectively. It is observed
that shaded areas indicate the resilience losses, calculated as
A1 × LTA1 + A2 × LTA2 + A3 × LTA3 . RE calculates the number of products that are
not received in the market zone without considering the resilience strategy. This cal-
culation is used to determine the total resilience loss of the supply chain. Therefore, a
new quantitative method is proposed to calculate the resilience loss of PI-enabled supply–
production–distribution upon the occurrence of a random disruption, as follows:

RE = ∑
ξ∈Ω

pξ ∑
k∈K

∑
l∈L

∑
b∈Vb

∑
i∈Vn

LTbYbilξ
/

hlk + ∑
k∈K

∑
i∈Vn

LTiEik + ∑
ξ∈Ω

pξ ∑
k∈K

∑
m∈M

∑
(i,j)∈Vh ,i 6=j

LTj
′Vijkmξ (9)

The first item of Equation (9) represents the number of products produced from raw
materials purchased from the backup suppliers multiplied by the time required to receive
those products. The second term is the increased production capacity of the plant multiplied
by the time to receive those products. Furthermore, the third item represents the number
of products received by the PI hub from other PI hubs multiplied by the time required to
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receive these products from other PI hubs. RE is measured as the sum of the resilience
recovery quantity multiplied by the corresponding delivery time. A lower value of RE
indicates a smaller resilience loss in the supply network, indicating greater resilience in the
network. In our problem, the vertical axis represents the total quantity of products required
in the market zone. Therefore, the predicted resilience level of a PI-enabled supply chain
can be determined. The resilience objective is measured using the following function:

f3 = 1− RE
Q · T∗ (10)

where Q = ∑
i∈Vr

∑
k∈K

∑
ξ∈Ω

D̃ikξ represents the total quantity of products required by the market

zones, and T∗ indicates the maximum allowable time that the market zone is willing to
wait for the recovery procedure.

3.3.4. Global Model

The global model is described below:

Min f = ( f1,− f2,− f3) (11)

s.t.

∑
i∈Vn

Upilξ

1− δ̃pl
6
(
1− r̃pξ

)
CPplXp, ∀l ∈ L, ∀p ∈ Vp, ∀ξ ∈ Ω (12)

∑
i∈Vn

Ybilξ

1− π̃bl
6 CPblXb, ∀l ∈ L, ∀b ∈ Vb, ∀ξ ∈ Ω (13)

Zikξ 6
(
1− g̃iξ

)
(icik + Eik), ∀k ∈ K, ∀i ∈ Vn, ∀ξ ∈ Ω (14)

Eik 6 ecik, ∀k ∈ K, ∀i ∈ Vn (15)

∑
p∈Vp

Upilξ

1− δ̃pl
+ ∑

b∈Vb

Ybilξ

1− π̃bl
= ∑

k∈K
Zikξ hlk, ∀l ∈ L, ∀i ∈ Vn, ∀ξ ∈ Ω (16)

Zikξ = ∑
m∈M

pikmξ , ∀k ∈ K, ∀i ∈ Vn, ∀ξ ∈ Ω (17)

∑
m∈M

pikmξ = ∑
m∈M

qikmξ , ∀k ∈ K, ∀i ∈ Vh, ∀ξ ∈ Ω (18)

∑
m∈M

qikmξ + Bikξ = D̃ikξ , ∀i ∈ Vr, ∀k ∈ K, ∀ξ ∈ Ω (19)

qikmξ = 0, ∀k ∈ K, ∀i ∈ Vn, ∀m ∈ M, ∀ξ ∈ Ω (20)

pikmξ = 0, ∀k ∈ K, ∀i ∈ Vr, ∀m ∈ M, ∀ξ ∈ Ω (21)

∑
i∈V

Xijmξ = ∑
i∈V

Xjimξ , ∀j ∈ V, i 6= j, ∀m ∈ M, ∀ξ ∈ Ω (22)

∑
j∈V

Xijmξ 6 1, ∀i ∈ V, i 6= j, ∀m ∈ M, ∀ξ ∈ Ω (23)

∑
i∈V

∑
m∈M

Xijmξ 6 1, ∀j ∈ V, i 6= j, ∀ξ ∈ Ω (24)

∑
k∈K

Vijkmξ 6 QmXijmξ , ∀(i, j) ∈ V, i 6= j, ∀m ∈ M, ∀ξ ∈ Ω (25)

∑
j∈V

Vijkmξ − ∑
j∈V

Vjikmξ = qikmξ − pikmξ , ∀i ∈ V, i 6= j, ∀k ∈ K, ∀m ∈ M, ∀ξ ∈ Ω (26)
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∑
i∈V

Xiimξ = 0, ∀i ∈ V, ∀m ∈ M, ∀ξ ∈ Ω (27)

Xijmξ = 0, ∀i ∈ Vp ∪Vb, ∀j ∈ Vh, ∀m ∈ M, ∀ξ ∈ Ω (28)

Xijmξ = 0, ∀i ∈ Vp ∪Vb, ∀j ∈ Vr, ∀m ∈ M, ∀ξ ∈ Ω (29)

Xijmξ = 0, ∀i ∈ Vn, ∀j ∈ Vp ∪Vb, ∀m ∈ M, ∀ξ ∈ Ω (30)

Xp ∈ {0, 1}, ∀p ∈ Vp (31)

Xb ∈ {0, 1}, ∀b ∈ Vb (32)

Xijmξ ∈ {0, 1}, ∀i, j ∈ V, i 6= j, ∀m ∈ M, ∀ξ ∈ Ω (33)

Eik ∈ Z∗, ∀k ∈ K, ∀n ∈ Vn (34)

Upilξ ∈ Z∗, ∀l ∈ L, ∀p ∈ Vp, , ∀i ∈ Vn, ∀ξ ∈ Ω (35)

Ybilξ ∈ Z∗, ∀l ∈ L, ∀b ∈ Vb, ∀i ∈ Vn, ∀ξ ∈ Ω (36)

Zikξ ∈ Z∗, ∀i ∈ Vn, ∀k ∈ K, ∀ξ ∈ Ω (37)

pikmξ ∈ Z∗, ∀i ∈ V, ∀k ∈ K, ∀m ∈ M, ∀ξ ∈ Ω (38)

qikmξ ∈ Z∗, ∀i ∈ V, ∀k ∈ K, ∀m ∈ M, ∀ξ ∈ Ω (39)

Vijkmξ ∈ Z∗, ∀k ∈ K, ∀i, j ∈ V, i 6= j, ∀ξ ∈ Ω (40)

Bikξ ∈ Z∗, ∀k ∈ K, ∀i ∈ Vr, ∀ξ ∈ Ω (41)

Constraints (12) and (13) restrict the capacity of the primary suppliers and backup
suppliers, respectively. Constraints (14) and (15) guarantee the capacity limitations of
the plants. Constraint (16) ensures that the raw material requirements of the plant are
met. Constraints (17)–(19) indicate the flow balance restrictions for the plants, PI hubs,
and market zones, respectively. Constraints (20) and (21) represent that delivery of the PI
container to the plant and pick-up from the market zone are not permitted, respectively.
Constraint (22) guarantees that the vehicle must leave at the end of its visit to a node.
Constraints (23) and (24) address that each vehicle can only implement one route in each
scenario. Constraint (25) indicates that the sum of the transportation quantities of all
products in a certain transportation route does not exceed the maximum load of the vehicle.
Constraint (26) measures the weight level of each product transported by the vehicle
along its route. Constraint (27) ensures that product transport does not exist between
identical nodes. Constraints (28) and (29) indicate that it is not permissible to transport
raw materials from suppliers to PI hubs and market zones, respectively. Constraint (30)
indicates that in each scenario, the plant is not allowed to supply the supplier. Finally,
constraints (31)–(41) determine the domains of the variables.

4. Solution Method

In this paper, we apply a hybrid interactive solution method to solve the model, where
the decision maker and model analyzer work together to obtain an optimal compromise
solution. The details of the solution process are presented in Section 4.1, Section 4.2, and
Section 4.3, respectively.

4.1. Scenario Reduction Procedure

To account for disruption uncertainty, a set of potential disruption scenarios is de-
signed to represent one or more suppliers, plants, and PI hubs that may be affected by the
disruption. It is evident that the number of disruption scenarios increases exponentially
as the number of disruption events and supply chain participants (suppliers, plants, and
PI hubs) increases. This results in models that become too large to be effectively solved.
For example, if the number of suppliers, plants, and PI hubs is five, and each supply
chain participant has 20 different disruption events, then the total number of disruption
event scenarios is (20 + 1)15. In reality, it is cumbersome or even impossible to consider all
disruption events to solve the problem. Therefore, this paper applies the PFCM algorithm
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for scenario reduction to reduce the difficulty of model solving. The scenario reduction
procedure applied in this paper is divided into two steps.

In the first step, the number of disruption scenarios in the model designed in this
paper grows exponentially with the number of disruption events. To decrease the number
of disruption event scenarios, PFCM is utilized to cluster the possible disruption events
of each supply chain participant into various clusters. The center of each cluster serves
as a representative of the disruption events. In this process, the probability of disruption
event occurrence is used as the primary feature in the clustering process. The first step
reduces the number of disruption events for each supply chain participant from 20 to 3,
which greatly reduces the computation. Nevertheless, the number of disruption scenarios
increases exponentially with the number of supply chain participants (suppliers, plants,
and PI hubs), resulting in a vast number of scenarios due to the significant number of supply
chain participants involved. For example, when the number of suppliers, plants, and PI
hubs are 5, and the number of disruption events for each supply chain participant is 1, the
total number of disruption scenarios is 25 × 25 × 25. Therefore, it is not possible to consider
all potential disruption scenarios. In the second step, the PFCM algorithm is applied to
cluster the possible disruption scenarios into distinct clusters based on their disruption
scale, which may be small, medium, or large. The center of each cluster is considered
a representation of the corresponding disruption scale. Among them, the number of
disruptions of suppliers, plants, and PI hubs is regarded as the main characteristics of
the clustering process. In this paper, we apply the above two steps to reduce the number
of disruption scenarios. Additionally, since disruption events occur independently, each
disruption scenario is associated with a given number of undisrupted and disrupted
supply chain participants (suppliers, plants, and PI hubs), and each disrupted supply chain
participant faces one specific disruptive event. Therefore, the likelihood of the scenario can
be calculated as follows:

Pξ = ∑
s∈S

 ∏
i∈Wξ

πis ∏
i∈Wξ

(1− πis)


where πis is the probability of disruption event s occurring in supply chain participant i,
Wξ is the supply chain participant who is disrupted in the disruption scenario ξ, and Wξ is
the undisrupted supply chain participant in the disruption scenario ξ.

4.2. The Equivalent Aided Crisp Model

In our model, to deal with the uncertainty of the input data, we adopt the mixed-
possibilistic programming method based on the fuzzy measure Me introduced by [106]
to convert the proposed model into an equivalent auxiliary crisp model. Compared with
other fuzzy measures, Me-based measures can avoid extreme attitudes and reduce infor-
mation loss. That is, Me-based measurement combines the two standard fuzzy measures of
probability (Pos) and necessity (Nec), which can represent any attitude between extreme
optimism and extreme pessimism. It is noteworthy that the feasible solution region of
UAM is greater than that of LAM due to the optimistic attitude held by UAM and the
pessimistic attitude held by LAM in the constraint. Consequently, the solution interval
is derived by solving the LAM and UAM models, where the output of UAM represents
the upper bound, and the output of LAM represents the lower bound. Through these two
models, decision makers will obtain the best decision interval to obtain more information,
which is helpful for the final solution selection [106].

4.2.1. Handling Fuzzy Objectives

By considering Λ = (Θ, P(Θ), Pos) as a possibility space, the Me-based expected value
is defined as follows [106]:

Me{A} = Nec{A}+ λ(Pos{A} − Nec{A}) (42)
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where λ is the parameter by which decision makers adjust their attitudes between absolute
optimism and absolute pessimism. Given a fuzzy variable ζ, the expected value defined
Me(λ)-based is as follows:

E[ζ] =
∫ +∞

0
Me{ζ > r}dr−

∫ 0

−∞
Me{ζ 6 r}dr (43)

According to the definition of the Me-based fuzzy measure, we can calculate the
expected value of the objective functions and take them as the objective function of the
equivalent crisp model. If the fuzzy variable s̃p is considered as the triangular fuzzy number

s̃p =
(

αs
p, sp, βs

p

)
, where αs

p and βs
p are the lower and upper bounds of the fuzzy number,

respectively, and sp is the most probable value. The objective function of our proposed
model using the Me measure is reported in Appendix A.

4.2.2. Handling Fuzzy Constraints
To reduce information loss, rough set theory is used to divide the fuzzy feasible regions

when converting the mixed-possibilistic programming model into a crisp model. Using
rough approximation to handle fuzzy constraints, two approximate models are obtained
that demonstrate the various perspectives of decision makers toward fuzzy constraints.
The feasible region of the upper approximation model (UAM) indicates that the decision
maker has an optimistic view of the fuzzy constraint, while the feasible region of the lower
approximation model (LAM) indicates that the decision maker has a pessimistic view of
the fuzzy constraint [106]. Therefore, the constraints of UAM are represented by

∑
i∈Vn

Upilξ

1−
(

δpl − (1− δ1)βδ
pl

) 6
(

1−
(

rpξ+(1− δ1)βr
pξ

))
CPpl Xp, ∀l ∈ L, ∀p ∈ Vp, ∀ξ ∈ Ω

∑
i∈Vn

Ybilξ

1−
(
πbl − (1− δ2)βπ

bl
) 6 CPbl Xb, ∀l ∈ L, ∀b ∈ Vb, ∀ξ ∈ Ω

Zikξ 6
(

1−
(

giξ + (1− δ3)β
g
iξ

))
(icik + Eik), ∀k ∈ K, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
p∈Vp

Upilξ

1−
(

δpl − (1− δ4)βδ
pl

) + ∑
b∈Vb

Ybilξ

1−
(
πbl − (1− δ4)βπ

bl
) = ∑

k∈K
Zikξ hlk

, ∀l ∈ L, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
m∈M

qikmξ + Bikξ = Dikξ + (1− δ5)βD
ikξ , ∀i ∈ Vr, ∀k ∈ K, ∀ξ ∈ Ω

(44)

and v ∈ F(vs.), where v is the feasible solution containing all variables. Also, F(vs.) stands
for the feasible domain (15), (17), (18), and (20)–(41) that do not contain fuzzy constraints.
The constraints of LAM are represented by

∑
i∈Vn

Upilξ

1−
(

δpl+(1− δ6)βδ
pl

) 6
(

1−
(

rpξ − (1− δ6)βr
pξ

))
CPpl Xp, ∀l ∈ L, ∀p ∈ Vp, ∀ξ ∈ Ω

∑
i∈Vn

Ybilξ

1−
(
πbl + (1− δ7)βπ

bl
) 6 CPbl Xb, ∀l ∈ L, ∀b ∈ Vb, ∀ξ ∈ Ω

Zikξ 6
(

1−
(

giξ − (1− δ8)β
g
iξ

))
(icik + Eik), ∀k ∈ K, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
p∈Vp

Upilξ

1−
(

δpl+(1− δ9)βδ
pl

) + ∑
b∈Vb

Ybilξ

1−
(
πbl+(1− δ9)βπ

bl
) = ∑

k∈K
Zikξ hlk

, ∀l ∈ L, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
m∈M

qikmξ + Bikξ = Dikξ − (1− δ10)βD
ikξ , ∀i ∈ Vr, ∀k ∈ K, ∀ξ ∈ Ω

(45)

and v ∈ F(vs.).
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4.2.3. The Development of Crisp Equivalent Global Model
As mentioned above, the two equivalent crisp models are reported as follows. UAM

is expressed as

Min EMe
[

f̃ 1

]
Max EMe

[
f̃ 2

]
Max EMe

[
f̃ 3

]

s.t.



∑
i∈Vn

Upilξ

1−
(

δpl − (1− δ1)βδ
pl

) 6
(

1−
(

rpξ+(1− δ1)βr
pξ

))
CPpl Xp

, ∀l ∈ L, ∀p ∈ Vp, ∀ξ ∈ Ω

∑
i∈Vn

Ybilξ

1−
(
πbl − (1− δ2)βπ

bl
) 6 CPbl Xb, ∀l ∈ L, ∀b ∈ Vb, ∀ξ ∈ Ω

Zikξ 6
(

1−
(

giξ+(1− δ3)β
g
iξ

))
(icik + Eik), ∀k ∈ K, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
p∈Vp

Upilξ

1−
(

δpl − (1− δ4)βδ
pl

) + ∑
b∈Vb

Ybilξ

1−
(
πbl − (1− δ4)βπ

bl
) = ∑

k∈K
Zikξ hlk

, ∀l ∈ L, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
m∈M

qikmξ+Bikξ = Dikξ+(1− δ5)βD
ikξ , ∀i ∈ Vr, ∀k ∈ K, ∀ξ ∈ Ω

v ∈ F(vs.)

(46)

Furthermore, LAM is represented as

Min EMe
[

f̃ 1

]
Max EMe

[
f̃ 2

]
Max EMe

[
f̃ 3

]

s.t.



∑
i∈Vn

Upilξ

1−
(

δpl+(1− δ6)βδ
pl

) 6
(

1−
(

rpξ − (1− δ6)βr
pξ

))
CPpl Xp

, ∀l ∈ L, ∀p ∈ Vp, ∀ξ ∈ Ω

∑
i∈Vn

Ybilξ

1−
(
πbl + (1− δ7)βπ

bl
) 6 CPbl Xb, ∀l ∈ L, ∀b ∈ Vb, ∀ξ ∈ Ω

Zikξ 6
(

1−
(

giξ − (1− δ8)β
g
nξ

))
(icik + Eik), ∀k ∈ K, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
p∈Vp

Upilξ

1−
(

δpl+(1− δ9)βδ
pl

) + ∑
b∈Vb

Ybilξ

1−
(
πbl+(1− δ9)βπ

bl
) = ∑

k∈K
Zikξ hlk

, ∀l ∈ L, ∀i ∈ Vn, ∀ξ ∈ Ω

∑
m∈M

qikmξ+Bikξ = Dikξ − (1− δ10)βD
ikξ , ∀i ∈ Vr, ∀k ∈ K, ∀ξ ∈ Ω

v ∈ F(vs.)

(47)

4.3. The Augmented ε-Constraint Method

The two equivalent auxiliary crisp models presented in Section 4.2 are multi-objective
models. The augmented ε-constraint algorithm proposed by [107] is used to ensure that
the solutions produced by UAM and LAM are valid. Assuming that the cost objective gets
priority followed by the sustainable and resilience objective, respectively, we convert the
objective functions f2 and f3 into constraints εsus and εres. This method can find effective
solutions to the problems presented in this paper. To describe the augmented ε-constraint
method for our problem, the process is shown in Algorithm 1.



Sustainability 2023, 15, 6327 19 of 34

Algorithm 1: Pseudo-code of the augmented ε-constraint method.

1 Generate a payoff table
2 min Z1

cos = f1 s.t. constraints (12)-(41)
3 max Z1

sus = f2 s.t. constraints (12)-(41) and f1 = Z1
cos

4 max Z1
res = f3 s.t. constraints (12)-(41) and f1 = Z1

cos and f2 = Z1
sus

5 Resulting non-dominated solution
(
Z1

cos, Z1
sus, Z1

res
)

6 max Z2
sus = f2 s.t. constraints (12)-(41)

7 min Z2
cos = f1 s.t. constraints (12)-(41) and f2 = Z2

sus
8 max Z2

res = f3 s.t. constraints (12)-(41) and f2 = Z2
sus and f1 = Z2

cos
9 Resulting non-dominated solution

(
Z2

cos, Z2
sus, Z2

res
)

10 max Z3
res = f3 s.t. constraints (12)-(41)

11 min Z3
cos = f1 s.t. constraints (12)-(41) and f3 = Z3

res
12 max Z3

sus = f2 s.t. constraints (12)-(41) and f3 = Z3
res and f1 = Z3

cos
13 Resulting non-dominated solution

(
Z3

cos, Z3
sus, Z3

res
)

14 Determine ranges of the objective functions
15 Calculate Zmin

sus = min
(
Z1

sus, Z2
sus, Z3

sus
)

and Zmax
sus = max

(
Z1

sus, Z2
sus, Z3

sus
)

16 Calculate Zmin
res = min

(
Z1

res, Z2
res, Z3

res
)

and Zmax
res = max

(
Z1

res, Z2
res, Z3

res
)

17 Define the length of the range of f2 as lsus = Zmax
sus − Zmin

sus
18 Define the length of the range of f3 as lres = Zmax

res − Zmin
res

19 Set parameters of grid points nsus and nres for sustainable and resilience objective
functions, respectively. Let λsus and λres as non-negative surplus variables and
ν ∈

[
10−6, 10−3

]
is a constant value.

20 Solve the problem iteratively
21 Initialization set isus = 0;
22 while (isus 6 nsus) do
23 Set ires = 0;
24 while ires 6 nres do
25 Solve MIP:
26 min f1 − ν

(
λsus

/
lsus + λres

/
lres
)

27 s.t. constraints (12)-(41)
28 f2 − λsus = εsus and εsus = Zmin

sus + (isus × lsus)
/

nsus

29 f3 − λres = εres and εres = Zmin
res + (ires × lres)

/
nres

30 ires = ires + 1;
31 end
32 isus = isus + 1;
33 end

5. Computational Experiments

In this section, we describe the implementation of the constructed model. We consider
two plants that require raw materials, which are purchased from three pre-qualified primary
suppliers and two backup suppliers. The production process is identical across both
plants, and plant capacity can be increased through the addition of fixed equipment. Two
different products are shipped from the plant to four PI hubs to serve five market zones. PI
containers are transported using three types of heterogeneous vehicles, each of which has a
load of 10 tons and travels at a fixed speed of 80 km/h. Fuel prices, unit greenhouse gas
emissions cost, and driver wages are 0.7382 (RMB/L), 0.248 (RMB/L), and 0.0022 (RMB/L),
respectively, [108–110]. The fuel conversion coefficient and road angular surface line are
2.63 kg/L and 0 [111], respectively. The product has a weight of 100 kg per container.
This paper generated imprecise and precise parameters using uniform distributions. Each
imprecise parameter was modeled with a suitable probability distribution in the form
of a symmetric triangular fuzzy number, where the symmetric distribution is 20% of the
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central value. The other problem parameters in the numerical experiments are shown in
Tables 3 and 4.

Table 3. Range of uniform distributions used to generate the center of symmetric fuzzy parameters.

Parameter Range of Uniform Distribution Parameter Range of Uniform Distribution

D̃jkξ 50×U[1.0, 5.0] p̃spl U[0.5, 2.5]
δ̃pl U[0.01, 0.10] p̃rbl p̃pl + U[1.0, 3.0]
π̃bl U[0.05, 0.15] g̃iξ U[0.1, 0.4]
r̃pξ U[0.2, 0.6] p̃cik U[2.0, 10.0]
f̃ p 25×U[4, 10] ẽik p̃cik + U[2.0, 5.0]
s̃p U[11.0, 15.0] h̃cik 0.15×

(
p̃cik

/
3
)

c̃b 30×U[4, 10] b̃ik U[25.0, 50.0]

Table 4. Range of uniform distributions used to generate crisp parameters.

Parameter Range of Uniform Distribution Parameter Range of Uniform Distribution

hlk U[30, 40] ecik U[11.0, 12.0]
CPpl U[400, 1000] LTi LT′j + U[5, 15]
SCbl U[200, 1000] LTj

′ U[35, 55]
LTb U[30, 50] dij U[100, 500]
icik U[400, 1000] wm U[4000, 20,000]
Qm U[2000, 20,000] Cdm U[0.5, 1.0]
km U[0.1, 0.3] Am U[9.0, 10.0]
Nm U[30, 40] nm U[0.40, 0.50]
vm U[2.0, 7.0] T∗ 100

The first step of the proposed solution methodology involves establishing a resilient-
sustainable assessment measure. This is achieved by forming a team of experts who
visit each supplier. PFCM was applied to measure performance across three dimensions:
general (cost, service, and flexibility), sustainable (green design capabilities, environmental
management systems, and social management organizations), and resilient (responsiveness,
geographical segregation, and collaboration). The elements in PFCM are set to a = 2, b = 5,
m = 2, η = 2, maxiter = 1000, and the number cluster c = 3. The supplier’s resilient-
sustainable performance evaluation is run in MATLAB R2018a, and the relevant data are
reported in Appendix B (Tables A1–A3). Simultaneously, the team of experts evaluated
potential disruption risks for suppliers, plants, and PI hubs. Disruption events were
then clustered by probability using PFCM in MATLAB R2018a. The resulting cluster
centers were used to represent the different types of disruption events, reducing the
total number of events from twenty to three. The related data are shown in Appendix B
(Tables A4 and A5). Furthermore, PFCM was applied in MATLAB R2018a to cluster the
disruption scenarios based on the number of disruptions of supply chain participants (the
cluster center represents small, medium, and large disruption scales). All the models for
optimizing supply, production, and distribution decisions under the PI network settings
are implemented by IBM ILOG CPLEX Optimization Studio 12.6 software. Experiments
were run on an Intel Core i7 CPU PC with a 3.40 GHz processor and 8 GB RAM for all
numerical cases.

5.1. Analysis of the Impact of Optimistic–Pessimistic Attitude and Confidence Levels

This section conducts a sensitivity analysis to investigate the effect of parameter
changes on the priority objective function. In the experiment, the cost objective function
is regarded as the priority objective, and the sustainable and resilience objectives are
considered as constraints in the augmented ε-constraint method, by considering the lower
bounds εsus = 76.64 and εres = 0.8368 of sustainable objective and resilience objective,
while setting the λ = 0.5 and ν = 10−4. For each selected optimistic–pessimistic parameter
and confidence level, our program is run 10 times, and the best solution is adopted.
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Table 5 reports the cost objective function values of the LAM and UAM models under
different confidence levels for decision makers. The LAM and UAM models produce a
range of Pareto optimal solutions across five confidence levels, ranging from 0.6 to 1.0. The
optimistic–pessimistic parameter is set to 0.5. As shown in Table 5, different confidence
levels of decision makers will have a significant impact on the results. Upon selecting the
desired confidence level, the decision maker will receive the upper and lower bounds of
the optimal decision, defining the solution interval that satisfies the requirements. It is
noteworthy that the feasible domain of the UAM is larger than that of the LAM, since the
UAM accounts for the optimistic attitude of the decision maker.

Table 5. Summary of results for LAM and UAM models according to different decision makers’
confidence levels.

δi = 0.6 δi = 0.7 δi = 0.8 δi = 0.9 δi = 1.0

f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3

LAM 10746 129.0 0.829 10236 129.2 0.899 9931.2 129.4 0.944 9697.7 129.9 0.945 9619.7 130.9 0.968
UAM 7544.4 103.4 0.859 8047.7 105.0 0.880 9292.0 115.1 0.881 9579.3 126.9 0.940 9613.6 130.5 0.968

To conduct a more comprehensive analysis of the impact of decision makers’ optimism-
pessimism attitudes and confidence levels on the optimal cost objective solution, Table 6
presents the cost objective function values of LAM at different levels of optimism-pessimism
and confidence levels. Table 6 illustrates that the cost objective function value increases with
a higher confidence level, given the same optimistic–pessimistic parameters. The reason
is that, under the same optimistic–pessimistic attitude, the feasible region expands as the
confidence level increases. Therefore, we can find a better solution within a larger feasible
region, and vice versa. Additionally, we can observe that, under the same confidence level,
the cost objective function value improves when the optimistic–pessimistic parameter is
increased. In summary, it is unrealistic for decision makers to obtain a definite solution in
a fuzzy environment. However, by selecting appropriate optimistic–pessimistic param-
eters and confidence levels, the two approximate models, LAM and UAM, can provide
a solution interval for the cost objective function. Therefore, decision makers can obtain
more information about the solution based on their optimistic–pessimistic attitude and
confidence level [106].

Table 6. Results of sensitivity analysis on LAM parameters.

λ
δi = 0.6 δi = 0.7 δi = 0.8 δi = 0.9 δi = 1.0
[ f1, f2, f3] [ f1, f2, f3] [ f1, f2, f3] [ f1, f2, f3] [ f1, f2, f3]

0 [9697.3, 107.5, 0.8700] [9158.8, 109.6, 0.8626] [8416.0, 114.9, 0.9100] [6292.8, 119.9, 0.9200] [5875.3, 129.1, 0.9200]
0.2 [10117, 109.9, 0.8700] [9460.3, 132.1, 0.8800] [9096.8, 115.2, 0.9200] [8681.6, 117.8, 0.9299] [8559.1, 129.9, 0.9501]
0.4 [10145, 128.6, 0.8259] [9701.2, 125.6, 0.9000] [9427.6, 119.9, 0.8800] [8721.8, 125.1, 0.9399] [8632.7, 157.1, 0.9099]
0.6 [11611, 129.5, 0.8403] [11337, 113.7, 0.8999] [10459, 129.9, 0.9200] [10287, 123.8, 0.9399] [10243, 119.7, 0.9599]
0.8 [12488, 129.6, 0.8448] [11616, 113.7, 0.8900] [11213, 130.1, 0.9100] [10302, 123.1, 0.9399] [10245, 131.3, 0.9199]
1.0 [13200, 129.9, 0.8501] [12268, 112.9, 0.8967] [11579, 130.1, 0.9151] [10894, 123.3, 0.9249] [10844, 131.4, 0.9200]

5.2. Analysis of the Suppliers’ Resilient and Sustainable Performance

The results of supplier clustering using PFCM are shown in Figure 4. As depicted in
Figure 4, the algorithm classifies suppliers into three clusters based on their normalized
scores in the general, sustainable, and resilient dimensions. Suppliers S4, S7, and S10 are
classified as the most resilient-sustainable suppliers, while suppliers S6 and S9 are classified
as the second category of suppliers with lower overall resilient-sustainable performance.
The suppliers in the third group failed to meet the minimum requirements for resilient-
sustainable performance and were therefore removed from the candidate supplier list.
The multi-objective mixed-possibilistic programming model developed in Section 3.3 was
solved to determine the purchase decision for each supplier under different disruption
scale scenarios. For different priority objective functions, different optimal values of the
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LAM model can be obtained, where λ = 0.5, v = 10−4, and δi = 1.0. For different priority
objective functions, Table 7 shows the percentage of purchased raw materials from each
supplier under different disruption scales.

Figure 4. The output of probability fuzzy c-means clustering approach for the case problem.

Table 7. The percentage of raw material purchased from each supplier at different optimization of
the objective functions.

Scenarios Disruption Scale
Supplier

S4 S6 S7 S9 S10

CS1 min f1 Small 96 53 95 70 94
Medium 22 58 12 49 21

Large 48 89 47 36
CS2 max f2 Small 71 94 72 61

Medium 64 91 87
Large 68 46 40 49

CS3 max f3 Small 41 95 46 94
Medium 92 74 94 73 98

Large 58 34 47 49 16

The relative optimal order of the objective function has a significant impact on the
final sourcing decision, which in turn affects the overall operational performance of the
supply chain. Table 7 shows that the augmented ε-constraint method is used to optimize
three priority objective functions (i.e., the cost objective (CS1), sustainable objective (CS2),
and resilience objective (CS3)) under different disruption scales to obtain the percentage
of capacity utilization of each supplier, which reflects the level of participation of each
supplier. In all scenarios, primary suppliers and backup suppliers are almost exclusively
utilized for the procurement of raw materials. Our observation indicates that suppliers
S4 and S7 were selected as the most effective supplier in almost all scenarios, and some
suppliers were selected in specific scenarios (i.e., S6, S9, and S10). The level of supplier
participation obviously depends on its performance in three dimensions: cost, sustainability,
and resilience. When the emphasis is on cost objectives and the ability to withstand small-
scale disruptions, suppliers S4, S7, and S10 are preferred. When sustainable objectives
are emphasized, suppliers S4 and S7 are considered effective in their ability to deal with
disruptions across all three scales. If resilience objectives are emphasized, all suppliers
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except for S9 demonstrate excellent resilience performance. Meanwhile, we observe that
in all scenario configurations, S4 and S7 can effectively cope with disruptions of different
scales, and they can maintain cost effectiveness while also achieving sustainability and
resilience. Therefore, we can conclude that suppliers S4 and S7 are better suited for
establishing a resilient and sustainable supply base.

5.3. Analysis of the Trade-Off between Performance and Disruption Scales

This section presents an analysis of the trade-offs between supply chain performance
and disruption scales, with the aim of exploring the relationship between cost, sustainable,
and resilience objectives across different disruption scales. This trade-off can be achieved
by adjusting the degree of resilience (εres), and using the cost and sustainable objectives as
the priority objective solution model, respectively. The results are presented in Figure 5,
which illustrates the trade-offs between cost, sustainable, and resilience objectives across
different disruption scenarios, including the following: (a) the baseline scenario with no
disruption, (b) small-scale disruptions only, (c) medium-scale disruptions only, and (d)
large-scale disruptions only.
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Figure 5. Trade-off between performance and disruption scales ((a) No disruptions, (b) Small-scale
disruptions, (c) Medium-scale disruptions, and (d) Large-scale disruptions).

As shown in Figure 5, the cost objective increases with the expansion of the disruption
scale, and the cost is lowest in the baseline scenario with no disruption. Furthermore, we
observe that as the degree of resilience increases, the cost objective of the supply chain
decreases, while the sustainable objective first improves and then declines. When the
resilience of the supply chain is low, the supply chain tends to collaborate with suppliers
that demonstrate strong performance in both resilience and sustainability, even if their costs
are higher. When the supply chain has high flexibility to cope with random disruptions, it
tends to engage with lower-cost suppliers, even if their performance in terms of resilience
and sustainability is low. Interestingly, the cost objective decreases in a linear pattern as the
resilience of the supply chain increases.

By focusing on disruption scales, further insights can be gained into the relationship
between cost, sustainable, and resilience objectives. Analysis results from Figure 5a–d
indicate that improving the resilience of the supply chain leads to a reduction in the supply
chain’s cost objective and significant changes in sustainable performance. As shown in
Figure 5c, if the resilience is improved from 0.90 to 0.94, the sustainability of the supply
chain will be greatly affected during medium-scale disruptions. In contrast to Figure 5c,
it can be seen in Figure 5b that increasing the resilience from 0.90 to 0.94 only leads to a
slight change in the sustainable performance of the supply chain. Similar observations
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can be made for large-scale disruptions in Figure 5d, where increasing resilience from
0.90 to 0.94 leads to only a minor reduction in sustainable performance. The results suggest
that it may be possible to improve the resilience of the supply chain while preserving cost
efficiency and sustainable performance under certain disruption scenarios.

5.4. Network Robustness Experiment

To further verify the robustness of the proposed network structure, performance
comparison results were obtained from three network structures: (1) multi-source (conclude
the primary supplier and the backup supplier) PI logistics system (MS-PI); (2) multi-
source (conclude the primary supplier and the backup supplier) collaborative logistics
system (MS-CO); and (3) multi-source (conclude the primary supplier) PI logistics system
(PS-PI). In MS-CO, collaboration is established among enterprises that share similar annual
throughput and geographic location of market zones. It is noteworthy that in MS-CO,
vehicles can extract products from all plants and deliver them directly to the market zones.
Consolidation and de-consolidation of products are only carried out at the plants and
market zones. MS-PI and PS-PI differ from MS-CO in that products can be transported
from the plant to one or more PI hubs via multiple vehicles, and are then consolidated
and deconsolidated multiple times before being shipped to the market zone. Specifically,
all network configurations take into account the additional capacity added by the plant.
It is noteworthy that, compared to the PS-PI and MS-CO networks, the MS-PI network
emphasizes the value of backup suppliers and PI in the supply chain network. Additionally,
we use the same data for experiments in all test cases.

Experiments were conducted on three network structures, exploring the impact
of different disruption scales (none, small, medium, and large) on each network’s per-
formance. To provide a clearer illustration of the results, Table 8 presents a compari-
son of cost, sustainability, and resilience among MS-PI, MS-CO, and SS-PI under dif-
ferent priority objective functions and disruption scales. Figures 6–8 display the re-
sults of the four disruption scale test cases using a radar chart, with the costs of MS-PI,
MS-CO, and SS-PI represented by the numbers in parentheses. The key performance
indicators (KPIs) for different network configurations are as follows: PSC (total primary
supplier cost), BSC (total backup supplier cost), TPC (total production cost), EPC (ex-
tra production cost), TTC (total transportation cost), TFC (total fuel cost), TEC (total
emission cost), and THC (total holding cost). Each network structure’s cost configura-
tion is indicated by a clear line pattern, with closer lines to the center indicating lower
costs. The percentage difference between MS-PI and MS-CO (or PS-PI) is calculated

as follows: % improvement with MS-PI over MS-CO(SS-PI) =
F*

MS−CO(SS−PI)−F*
MS−PI

F*
MS−PI

× 100%

where F(#)
(∗) indicates the cost, sustainability, and resilience (#) of the corresponding network

structure(∗).
Based on the data presented in Table 8 and Figures 6–8, the following conclusions

can be drawn. Table 8 confirms that the order of cost is MS-PI, PS-PI, and MS-CO, with
MS-PI having the lowest cost and MS-CO having the highest cost. In essence, it has been
observed in both theory and practice that an increase in the flexibility and robustness of
the network structure leads to an increase in cost effectiveness. Additionally, we note that
backup suppliers and PI are highly effective in addressing disruptions of varying scales.

As specified in Figure 6, in CS1, compared with MS-CO, MS-PI and SS-PI have lower
transportation, fuel, and emission costs, regardless of the scale of the disruption. However,
the interesting finding is that the handling costs of both MS-PI and PS-PI are higher. This
may be attributed to the fact that PI containers may need to be deconsolidated and recon-
solidated at each transportation node of MS-PI and SS-PI, which enhances transportation
efficiency and vehicle utilization, effectively reducing fuel costs, emission costs, and trans-
portation costs. Meanwhile, as transportation efficiency improves, the deconsolidation and
reconsolidation of PI containers result in an increase in handling costs. Compared with
PS-PI, MS-PI’s supplier base is set up as "mixed", including primary suppliers and backup



Sustainability 2023, 15, 6327 25 of 34

suppliers. Despite the increased cost of BSC in MS-PI, the overall cost effectiveness of the
supply chain improved due to its diverse supply. Therefore, MS-PI can provide a more
competitive solution regardless of the scale of the disruption.

CS2 provides more sustainable operational planning options, as shown in Figure 7.
Comparison with MS-CO revealed that MS-PI demonstrated a sustainable performance
improvement of 5.02%, 7.98%, and 2.15% under small, medium, and large disruption
scales, respectively. Significantly, in the comparison between PS-PI and MS-PI, the latter
demonstrated an improvement in sustainable performance of 9.22%, 7.92%, and 4.85%
under small, medium, and large disruption scales, respectively. The main reason for this
beneficial change in MS-PI mainly derived from the diversity and flexibility of the supply
base and the interconnection characteristics of PI. The presence of backup suppliers in
MS-PI leads to an increase in the diversity of the supply base. The efficient operation of
PI encourages the supply chain to collaborate with suppliers that exhibit good resilient
and sustainable performance, thus expediting the sustainable development of the supply
chain. Thus, MS-PI enhances the sustainable performance of the supply chain while
simultaneously improving cost efficiency, owing to its abundant supply base.

Table 8. Payoff table obtained by the lexicographic optimization of the objective functions.

Scenarios Disruption Scale
Cost Sustainable Performance Resilience

MS-PI MS-CO SS-PI MS-PI MS-CO SS-PI MS-PI MS-CO SS-PI

CS1 min f1 Small 10,608 13,450 12,881 170.22 180.10 178.64 0.8933 0.8657 0.8712
Medium 10,713 13,550 13,421 198.39 200.10 196.63 0.8363 0.8999 0.8452
Large 13,025 14,026 14,021 233.44 250.00 226.85 0.8309 0.8858 0.8165

CS2 max f2 Small 9843.9 13,361 10,213 179.97 170.93 163.38 0.8706 0.8749 0.8675
Medium 10,532 13,418 10,982 195.60 179.99 180.11 0.8717 0.8858 0.8276
Large 10,932 14,016 11,579 194.64 190.46 185.20 0.8958 0.8973 0.8104

CS3 max f3 Small 8273.7 13,304 10,213 175.61 170.08 163.38 0.9722 0.8861 0.8675
Medium 9378.7 13,709 10,982 187.56 187.05 180.11 0.9909 0.8699 0.8276
Large 9521.3 13,868 11,579 194.93 190.02 197.23 0.8914 0.8759 0.8535

PSC(539.4,991.9,929.5)

BSC(839.7,1057.9,0)

TPC(919.9,1824.3,3087.1)
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MS-PI

MS-CO

SS-PI

(a)
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EPC (450.4,607.7,355.4)
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MS-PI

MS-CO
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(d)

Figure 6. The performance of different operations in cost-targeted optimization cases ((a) No disrup-
tions, (b) Small-scale disruptions, (c) Medium-scale disruptions, and (d) Large-scale disruptions).
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Figure 7. The performance of different operations in sustainability-targeted optimization cases
((a) No disruptions, (b) Small-scale disruptions, (c) Medium-scale disruptions, and (d) Large-scale
disruptions).
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Figure 8. The performance of different operations in resilience-targeted optimization cases ((a) No dis-
ruptions, (b) Small-scale disruptions, (c) Medium-scale disruptions, and (d) Large-scale disruptions).

CS3 provides a more flexible operation plan based on the resilience objective as the
priority objective function. Based on the results shown in Figure 8, we observed that
MS-PI outperforms both MS-CO and PS-PI in terms of resilience, cost efficiency, and
sustainable performance, regardless of the competitive network. Therefore, MS-PI can
mitigate disruptions without compromising economic costs and sustainable performance.
Notably, when comparing MS-CO and MS-PI under three levels of destruction, the cost of
MS-PI improved by 60.80%, 46.17%, and 45.65%, respectively. Additionally, the sustainable
performance of MS-PI improved by 3.15%, 0.3%, and 2.52%, while its resilience increased
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by 8.86%, 12.21%, and 15.70%, respectively. In the comparison of PS-PI and MS-PI under
the three disruption scales, compared with the slight improvement in MS-PI’s sustainable
performance (improvements of 6.96%, 3.97%, and 4.50%, respectively), the resilience of MS-
PI was significantly improved by 10.77%, 16.48%, and 17.60% and the cost improvement was
23.44%, 17.10%, and 21.61%, respectively. The resilience advantage of MS-PI is primarily
achieved through the use of backup suppliers, as well as the high integration, flexibility,
and openness of PI. Backup suppliers can prevent shortages, strikes, disruptions from
primary suppliers, and capacity problems that primary suppliers may encounter. PI can
leverage the interconnectivity and synergies between entities in the supply chain network
to integrate dispersed and overlapping transportation flows. This enhances the flexibility
and resilience of the transportation network. Meanwhile, we can observe that the cost
efficiency and sustainable performance of MS-PI are higher than that of MS-CO and SS-
PI. When random disruptions occur at suppliers, plants, and PI hubs, MS-PI can always
respond to disruptions quickly with the minimal cost and the best sustainable performance,
regardless of the scale of the disruption. Thus, MS-PI enhances the flexibility and resilience
of the supply chain network while maintaining cost efficiency and sustainable performance.
Considering the various disruption scenarios, it is clear that greater flexibility in the supply
chain network structure would be beneficial.

6. Conclusions and Future Work

The study of supply chain resilience and sustainability has become an important focus
of academic research. While a significant amount of modeling work has explored different
aspects of supply chain resilience and sustainability, these studies primarily focused on
traditional supply chain networks and their interrelationships and potential interactions.
At present, there is no literature in PI that jointly explores these two topics to obtain a
PI-enabled resilient and sustainable supply chain network design. The major thrust of this
paper is to conduct an early attempt at resilient and sustainable analysis in the PI-enabled
supply chain. By modeling the key operational features of PI, a hybrid method is proposed
to solve the PI-enabled supply–production–distribution problem with integrated resilience
and sustainability analysis. The proposed approach is implemented in two phases. Firstly,
based on the decision makers, the first stage of the hybrid method proposes the PFCM
to evaluate the resilient-sustainable performance of each supplier (primary and backup
suppliers). Secondly, with the obtained supplier’s performance score as an input parameter,
a multi-objective mixed-possibilistic programming model was developed in the second
stage, which integrates the three dimensions of cost, sustainability, and resilience. Next, we
re-developed the multi-objective model based on the multi-objective mixed-possibilistic
model to account for uncertainties in demand, cost, and other factors. The augmented
ε-constraint method was employed to optimize the equivalent crisp model, and to obtain
the trade-off among the three objective functions by identifying the optimal solution
from the Pareto optimal set. The developed model’s applicability was verified through
numerical experiments.

The following main conclusions are drawn from the experimental results: Firstly,
suppliers with good resilient-sustainable performance are crucial for mitigating supply
chain disruption and enhancing the resilience and sustainability of the supply chain at
the source. Secondly, traditional supply chains are more susceptible to disruptions in
terms of three key dimensions: cost, sustainability, and resilience, compared to PI-enabled
supply chain configurations. Furthermore, the incorporation of backup suppliers and PI
can enhance the resilience of the supply chain, enabling sustainable performance across
different scales of disruption without incurring significant cost changes. Thirdly, from a
long-term perspective, the robust MS-PI is the most efficient, sustainable, and resilient
supply chain structure. Fourthly, from a strategic perspective, supporting PI-enabled
supply chains is more valuable than supporting traditional supply chains (in terms of
supply chain cost, sustainability, and resilience).
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Based on the previous analysis, the main management insights can be summarized
as follows: Firstly, the developed PI-enabled supply–production–distribution model can
help companies improve supply chain resilience and respond to increasing sustainability
requirements. Secondly, the supplier performance analysis conducted in this article can
help decision makers understand the importance of comprehensive business decisions.
The proposed model can help managers integrate purchasing, production, and distribution
decisions to address the optimization problem of several conflicting objectives, enabling
managers to determine the best business solution. Thirdly, the value of backup procure-
ment should be emphasized, as backup suppliers can mitigate supply uncertainty and
prevent supply shortages during disruptions. The role of PI should also be emphasized, as
open sharing between PI hubs has brought improvements in supply chain cost efficiency,
sustainable, and resilience. Finally, implementing PI-enabled supply chains can help en-
sure the resilient and sustainable development of enterprises, benefitting society and the
environment while also providing resilience advantages.

As a guide for future research, the study presented in this article can be extended
further. Considering the transportation disruption of PI-enabled supply chains, evaluating
PI’s resilient performance from a more comprehensive perspective may be an interesting
direction for future research. Additionally, considering the uncertainties of suppliers, plants,
PI hubs, and market zones’ capabilities can be another idea for future research. Lastly,
the development of an efficient and accurate solution method is also a good direction for
future research.
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Appendix A

The cost objective function is transformed as follows:
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The sustainable objective function is transformed as follows:
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Furthermore, the resilience objective function is transformed as follows:
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Appendix B

Table A1. Performance assessment of suppliers.

Supplier
General Criteria Sustainable Criteria Resilient Criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9

S1 0.4 0.6 0.3 0.1 0.3 0.6 0.6 0.4 0.2
S2 0.8 0.6 0.1 0.4 0.6 0.5 0.4 0.1 0.3
S3 0.6 0.8 0.5 0.1 0.5 0.2 0.2 0.7 0.4
S4 0.1 0.5 0.4 0.7 0.5 0.6 0.5 0.1 0.5
S5 0.5 0.1 0.4 0.6 0.5 0.4 0.1 0.5 0.6
S6 0.2 0.4 0.5 0.2 0.1 0.6 0.8 0.4 0.3
S7 0.4 0.5 0.1 0.5 0.7 0.5 0.5 0.6 0.3
S8 0.6 0.1 0.5 0.5 0.6 0.6 0.7 0.2 0.5
S9 0.5 0.6 0.2 0.4 0.4 0.4 0.3 0.6 0.7
S10 0.5 0.3 0.7 0.7 0.8 0.3 0.2 0.5 0.6
S11 0.4 0.7 0.1 0.2 0.4 0.4 0.6 0.7 0.4
S12 0.7 0.2 0.8 0.5 0.7 0.1 0.3 0.6 0.7

C1: cost; C2: service; C3: flexibility; C4: green design capability; C5: environmental management system; C6: social
management commitment; C7: responsiveness; C8: geographical segregation; C9: cooperation.

Table A2. Resilient-sustainable indices of suppliers.

Indices
Supplier

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

General 0.1999 0.0427 0.0315 0.1906 0.1314 0.5712 0.1425 0.4131 0.7628 0.0986 0.1667 0.0680
Sustainable 0.2814 0.2192 0.0431 0.0646 0.1034 0.0991 0.2187 0.3237 0.0827 0.0628 0.3014 0.5787
Resilient 0.0861 0.0926 0.0427 0.4056 0.1403 0.0455 0.5595 0.1120 0.1860 0.4186 0.1615 0.1860

Table A3. Resilient-sustainable performances of suppliers.

Performances
Supplier

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Resilient-sustainable 0.0534 0.0761 0.0202 0.3686 0.0453 0.3084 0.2047 0.0248 0.1739 0.3967 0.0635 0.0134

Table A4. Probability of the considered disruptive events.

Disruptive Event S1 S2 S3 N1 N2 H1 H2 H3 H4 H5

1 0.384 0.452 0.287 0.297 0.325 0.563 0.441 0.358 0.146 0.205
2 0.480 0.254 0.435 0.535 0.212 0.163 0.538 0.157 0.070 0.258
3 0.322 0.593 0.257 0.157 0.404 0.567 0.323 0.003 0.146 0.282
4 0.053 0.151 0.389 0.489 0.503 0.405 0.417 0.257 0.589 0.544
5 0.343 0.119 0.417 0.517 0.117 0.322 0.346 0.378 0.522 0.430
6 0.377 0.396 0.292 0.492 0.347 0.057 0.440 0.086 0.113 0.522
7 0.321 0.600 0.119 0.419 0.441 0.088 0.348 0.024 0.483 0.189
8 0.576 0.361 0.354 0.254 0.537 0.202 0.420 0.446 0.160 0.375
9 0.532 0.517 0.269 0.369 0.136 0.547 0.504 0.454 0.205 0.166
10 0.496 0.547 0.306 0.206 0.444 0.093 0.319 0.586 0.104 0.296
11 0.339 0.439 0.351 0.251 0.525 0.535 0.439 0.049 0.248 0.235
12 0.090 0.250 0.163 0.263 0.307 0.370 0.441 0.296 0.388 0.443
13 0.229 0.238 0.173 0.373 0.246 0.147 0.220 0.167 0.131 0.268
14 0.514 0.148 0.278 0.178 0.316 0.388 0.108 0.598 0.023 0.570
15 0.522 0.274 0.284 0.184 0.404 0.496 0.325 0.586 0.086 0.585
16 0.030 0.578 0.344 0.144 0.537 0.293 0.300 0.139 0.425 0.562
17 0.228 0.568 0.185 0.085 0.305 0.454 0.109 0.213 0.200 0.479
18 0.290 0.515 0.186 0.386 0.433 0.175 0.143 0.560 0.124 0.168
19 0.061 0.491 0.338 0.238 0.322 0.352 0.207 0.175 0.186 0.349
20 0.300 0.040 0.102 0.202 0.338 0.168 0.246 0.484 0.494 0.530
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Table A5. Probability of supply chain participant cluster centers as representatives of disrup-
tive events.

Disruptive Event S1 S2 S3 N1 N2 H1 H2 H3 H4 H5

1 0.437 0.370 0.191 0.281 0.388 0.273 0.324 0.431 0.168 0.379
2 0.271 0.287 0.171 0.346 0.329 0.293 0.349 0.291 0.328 0.410
3 0.252 0.458 0.193 0.260 0.378 0.359 0.303 0.185 0.245 0.361
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