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Abstract: Ecological footprint (EF) is used to measure the energy and resources that are consumed by
human beings, and it is used to calculate the energy that ecological services can provide to determine
the gap between human behavior and what the earth can tolerate so as to ensure that human activities
and sustainable development fall within this range. Therefore, it is crucial to research the influencing
factors of EF. In this study, the ensemble empirical mode decomposition (EEMD) method was used
to decompose China’s per capita ecological footprint from 1961 to 2018 into four intrinsic mode
functions (IMFs) and a residual (R) and to conduct factor detection and interaction detection on both
each obtained sequence and the original sequence. In order to examine the contributing factors,
15 independent variables representing the economic, social, and environmental pillars of sustainable
development were chosen. The outcome under the interaction factor is more logical than the result
under the single factor. Under the interaction factor of climate, the short-term changes in the number
of doctors per 1000 people, long-term population density, carbon dioxide emissions, and average
life expectancy interact with each other and the trend in CO2 emissions to affect the change in
ecological footprint.

Keywords: ecological footprint; ensemble empirical mode decomposition; GeoDetector; influencing
factors; sustainable development

1. Introduction

The planet’s capacity to produce resources and ecosystem services is essential for
both economic success and social progress. A balance between human needs and natural
capital stocks can ensure the sustainability of ecological supply and demand. With the
development of the economy, in order to not limit human efforts, sustainable development
has become particularly important. In 2015, the United Nations Sustainable Development
Summit officially adopted 17 sustainable development goals. The goals aim to create a
comprehensive and systematic arrangement of goals and tasks to be achieved by human
society by 2030, which will achieve sustainable development in three dimensions: eco-
nomic, social, and environmental [1]. A circular economy requires minimizing resource
consumption by using as few resources as possible, by keeping materials and products
in the economy for as long as possible, and by using the waste generated to reintroduce
waste into the economy [2]. These resource savings aim to mitigate climate change. The
Paris Agreement and Kyoto Protocol have made commitments to reduce environmental
pollution and achieve sustainable development goals; however, the world’s climate is
rapidly changing due to ecological footprints and carbon dioxide emissions [3].

Environmentally, a safe operating space for climate change is particularly important,
especially given the long-term climate impacts of carbon dioxide emissions that could
persist for thousands of years [4]. The global population will be more susceptible to health
problems due to rising temperatures caused by population growth and rapid increases in
energy use. This will result in increased heat stress and alternating patterns of vector-borne
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diseases, leading to disruptions in settlement patterns and mass migration, which will have
major socioeconomic consequences [5]. This suggests that an increasing population in-
creases energy demand, increased CO2 use affects health through the climate, and health, in
turn, affects population. Implementing population-based policies in developing countries
can help overcome the international burden-sharing problem of mitigating climate change.
Casey et al. [6] showed that population policy can be part of the global climate change
policy. More human capital is needed in less-developed countries to meet the challenges
posed by the consequences of climate change [7]. Increasing urban populations lead to in-
dustrialization and economic growth. Yang et al. [8] believe that ecological footprint, urban
population, industrialization, and economic growth have increased medical expenditures;
they also posit that industrialization, medical expenditures, and economic growth are the
main reasons for the increase in pollution levels. The climate footprint of healthcare is
equivalent to 4.4% of global net emissions; the top three healthcare emitters, the US, China,
and the EU, account for more than half of the global healthcare footprint [9].

The growing population has also increased economic activity, which has led to a
significant increase in energy demand. Due to the insufficient supply of renewable energy,
all countries are heavily dependent on the use of conventional energy sources; as a result,
the level of ecological footprint has increased, which in turn leads to more carbon emissions
being released into the atmosphere [10]. It can be seen that GDP and total energy consump-
tion increase EF [11]. Reducing the ecological footprint is only possible by increasing the
percentage of clean energy in the total energy use and by vigorously adopting renewable en-
ergy [12–14] or advanced green technologies [15]. Gogonea et al. [16] believe that countries
with low levels of macroeconomic activity output can protect and improve environmental
quality through improvements in education, health, and development research; the authors
also posit that innovation factors are critical for supporting both sustainable economic
development and biodiversity modeling.

In order to estimate whether human resources and activities are within sustainable
ecological conditions and whether human needs are still in line with the interests of
the global natural capital stock, it is necessary to convert the standards of sustainable
development into specific figures. Natural and social scientists agree that quantifying the
ecological conditions that maintain natural capital is critical to sustainable development [17].
The sustainability of development mainly depends on natural assets. The EF model is a
clear-cut and thorough research approach that employs particular biophysical markers to
assess if human development is within the ecosystem’s carrying capacity. The concept of
the ecological footprint was proposed by William E. Ress and Mathis Wacknagel in the late
1990s [18]; it indicates the amount of biologically productive land and sea area required to
produce ecosystem products and services that are consumed by a region or country; and
absorb the waste generated by using these products and services [19]. The EF approach
makes it feasible to assess the effects of human behavior and provide remedies at any level,
whether it be at the individual, family, community, country, or world level [20].

EF not only quantitatively judges the extent to which human beings have tran-
scended boundaries at multiple scales, such as water resources and energy ecological
footprints [21–23], but can also be used to examine the worldwide distribution of natu-
ral assets, the restrictions of resource usage, and how to deal with problems such as the
sustainability of natural resource use. Both the traditional method of calculating ecolog-
ical footprint [24] and the new method that many scholars have studied and improved
upon [25–27] offer a foundation for setting goals for human survival and socioeconomic
growth, identify possibilities for action, and track progress towards predetermined goals.
The methods can assess historical trends as well as the current environmental demand and
supply. Compared with direct calculation, many scholars also use predictions to perceive
the future ecological footprint. This can be achieved by, for example, using Excel’s trend
line forecast [28], SPSS’s time series analysis to forecast trends [29], or by using the GM
(1,1) gray forecasting model to predict trends [30–32]. China’s per capita EF has fluctu-
ated throughout time as a result of the country’s booming economy, steady rise in living
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standards, and variety in consumer habits. These developments also show that predicting
the trend in the EF is particularly important for China and the world, and discussing its
influencing factors will also provide good suggestions to policymakers. For the prediction
of the ecological footprint at this stage, its direct influencing factors are more controversial.

In order to achieve sustainable development within the threshold range of ecological
supply, identify the main drivers of the ecological footprint in the process of human
development, and explore the impact of the determinants of biological capacity, ecological
footprint will serve as a reference for resource, environmental, and ecological sustainable
development and future decision-making plans [33–35]. According to Gogonea et al. [16],
the determinants of biological capacity reserve/deficit cover all three main dimensions of
sustainable development, i.e., the economic, social, and environmental pillars. Because the
ecological footprint indicator system includes the reserve/deficit of ecological carrying
capacity and a potential variable for quantifying sustainable development, this paper
assumes that its main determinants also cover these three aspects. In addition, this paper
also assumes that average temperature, CO2 emissions, and population density are the
main influencing factors of EF.

This study contributes to the literature in several ways. First of all, the combination of
the nonlinear sequence decomposition of EEMD and the spatial and temporal differentia-
tion of GeoDetector can analyze the influencing factors more accurately than traditional
methods. Secondly, dividing the influencing factors of ecological footprint into long-term,
short-term, and overall trend is beneficial for formulating various long-term and short-term
policies. Finally, we propose for the first time that the influencing factors of ecological
footprint cover the economic, social, and environmental pillars of sustainable development.
One of the primary causes of biodiversity loss and unsustainable development is human
strain on ecosystems, and EF is a commonly used indicator for natural capital and ecosys-
tem accounting. Ecosystems are essential for sustaining human development; thus, their
decline threatens the viability of human societies. Additionally, further investigation into
the connections between human and natural systems at various scales could be carried out
by studying the specific components that underlie each EF factor [36].

The rest of this study is divided as follows: Section 2 presents the methods and
data sources; Section 3 presents the results; Section 4 is the discussion; and Section 5 is
the conclusion.

2. Methods and Data Sources
2.1. Ensemble Empirical Mode Decomposition (EEMD)

Empirical mode decomposition (EMD) is a new multiresolution signal analysis method
proposed by Huang et al. [37] in 1998. EMD is based on temporal scales with the local
characteristics of the signal, and it extracts the intrinsic modulus function (IMF) from the
original signal. The Hilbert transform is a linear operator that generates functions with
the same domain as pair functions. The Hilbert–Huang transform (HHT) first involves
transforming the IMF components that are decomposed by EMD and then performing
a Hilbert transform. In the end, the Hilbert spectrum, which corresponds to the signal’s
instantaneous frequency and amplitude, is determined.

The Hilbert spectrum can be used to analyze the time-varying law of each component
in a mixed-component signal to identify local features. It should be noted that the Hilbert
spectrum sometimes takes all IMF components after EMD decomposition as the analysis
object, and some specifically select one or several IMF components for component analysis.
The relationship between the signal time, instantaneous frequency, and amplitude reflected
by the Hilbert–Huang transform is known as the Hilbert spectrum. The wavelet spectrum
and Hilbert spectrum, which are obtained using the advanced framework and EMD
technique, have similar performance characteristics. However, the Hilbert spectrum has
a much higher resolution in the frequency and time domains than the wavelet spectrum,
which more closely approximates the system’s original physical properties.
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EMD is a loop iterative algorithm, and its decomposition process mainly includes the
following four steps [38].

Step 1: Identify the local extreme positions of the time series X(t). Then, use the cubic
spline function to link all the maximum or minimum spots to create the upper and lower
envelopes to create the average envelope sequence m1 (t), which can be expressed as:

m1(t) =
emin(t) + emax(t)

2
(1)

Step 2: Subtract the average envelope m1(t) from the time series X(t) to obtain a new
data series with low-frequency-removed h1(t), which can be written as:

h1(t) = X(t) −m1(t) (2)

Step 3: Examine the properties of h1(t). If it does not meet the two IMF conditions—the
first condition having the same number of extrema and zero-crossing points, or a difference
of at most 1, and the second being symmetric with respect to the local zero mean—then
take it as the time series to be processed and repeat the above operation. If it meets the two
IMF conditions, consider it as the first IMF, which can be expressed as:

C1(t) = h1(t) (3)

Step 4: Using the remaining time series r1(t) as the new time series, repeat the above
steps to obtain the second, third, . . . , nth IMF, denoted as C1(t), C2(t), . . . , Cn(t), respectively,
where r1(t) = X(t) − C1(t).

By restricting the difference in standard deviation between the outcomes of the two
successive treatments, which is typically between 0.2 and 0.3, the “sieve process” stop
criterion can be reached. When Cn(t) is below a preset value or the residual is a mono-
tonic function and IMF can no longer be filtered out, the entire decomposition process
is terminated.

Finally, the time series X(t) is decomposed into several IMFs Ci(t) and a trend term r(t),
and the IMFs plus the residual equal the original signal.

X(t) = Σn
i=1C1(t) + r(t) (4)

However, when the data are doped with a small-amplitude, high-frequency signal
or a discontinuous signal at a certain moment or a short time interval, the modal aliasing
phenomenon appears in the EMD decomposition. The aliasing phenomenon is essentially
caused by the local extreme value jumping multiple times in a short time interval in the pro-
cess of EMD decomposition. Therefore, an IMF with modal aliasing contains very different
characteristic time scales, or similar characteristic time scales that are distributed in different
IMFs [39]. To solve this problem, Wu and Huang [40] proposed the EEMD technique.

EEMD adds a white noise sequence to the original sequence, decomposes the signal
with different white noise into the corresponding IMF, and takes its overall mean as the
final result [41,42]. When compared with the original EMD method, the added white noise
sequence significantly reduces the likelihood of mode mixing by providing a unified frame
of reference in both time frequency and time scale spaces for signals of comparable scale
to be sorted in one IMF, which then self-cancels (through ensemble averaging) once it has
served its purpose.

EEMD uses the statistical properties of white noise to interfere with the signal in the
area where the real solution lies, forces all solutions to be sought in the EMD screening
process through a binary filter bank, and groups signal components of similar magnitude
into a single IMF so that signals of different scales can be naturally divided into appropriate
IMFs. After accomplishing this purpose, they can be canceled by themselves, and the
average value is regarded as the final real result. EEMD utilizes the zero mean of the
noise/ensemble mean of the nonstationary data to eliminate the noise background, and
it does not perturb the IMF of the data, which is only achievable in a time domain data
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analysis. Therefore, EEMD is a noise-assisted data analysis method that effectively extracts
signals from data. EEMD is a flexible data analysis approach in which, by resolving the
issue of modal mixing, the only persistent part that remains is the composition of the signal,
and it produces IMFs that are real and more physically meaningful. In this paper, EF
over the years is regarded as an original signal, and EF is decomposed using the EEMD
technique to obtain the corresponding IMFs and residual R.

2.2. The Geographical Detectors (GeoDetector)

GeoDetector is a new statistical method proposed by Wang et al. [43]. This method
detects spatial stratified heterogeneity (SSH) and reveals the driving factors behind it
without the assumption of linearity [44]. The detector has four aspects, including factor
detection, interaction detection, risk detection, and ecological detection [45].

The SSH in this article is not the traditional space but the generalized time space.
Consider the annual research area as strata and the cumulative area of each stratum as a
large space; use the q value to measure the SSH of Y and detect the extent to which a certain
factor X explains the SSH of attribute Y (Figure 1). The expression is [46,47]:

q = 1−
ΣL

h=1Nhσ2
h

Nσ2 (5)

SSW = ΣL
h=1Nhσ2

h (6)

SST = Nσ2 (7)

where h = 1,2, . . . , L are the strata of a certain factor x in the study area for 1,2, . . . , L
years; Nh and N are the number of units in layer h and the whole area, respectively; and σ2

h
and σ2 are the variances in the Y values of layer h and the whole area, respectively. SSW
and SST are the sum of the squares within the strata and the total squares of the whole
area. The value range of q is [0, 1]. The larger the value, the more obvious the SSH of Y.
Because the stratification is generated by the independent variable X, the larger the value
of q, the stronger the explanatory power of the independent variable X to the attribute Y
and vice versa.
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This method can be used in different scenarios, such as in testing the degree of
SSH [48–50] or finding the SSH first, and then one can model it hierarchically [51,52]. It can
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also explain factors and create the determinants’ spectrum [53] or create the determinants’
spectrum in regions [54–56], over time [57], or with other dimensions [58].

Also involved in this article is the interaction detection, which identifies the interaction
between different factors, that is, whether two factors increase or decrease the explanatory
power of the dependent variable when they work together [59]. The interaction detection
can also be used as a generalized interaction [60], which is not limited to space. It has
elegant forms and clear physical meanings.

This study investigated the time stratification. On the basis of the EEMD method,
each column of data obtained by decomposition was differentiated, factor detection and
interaction detection were carried out, and the explanatory power of single factor and
interaction factor detection in EF was obtained.

2.3. Data Sources

China’s per capita ecological footprint from 1961 to 2018 was derived from the Global
Footprint Network [61]. In order to eliminate the boundary problem of EEMD to the
greatest extent, the selected years of ecological footprint were extended as much as possible.
However, when using GeoDetector, there was no boundary problem, and considering the
difficulty of acquisition, the data of 15 impact factors were selected for 21 years, which were
obtained from the China Statistical Yearbook 1999–2019 [62] and Our World in Data [63].

3. Results
3.1. EEMD for China’s Ecological Footprint

In the EEMD sieving process, the ratio between the added noise’s standard deviation
and the signal’s standard deviation to be decomposed was 0.2, the average number of times
for the signal was 100, and the number of IMFs are limited to log2N, where N is the number
of years. In the sieving process, IMFs were sequentially extracted from high frequency to
low frequency, which generated four IMFs and one residual (Figure 2).
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The IMFs were analyzed on the basis of the EEMD results, and in order to find the
correlation between each IMF and the residual and original data series, the variance and
percentage of variance of each IMF were obtained separately. The Spearman correlation
coefficient and Kendall rank correlation coefficient were used to measure the correlation
between the IMF and the observed data. The variances can be added together, and the
variance percentages can be utilized to account for each IMF’s contribution to the overall
volatility of the observed data, as these IMFs are independent of one another. However,
due to a combination of rounding errors, the nonlinearity of the original time series, and
the variance introduced by handling the cubic spline end conditions [64], the variances of
the IMF and residuals are not always equal to the sum of the observed variances [65] (there
is a positive difference of 1.764% in Table 1).
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Table 1. Measures of IMFs and the residual for the data from 1961 to 2018.

Mean Period
(Year)

Spearman
Correlation

Kendall
Correlation Variance Variance as %

of Observed
Variance as % of

(ΣIMFs + Residual)

Observed 0.851
IMF1 3.412 0.139 0.084 0.001 0.118% 0.116%
IMF2 7.250 −0.096 −0.033 0.002 0.235% 0.231%
IMF3 19.333 0.388 ** 0.120 0.007 0.823% 0.808%
IMF4 29.000 −0.133 -0.216 * 0.011 1.293% 1.270%

Residual 0.985 ** 0.966 ** 0.845 99.295% 97.575%
Sum 101.764% 100.000%

*: At the 0.05 level (two-tailed), the correlation is significant; **: At the 0.01 level (two-tailed), the correlation
is significant.

Through the Spearman rank correlation analysis of the original data and each obtained
IMF and residual, it can be concluded that the correlation between the original signal and
the residual is extremely high, generally reaching more than 0.9, and the highest Spearman
correlation reaches a positive correlation of 0.985. Moreover, the residual slowly changes
with the long-term per capita ecological footprint. Therefore, it can be regarded as a trend,
representing the evolution of the ecological footprint.

EMD can be seen as a filter that decomposes a time series from a short period to a long
period [66]. For the four IMFs, the centroid-based clustering method and square Euclidean
distance can be used to divide the IMFs into two groups. IMF1 represents the influence of
factors that change in the short term; the latter three IMFs belong to one category, which
is the change caused by long-term factors. In this way, the original ecological footprint is
decomposed into three parts: short period, long period, and trend, which reveal some new
features of the EF.

3.2. GeoDetector Results

First, we selected continuous variables of 15 indicators of economic, social, and en-
vironmental factors. Among them, CO2 emissions were obtained from the data of Our
World in Data, and the remaining 14 indicators were directly obtained or obtained through
simple calculations from the population, health and social services, prices, resources and
environment, science and technology, and national economic accounting sections in the
China Statistical Yearbook. Secondly, a five-level equidistant discrete analysis was carried
out on the indicators to obtain the categorical variables. Finally, the 15 categorical variables
were used as independent variables, and the four IMFs and one residual obtained from
decomposition and the original signal were used as dependent variables, respectively; the
SSH analysis was performed using the GeoDetector tool to obtain the explanatory power
of the factors on the signal, IMFs, and residual (Table 2).

Within the confidence interval, the explanatory power of each indicator to the original
signal was categorized from high to low. The factors were CO2 emissions, urbanization,
R&D spending as a percentage of GDP, population density, average life expectancy, R&D
personnel, GDP per capita, investment in industrial pollution control projects, illiterate
and semi-literate as a percentage of the population aged 15 years and over, number of
environmental emergencies, and dependency ratio. Compared with the original signal, the
interpretable factor of the residual only reduces the dependency ratio, the interpretable
factor of IMF3 reduces the illiterate and semi-literate as a percentage of the population aged
15 years and over factor, and the interpretable factor of IMF4 reduces the dependency ratio,
but increases the doctors per 1000 people. Examining the single-factor analysis, there are
many influencing factors, and it is difficult to attribute results to a single factor.
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Table 2. Factors with q value for the signal, IMFs, and residual.

Factors Signal IMF1 IMF2 IMF3 IMF4 Residual

GDP per capita 0.94 ** 0.08 0.78 ** 0.82 ** 0.96 ** 0.94 **
National Consumer Price Index 0.46 0.07 0.24 0.29 0.43 0.45

Urbanization 0.96 ** 0.06 0.79 ** 0.82 ** 0.97 ** 0.96 **
Average temperature 0.14 0.27 0.38 0.16 0.15 0.17

Number of environmental emergencies 0.83 ** 0.04 0.55 * 0.69 ** 0.82 ** 0.8 **
Investment in industrial pollution control 0.89 ** 0.51 0.6 * 0.78 ** 0.9 ** 0.91 **

Total water resources 0.16 0.12 0.31 0.26 0.16 0.13
Carbon dioxide (CO2) emissions 0.97 ** 0.41 0.21 0.6 * 0.95 ** 0.92 **

Doctors per 1000 people 0.63 0.60 0.59 0.44 0.76 ** 0.78
Average life expectancy 0.95 ** 0.07 0.87 ** 0.81 ** 0.96 ** 0.95 **

R&D personnel 0.94 ** 0.54 0.45 0.86 ** 0.96 ** 0.94 **
R&D spending as % of GDP 0.96 ** 0.05 0.8 ** 0.79 ** 0.97 ** 0.96 **

Illiterate and semi-literate as % the
population aged 15 years and over 0.86 ** 0.05 0.05 0.33 0.87 ** 0.83 **

Dependency ratio 0.62 ** 0.01 0.39 0.87 ** 0.50 0.45
Population density 0.95 ** 0.06 0.75 ** 0.80 ** 0.96 ** 0.96 **

*: At the 0.05 level (two-tailed), the correlation is significant; **: At the 0.01 level (two-tailed), the correlation
is significant.

Among the many explanatory factors, we selected the highest explanatory factor and
highest q value under the interaction and corresponding factors (Table 3). This selection
shows that the dominant factor of the original EF is CO2 emissions, and the highest
explanatory dominant interaction is population density and average temperature. When
decomposed, the dominant factors of the residual are urbanization, R&D spending as a
percentage of GDP, and population density. The dominant factor of IMF4 is urbanization,
and the explanatory factors of R&D spending as a percentage of GDP, population density,
GDP per capita, R&D personnel, average life expectancy, and CO2 emissions are also quite
high. The factor with the highest explanatory value for IMF3 is the dependency ratio, the
factor with the highest explanatory value for IMF2 is average life expectancy, and the factor
with the highest explanatory value for IMF1 is the doctors per 1000 people.

Table 3. Factor or factor interaction with maximum q value.

EF Dominant Factor q Dominant Interaction q

Signal CO2 emissions 0.97 Population density ∩ Average temperature 0.99
IMF1 Doctors per 1000 people 0.60 Doctors per 1000 people ∩ Average temperature 0.93
IMF2 Average life expectancy 0.87 Average life expectancy ∩ Average temperature 0.97
IMF3 Dependency ratio 0.87 Dependency ratio ∩ CO2 emissions 0.98
IMF4 Urbanization 0.97 Population density ∩ Average temperature 0.99

R Urbanization/ R&D spending as %
of GDP/Population density 0.96 CO2 emissions ∩ Average temperature 0.99

For the influencing factors of short-term changes, the dominant factors are easy to
determine; however, there are many long-term influencing factors that cannot be clearly
seen. Nevertheless, the results of the interaction of the two factors show that the explanatory
power can be increased through the interaction of average temperature and CO2 emissions,
and the largest interaction values involve average temperature, except for in IMF3. Under
the interaction between IMF3 and average temperature, the explanatory power of CO2
is the highest, which reaches 0.97. Therefore, under the premise of taking the average
temperature into account in all years, the dominant factors of all IMFs and residuals
are: doctors per 1000 people, average life expectancy, CO2 emissions, and population
density. Consistent with the previous analysis, the short-term dominant factor is doctors
per 1000 people. Average life expectancy, CO2 emissions, and population density are
the long-term dominant factors. The dominant factor of the trend item is CO2 emissions.
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China’s economy has rapidly developed because of the policies of reform and opening.
The average proportion of the secondary industry reached 45% from 1978 to 2015, and
the total energy consumption of the secondary industry accounted for more than 80% of
the total energy consumption. The consumption of fossil energy is the most important
cause of CO2 emissions. Furthermore, the increase in the population of the country will
lead to an increase in CO2 emissions. The change in CO2 emissions affects the change
in ecological footprint for a long period of time, and it has an indelible impact on the
sustainable development of human beings.

Both long-term and short-term influencing factors are inextricably linked with pop-
ulation. The biocapacity gap is typically viewed as the outcome of human wrongdoing
and climate change, which is mostly brought on by unrestrained CO2 atmospheric emis-
sions [67]. The ability of the earth to feed the population is affected by the life activity,
structure, framework, and techniques of production, which are related to various issues.
There is a relationship of mutual influence among the factors. Therefore, this influencing
factor is not only a superficial result, but also has a deeper meaning. This study uncovered
the dominant factors that affect the ecological footprint and provides valuable insights
to sustainable development for controlling the consumption of natural resources and for
making effective policies.

4. Discussion

Studying the indicators that impact ecological footprint could track human demand for
a wide range of natural resources and ecosystem services and expand existing discussions
on sustainability. The people that are responsible for environmental policymaking must
distinguish between short-term and long-term impacts in order to strategically develop
mechanisms through which the ecological footprint can be mitigated in the long term [68].

Climate change will affect the size of each component in the EF, and ecological and
carbon footprints have become key indicators for guiding progress towards reducing
greenhouse gas emissions and climate change [69]. CO2 emissions are a major contributor
to climate change, and there is a long-term relationship between CO2 and EF [70]. It can
be seen that climate and CO2 have a two-way relationship with EF, so CO2 is a trend that
can be found in EF under the interaction of climate and that affects EF for a long time.
This is consistent with the results of this paper. The increase in energy infrastructure can
promote economic growth and meet the needs of economic development, but it poses
huge challenges to land use and global climate change pressure. There is a two-way link
between CO2 emissions and economic growth [71]. Vigorously developing renewable
energy to improve carbon efficiency, optimizing the energy structure, strengthening low-
carbon incentives, and strengthening advanced green energy technologies can be combined
with addressing climate change and achieving sustainable development [72,73]. However,
Sala et al. [74] believe that for terrestrial ecosystems, land use change may have the greatest
impact, followed by climate change, nitrogen deposition, biological exchange, and increased
CO2 concentration.

Energy availability may affect human settlement patterns and species richness, and
there are interactions between this population dynamic and socioeconomic factors [75].
Population size [76–79] is the main driver of EF growth, which is consistent with the point
of view presented in this article. However, Ahmed et al. [80] hold a different point of
view, arguing that increasing population density reduces urban sprawl, promotes scale
effects, improves the environment, and eases ecological footprints. However, the point
of this paper is that the increase in economic activity and energy consumption brought
about by population density will lead to rising pollution levels, thus increasing the EF;
therefore, policymakers need to consider the two-way relationship. Sociodemographic
variables such as life expectancy at birth improve the environment [81], as those with
a longer life expectancy have stronger concerns about the future and therefore invest
more in environmental protection [82]. However, the results of this paper suggest that
life expectancy and population density have a positive effect on EF in the long term.
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Sharma et al. [83] introduced life expectancy and population density as determinants of the
ecological footprint and argued that the impact of life expectancy on ecological footprint is
positive. Kumar et al. [7] argue that these demographic indicators can play a key long-term
role in terms of sustainable growth. These two articles are consistent with the views of
this paper.

This paper also concludes that the number of doctors per thousand people is a short-
term influencing factor of EF. The increase in the number of doctors will improve resource
efficiency but at the same time increase resource consumption. The EF of pediatric health-
care has significantly increased due to the increased use of medical equipment and resources
due to COVID-19, leading to environmental pollution [84]. Additionally, healthcare is one
of the big contributors to the current climate crisis in the context of a health emergency
whose health impacts have been increasing [85,86]. This leads to poverty and lower incomes
through increased healthcare costs, reduced productivity, and increased opportunity costs.
The number of poor people will lead to environmental degradation [87], meaning that the
number of doctors per thousand may have a greater impact on poor countries. On the
other hand, the damage to public health increases the demand for medical services, which
leads to an increase in EF through an increase in resource consumption, which in turn
damages the environment. Healthcare has a sizeable environmental footprint; exacerbates
the climate crisis; pollutes air, soil, and water; destroys biodiversity; and causes ecological
damage [88]. This is consistent with the point of this paper, so management awareness
of using resources in an environmentally sustainable way is also urgently needed in the
healthcare industry. Although the number of doctors per thousand people increases the EF,
it is a short-term impact. Because health professionals are among the most trusted members
of society, they are enablers in reducing society’s EF [89]. The increase in the number
of doctors can allow patients to receive timely treatment, reduce the number of visits to
hospitals, and indirectly reduce the EF of traffic. At the same time, when patients can obtain
treatment in time, social relations are also improved in the long term. For many health pro-
fessionals, knowledge and skills in environmental management help to optimize resource
and waste management, increase resilience to environmental change, and reduce society’s
EF. Prevention is widely recognized as the most effective means of ensuring sustainability
of care from an environmental, social, and economic perspective, but it requires a shift from
a system that is focused on treating disease to one that is dedicated to promoting health [90].
For example, the use of virtual medicine can improve the environmental sustainability
of the health sector by reducing the number of face-to-face visits to specialists to relieve
pressure on the healthcare system [91].

Footprint results should be presented in the context of sustainability analysis, not as
stand-alone figures [92]. The pressure-oriented EF has made an important contribution
in the field of environmental sustainability [93]. The conceptual foundation that the
environmental development framework rests upon is the view of the population’s social
and economic activities as being integral parts of and interacting with the environment
(EnviStats India 2022 Vol. 1: Environment Statistics). The impact of economic activity on the
interaction of social and environmental factors can be good or bad. Economic development
affects ecology. The EKC hypothesis believes that as the economy develops to a certain
extent, the environmental pollution gradually improves [94,95]. Zhao et al. [96] believe
that the Beijing area supports the EKC hypothesis. Beijing’s economic development level is
relatively high, which may have passed the turning point of the EKC hypothesis; that is,
with the increase in per capita GDP, the environmental pressure is gradually decreasing.
However, some studies believe that there is no classic EKC assumption between economic
growth and EF [34].

5. Conclusions

The data of China’s ecological footprint were decomposed into several IMFs with
different frequencies, and the modes were classified based on a clustering method into
three components: short-term influencing factors, long-term influencing factors, and trends.
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Then, the SSH, factor detection, and interaction detection of the original signal, decomposed
IMFs, and residual were carried out, revealing some factors that affect the EF. This not only
makes timely adjustments to the long-term and short-term policies that affect the EF, but
also shows the situation under the influence of interactive factors. In the case of single-
factor detection, there are many original signals and long-term influencing factors, but there
is only one short-term influencing factor, which is the doctors per 1000 people. In the case
of interaction detection, the interaction is strengthened and maximized and the average
temperature is involved. Therefore, it is considered that the result of the interaction is more
scientific than a single-factor detection. Under the interaction of average temperature, the
short-term influencing factor is the doctors per 1000 people, and the long-term influencing
factors are average life expectancy, CO2 emissions, and population density; the trend factor
is CO2 emissions.

Then, the ecological footprint can be interpreted as the interaction of climate; the
impact of the doctors in the population and the short-term fluctuations that the relationship
causes; the interaction of population density, CO2 emissions, and life expectancy; and the
synthesis of the trend in CO2 emissions. In the long run, the EF per capita is essentially
determined by the trend, which is constantly changing and mostly consistent with the trend
in CO2 emissions. The rising EF is closely related to CO2 emissions and climate change.
With the increase in population density, although the economic enhancement leads to the
increase in life expectancy, the ensuing energy demand makes the level of emissions of
CO2 rise rapidly, which pollutes the environment and thus increases the EF. The small
fluctuations in the short term are mainly driven by the increase in medical equipment and
resource consumption due to the increase in the number of doctors per thousand people.
The results of this paper support the sustainable development of economic, social, and
environmental pillars as influencing factors of EF, but there is no direct evidence to prove
that they are the main influencing factors.

By analyzing the composition of the influencing factors of the ecological footprint,
not only can economic activities be carried out on a sustainable road, but more restrictive
policies, ecological competition, and environmental responsibilities can be adopted to
reduce the detrimental impact of human behavior on the environment. Furthermore, by
improving resource efficiency and productivity and by developing advanced technologies,
the development of the ecological footprint can also lead to sustainability and ensure that
the population increase is unrelated to environmental development. As is well-established,
human social behavior is challenging to predict and assess as it is influenced by a wide
range of intricate aspects, such as culture and ethnic diversity. Future directions could
subdivide the influencing factor, which is population. To address these problems, new
approaches or an integrated forecasting framework should be developed. This will serve
as a foundation for goal setting, the identification of potential courses of action, and the
monitoring of progress towards the stated objectives.
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