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Abstract: Total dissolved solid prediction is an important factor which can support the early warning
of water pollution, especially in the areas exposed to a mixture of pollutants. In this study, a new
fuzzy-based intelligent system was developed, due to the uncertainty of the TDS time series data,
by integrating optimization algorithms. Monthly-timescale water quality parameters data from
nearly four decades (1974–2016), recorded over two gaging stations in coastal Iran, were used for
the analysis. For model implementation, the current research aims to model the TDS parameter in a
river system by using relevant biochemical parameters such as Ca, Mg, Na, and HCO3. To produce
more compact networks along with the model’s generalization, a hybrid model which integrates
a fuzzy-based intelligent system with the grasshopper optimization algorithm, NF-GMDH-GOA,
is proposed for the prediction of the monthly TDS, and the prediction results are compared with
five standalone and hybrid machine learning techniques. Results show that the proposed integrated
NF-GMDH-GOA was able to provide an algorithmically informed simulation (NSE = 0.970 for
Rig-Cheshmeh and NSE = 0.94 Soleyman Tangeh) of the dynamics of TDS records comparable to the
artificial neural network, extreme learning machine, adaptive neuro fuzzy inference system, GMDH,
and NF-GMDH-PSO models. According to the results of sensitivity analysis, Sodium in natural
bodies of water with maximum value of error (RMSE = 56.4) had the highest influence on the TDS
prediction for both stations, and Mg with RMSE = 43.251 stood second. The results of the Wilcoxon
signed rank tests also indicated that the model’s prediction means were different, as the p value
calculated for the models was less than the standard significance level (α = 0.05).

Keywords: total dissolved solids; physiochemical parameters; Fuzzy-AI models; Grasshopper
optimization algorithm; coastal region

1. Introduction

The most important uses of water resources are for water supply, irrigation, agriculture,
industrial requirements, and other purposes. The easy accessibility of waste discharge,
and dynamic nature of river systems, lead to their exposure to the adverse effects of
environmental contamination [1]. In recent decades, the improper management of water
resources systems has caused their extensive pollution. ‘Total dissolved solids’ (TDS)
indicates the total amount of inorganic salts or organic matter that has been dissolved
in a water system. In a measurement test of TDS, the sum of the cations and anions
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in the sample is counted, and mainly includes inorganic minerals, various salts, and
organic matter [2]. Aesthetic problems can be found in water systems by increasing TDS
concentration, which may be caused by stains or precipitation [3]. The pollutant load of the
aquatic system is generally due to the amount of TDS concentration. TDS concentration is
considered a prominent factor for determining the water quality index [4]. Therefore, it is
essential to present a precise model for forecasting TDS, since it has important practical and
social values. Similar to biological, chemical, and physical factors for prediction of water
quality parameters (WQPs), non-mechanical computer training models that are strongly
nonlinear are needed for TDS modeling. In this regard, TDS modeling is a complicated
scientific problem.

Nowadays, artificial intelligence models are more extensively employed in modeling
complex systems than physical process-oriented and numerical modeling methods due to
their superiority: this is because their simple model-building procedure leads to reduced
computational time. Recently, artificial intelligence (AI) models such as extreme learning
machine (ELM) [5,6], adaptive neuro fuzzy inference system (ANFIS) [7,8], gene expression
programming (GEP) [9,10], support vector machine (SVM) [11,12], model tree (MT) [13],
artificial neural network (ANN) [14,15], and group method of data handling (GMDH) [16,17]
have been employed for solving a wide range of environmental problems.

The existing body of literature already encompasses several studies of water quality pa-
rameters (WQPs) predicting, based on both standalone AI models and optimization-based
AI models. For instance, ANN, ARIMA, and transfer function-noise techniques were used
by Abudu, King, and Sheng for the monthly TDS modeling of the Rio Grande in El Paso,
Texas [18]. In a similar study, Khaki et al. [19] assessed the potential of the ANFIS and ANN
models for the prediction of TDS in the Langat Basin, Malaysia. Asadollahfardi et al. [20]
and Mustafa [21] investigated the utility of the ANN model in TDS modeling and strength-
ened their study by applying the Box-Jenkins time series and multilayer perceptron (MLP)
models for forecasting TDS in the Zayande Rud River, Iran. Moreover, Pan et al. [22]
studied the performance of an integrated model, principal component regression (PCR),
backpropagation neural networks (BPNN), and dual-step multiple linear regression (MLR)
to estimate the TDS for an aquatic system in Canada. Whilst robust approaches with
high capability have been presented so far, developing a precise modeling framework
has remained a challenging issue in TDS prediction. Sun et al. [23] applied integrated
machine learning to forecast TDS at two stations in Iran. Crow search algorithm was used
to optimize the AI model’s parameters. They finally found that the hybridized model
outperformed other standalone models and an empirical equation in predicting TDS at the
Tajan basin.

Although there are extensive civil engineering problems which were successfully
solved using the abovementioned AI models, most of them used crisp input variables
to model the target variables, and that can be a weakness of their modeling. To address
this weakness, Fuzzy set theory, as an extension of the crisp logic in classic form into a
multivariate form, was introduced by Zadeh [24]. One of the main advantages of this
procedure over the crisp procedure is that it has suitably flexible decision boundaries, and
because of this characteristic, its ability to adjust to a specific domain of application is higher
and accordingly reflects its particularities more accurately [25]. Gradual transitions between
defined sets in crisp sets, in contrast to their fuzzy counterparts, cause the uncertainty
problem. In other words, the mapping of inputs onto targets can be defined as a set of
IF–THEN rules after building a model with a series of overlapping fuzzy sets. Defining
fuzzy sets can be identified from data, or from expert knowledge [26]. In contrast to neural
networks, neuro fuzzy models are prone to a rule explosion, and the number of rules can
be exponentially increased by increasing the number of variables. In this regard, specifying
the entire model from expert knowledge will be difficult [27]. Therefore, defining the model
structure with a rule-based system in fuzzy modeling is one of the main characteristics
of using a fuzzy set. In this sense, several linear models can be collected locally in the
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fuzzy system based on the rule premises, and using interpolation, the final model is
developed [28].

In addition, tuning the AI model parameters is often difficult. As a result, meta-
heuristic algorithms have been widely applied in engineering optimization, parameter
solving, and other areas like data mining model optimization for WQP modeling. Thus,
in recent years, hybrid AI models that are coupled with meta-heuristic algorithms such
as particle swarm optimization (PSO) [29], genetic algorithm (GA) [30], gray wolf opti-
mization (GWO) [31,32], crow search algorithm (CSA) [33], gravitational search algorithm
(GSA) [34,35], and whale optimization algorithm (WOA) [14,36] are preferable compared to
standalone AI models because of their abilities and promising ability to model and predict
hydro-climatology parameters.

Regarding the aforementioned: the aim of this study is developing a Fuzzy integrated
model for prediction of TDS in the Tajan river basin. The three main contributions of this
paper are outlined as follows.

(1) The literature review showed that the application of GMDH integrated with Fuzzy
set theory and grasshopper optimization algorithm (GOA) in WQPs modeling had
not been investigated and evaluated. It is worth mentioning that GOA belongs to the
category of multi-solution-based algorithms (population-based), exploring a larger
portion of the search space compared to single-solution-based ones that modify and
improve a single candidate solution, so the global optimum can probably be found
more easily. Multi-solution-based algorithms like GOA intrinsically have higher local
optima avoidance, due to their improving multiple solutions during optimization.
Also, information about the search space can be exchanged between multiple solutions,
which results in quick movement towards the optimum. In this regard, the feasibility
of Fuzzy-GMDH-GOA in TDS prediction was explored in the present research.

(2) GOA as the standard algorithm is applied to the optimized model’s parameters to
validate the capability and reliability of the Fuzzy-GMDH-GOA model. In addition,
some standalone AI models such as ANN, ELM, ANFIS, and GMDH have been
considered as benchmarks to evaluate the feasibility of the hybrid fuzzy-based AI
model in the prediction of TDS at a monthly scale.

(3) For further assessment, to compare the results of expected and observation event data,
an external validation was performed. Besides, a sensitivity analysis was performed
to identify the most influential parameters linked to TDS variations in the Tajan
river basin.

The structure of the paper is laid out as follows. In Section 2, the functionality of
ANN, ELM, ANFIS, and GMDH as the AI models, and PSO and GOA as the metaheuristic
algorithms, are briefly introduced. In addition, the combination frameworks of the NF-
GMDH-GOA/PSO predictive models are explained, along with study area description.
The prediction performance of those hybrid and standalone models for TDS prediction of
stations in monthly scale is described in Section 3. Section 4 concludes with a summary of
the findings and a discussion of the study limitations.

2. Materials and Methods

In the present research, various AI techniques like ANN, ELM, ANFIS, GMDH, and
hybridized NF-GMDH with HOA/PSO algorithms for modeling of the monthly TDS at two
stations were implemented. In this subsection the development of those standalone and
hybrid AI models is described in detail. In addition, Figure 1 shows the implementation
steps of the workflow of the present research.
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2.1. Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are intelligent models derived from biological
structures in the brain [37]. ANN models are based on how the neural systems in the
human body interact with each other and have a parallel processing architecture. In such
a network, nodes (neurons) are connected with links, and layers are structured as nodes
and links. Each link is given a specific weight, which can be considered a numerical
representation of its strength. The summation value of input weights is transformed into a
target using a transfer function, which is typically a sigmoid function. As an example, y
can be expressed as follows for the second layer j [38]:

ypj = ∑I
i=1 WijOpi + bj (1)

In this equation, Opi represents the ith output for the previous layer, Wij represents the
weights among layers one and two, and bj represents the bias of the node j. A nonlinear
activation function was used to estimate y, and afterward an output function f(y) was
calculated from each node in layers two and three [39].

2.2. Extreme Learning Machine (ELM)

Huang et al. [40] proposed an algorithm, known as Extreme Learning Machine (ELM),
that defines hidden nodes’ weights. Model structure selection and model training could be
done faster using this approach. In addition, the method is easy to implement since it is
relatively simple and straightforward [41]. The i-th output of a network at time t with p
input variables, q hidden nodes, and c targets can be calculated as follows:

oi(t) = mT
i h(t) (2)

In this equation, h(t)ε Rq represents the hidden node vector output related to sug-
gested input pattern X(t)ε Rq by a data set {X(t)}n

t=1 and mi ε Rq, ∀i ε {1, . . . , c}, denotes
weight vector that makes links between hidden nodes and the i-th output node. Consider
Vector h(t) as:

h(t) =
[

f
(

WT
1 X(t) + b1

)
, f
(

WT
2 X(t) + b2

)
, . . . , f

(
WT

q X(t) + bq

) ]T
(3)
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In this equation f (.) represents a sigmoidal activation function, Wl ε Rq represents
the weight vector for the l-th hidden node, and bl indicates the bias for the l-th hidden
node. Weight vectors wl can be calculated from uniform distributions or random sam-
ples from normal distributions. Furthermore, H = [h(1) h(2) . . . h(n)] is a matrix with
a dimension of q× n where the t-th column represents the output vector of the hidden
layer, h(t)ε Rq, D = [d(1) d(2) . . . d(n)] is a matrix with a dimension of c× n where the t-th
column represents the target or desired vector d(t)ε Rc associated with the input pattern
x(t), t = 1, . . . , N, and M = [m(1) m(2) . . . m(c)] is a matrix with a dimension of q× c,
where the i-th column represents the weight vector miε Rq, i = 1, . . . , c. Linear mapping is
related to these matrices:

D = MT H (4)

In this equation, both D and H are known and received from data, while M is deter-
mined by applying the Moore–Penrose pseudo-inverse method, as below.

M =
(

HHT
)−1

HDT (5)

Based on the assumption that the number of output nodes and classes are equal, it
is possible to determine the class index i* related to a new input pattern applying the
following decision rule:

i∗ = arg max
i=1,...,c

{Oi} (6)

where oi is determined by Equation (5) [42,43].

2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is a sub-branch of ANN that combines fuzzy logic principles with neural
networks. The ANFIS model was developed by Jang [44] for solving nonlinear functions,
predicting chaotic time series, and identifying nonlinear components. By applying the
Fuzzy IF–THEN rules of the Takagi–Sugeno fuzzy inference system, ANFIS can build an
input-target mapping. ANFIS is popular with engineers because of its fast learning and
adaptability characteristics, as well as its capability to capture the nonlinear formation of
processes [7,45].

An integral part of ANFIS is the Fuzzy Inference System (FIS). The first layer is fed
with inputs and then membership functions (MFs) return fuzzy values. The rule base
consists of two sets of Fuzzy IF–THEN rules, which are both Sugeno and Takagi types:

Rule 1 : i f x is A1 and y is B1, then f1 = p1x + q1y + r1,
Rule 2 : i f x is A2 and y is B2, then f2 = p2x + q2y + r2,

All nodes in this layer are selected as adaptive nodes by node functions,

O1
i = µAi(s) (7)

where O1
i represents the membership function related to Ai, while Ai represents a linguistic

label. Since Gaussian functions are highly capable of regressing nonlinear datasets, they
are frequently used in ANFIS models. According to Equation (8), a value for a Gaussian
membership type function ranging from zero to one can be obtained:

µ(x) = bell (x; ai, bi, ci) =
1

1 +
[(

x−c1
ai

)]bi
(8)

In this equation, x represents the input and {ai, bi, ci} are considered as the parameters
set. Upon entering the second layer, signals are multiplied, and outputs are sent to the
subsequent layer. In the third or rule layer, the value for the ith node indicates the strength
of the rule in relation to other nodes.
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Defuzzification is the fourth layer that builds functions for each node. Using the
summation of the signals from the previous layer, the last layer calculates the overall
output. In order to compute the errors in a model, a threshold limit is considered between
the output of the model and actual real values during the training process. As a result
of errors greater than the threshold, a gradient descent algorithm is used to update the
premise parameters. This process continues until the parameters with error remain below
the threshold calculated by two algorithms of least squares or gradient descent [38,46,47].

2.4. Group Method of Data Handling (GMDH)

The first GMDH algorithm was developed by Ivakhnenko. The GMDH is organized
in accordance with self-organizing systems. In this model, partial descriptions (PDs) are
generated as quadratic polynomials in each node to select the best values for filtering.
Additionally, the GMDH uses a tree-like structure to solve highly complex problems as
well as to compute the error criteria that should be used as the termination criteria during
the training procedure [48,49].

To find an accurate solution to system identification problems, the function f̂ can
replace the actual function f. As a result, the final output of a complicated system, ŷ, is
predicted near observation y for a given model input considered as X = (x1, x2, . . . , xn).
If there is more than one variable in observations, an output variable can be obtained thus:

yi = f (xi1, xi2, . . . , xin), (i = 1, 2, 3, . . . , M) (9)

Therefore, the GMDH model is capable of predicting the final output, ŷi, given
X = (xi1, xi2, . . . , xin) as input vector. In order to find a correlation between the inputs
and the output, it is possible to consider the following function:

ŷi = f̂ (xi1, xi2, . . . , xin), (i = 1, 2, 3, . . . , M) (10)

In the following equation, the error values resulting from observations and predictions
are determined:

M

∑
i=1

[
f̂ (xi1, xi2, . . . , xin)− yi

]2
→ min (11)

In the GMDH model, independent and dependent relationships are expressed as follows:

y = w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=1

wijxixj +
n

∑
i=1

n

∑
j=1

n

∑
k=1

wijkxixjxk + . . . , (12)

Additionally, Equation (12) is referred to as the Kolmogorov–Gabor polynomial. Un-
like other kinds of polynomials, quadratic polynomials offer a relatively low error, since
their weighting coefficients are calculated by the least squares method. Thus, for each pair
of input variables xi and xj, the calculated error value between predictions, ŷ, and actual
values, y, should be minimized. In addition, a number of nodes in each layer are also
eliminated with the least-squares method by using this function, which calculates quadratic
polynomial performance, Gi. The following is the definition of this function:

E =
∑M

i=1 (yi − G())2

M
→ min (13)

Creating the regression quadratic polynomial takes into account all possibilities
that might exist for two different independent variables. The weighting coefficients
are therefore derived using the least squares method. As a general rule, the number
of nodes in all layers is calculated by C2

n = n(n− 1)/2, where n is the number of in-
puts in the prior layer. However, the PDs can be generated in the first layer for different
pairs of p, q ∈ {1, 2, . . . , n} from observation

{(
yixipxiq

)
; (1, 2, . . . , M)

}
. As a re-
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sult, M triples
{(

yixipxiq
)
; (1, 2, . . . , M)

}
could be built from n observations applying

p, q ∈ {1, 2, . . . , n} as input–output systems. M matrix can be obtained thus [27]:
x1p x1q y1
x2p x2q y2
. . .

xmp xmq ym

 (14)

Here, the set of quadratic polynomials’ weighting coefficients is W = {w0, w1, . . . , w5 }Tr,
and Y = {y1, y2, . . . , yM }Tr is the output vector. Consequently, the mathematical matrix
equation can be defined by AW = Y. As a result, by combining the two inputs, the final
matrix can be expressed as:

1
1
·
1

x1p
x2p
·

xmp

x1q
x2q
·

xmq

x1p · x1q
x2p · x2q
·

xmp · xmq

x2
1p

x2
2p
·

x2
mp

x2
1q

x2
2q
·

x2
mq

 (15)

The coefficients vector of W =
(

ATr A
)−1 ATrY can be obtained by applying the least-

squares method [50,51].

2.5. Particle Swarm Optimization (PSO)

In PSO, which is an evolutionary algorithm, an answer to a problem is iteratively
optimized to find the best solution. To create a new population, PSO shifts the population
positions in every iteration. In addition to affecting individuals’ trajectory, shifting tasks
also have an impact on their neighbors’ trajectory. In the search space, the vector xi
represents the position for a particle. This vector represents a possible particle or solution,
whose dimension is determined by the number of existing parameters. The parameters, xi

0

and vi
0, indicate randomly chosen numbers associated with the position and velocity at

iteration 0, related to particle i, respectively. Afterward, the vectors of particles are updated
according to the fitness function. According to Equations (16) and (17), the vectors are
updated [52,53]:

vk+1
i = ωvk

i +∅1

(
gk − xk

i

)
+∅2

(
Ik
i − xk

i

)
(16)

Xk+1
i = Xk

i + Vk+1
i (17)

Factors affecting velocity include:

• First, the value of velocity from the prior iteration multiplied by the inertia weight
constant, ωvk

i ,
• Second, the difference between the particle’s current position xk

i and the best global
position gk, which is also known as social learning, and

• Third, the difference between the particle’s current position xk
i and the local best

particle’s position up to this point, Ik
i , which is also known as cognitive learning.

The second and third factors are influenced by equations ∅1 = c1r1, ∅2 = c2r2. In
these equations, rx represents a real randomly selected number of a uniformly distributed
function between [0,1], and cx represents a constant value for x = 1,2. The particles cover
the entire search space in the first iteration. With the increase in the number of iterations,
the search space decreases. Therefore, PSO analyzes plausible zones first and ultimately
improves its best solution. Over the years, there have been several versions of PSO in the
literature. In this study, the standard version of PSO proposed in 2011 with the subsequent
parameters was chosen:

ω =
1

2ln2
and c1 = c2 = 0.5 + ln2 (18)



Sustainability 2023, 15, 7016 8 of 23

Swarm topology determines how particles communicate with each other on a global
scale by defining their connectivity and how they exchange information with each other.
Communication between particles usually involves three (k) random particles [30].

2.6. Grasshopper Optimization Algorithm (GOA)

A grasshopper swarm algorithm, developed by Saremi et al. [54], simulates natural
grasshopper swarm behavior and is used in many different engineering fields. Adult
grasshoppers and nymphs (larvae) both engage in swarming behavior. The swarm behavior
of grasshoppers has two key characteristics: first, exploration and exploitation to find food
sources; and second, the movement of grasshoppers, including the slow movement of larvae
and the long, abrupt movements of adults. The search agents tend to move abruptly during
exploration, although their behavior develops local movement during exploitation [55,56].

It is the adults’ responsibility to explore the entire search space and discover suitable
food sources (exploration), while the nymphs work at exploiting a specific region or neigh-
borhood in a particular position (exploitation) [54]. Through this algorithm, exploration
and exploitation phases are smoothly balanced and mathematically incorporated into a
less complex algorithm structure. According to this algorithm, the following steps are
taken [12]:

Step 1: First, for GOA, a population of size Sc is generated by applying Equation (19).

Xkj = Xkj + rand(0, 1).
(

Xkj − Xkj

)
∀k ∈ Sc; ∀j ∈ N (19)

where Sc indicates the population size and N represents the problem’s dimension. Moreover,
lj and uj are the lower and upper limits for the jth variable.

Step 2: Based on the fitness value, the best position can be determined in this step.

f it
(
xj
)
=

1
1 + f

(
xj
) (20)

In this equation f (xj) is the fitness function, which in this article is the Mean Square
Error (MSE).

Step 3: The exploitation and exploration parameters of the GOA are balanced with the
c parameter, which can change over time, depending on the number of iterations (iter). The
c parameter is calculated by:

c = cmax − iter.
cmax − cmin

MI
(21)

In this equation, MI is the maximum value of the cycle number.
Step 4: By applying Equation (22), the new positions can be obtained.

cXd
i = c.

∑Sc

j = 1
j 6= i

c.
Xi − Xi

2
.s
(∣∣Xj − Xi

∣∣). Xj − Xi

dij

+ Td ∀i ∈ N (22)

where s(r) is:
S(r) = f .e(−

r
l ) − e−r (23)

In these equations, f represents the attraction intensity, Td indicates the best discovered
solution, and l represents the attraction length. According to Equation (22), the normalized
distance between the best discovered solution and the real search space position can
be determined. The better position is saved after evaluating the newfound position with
Equation (21). It should be noted that Equation (22) is modified by changing the c parameter,
resulting in later iterations focusing on exploration and earlier iterations focusing on
exploitation. Algorithm accuracy is improved by using this tuning procedure.
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Step 5: In the final step, the algorithm is repeated considering a counter known as the
iteration counter (iter).

Step 6: The optimization is complete when the number of iterations (iter) gets to the
maximum loop number (MI).

2.7. Development of an Adaptive Fuzzy-GMDH Using PSO/GOA

Ivakhnenko created the GMDH neural network, which is a type of self-organizing
model that can perform a variety of processes. An integration of input parameters, based
on the complex theorem of Ivakhnenko, is introduced in the first operation to build PDs or
polynomial neurons [57]. The seeds selection is done in the second operation regarding
error criteria, depending on the filtering process in each layer. Moreover, this is done using
the means of evolutionary computing methods, which, combined with parallel mechanisms,
leads to the enhancement of the optimal NF-GMDH structure. As a matter of significant
importance, NF-GMDH model is flexible enough to be effectively applied as a conjunction
model by other evolutionary and iterative algorithms [27].

A review of the literature showed that the Gaussian membership function, Fkj, has
been extensively used for building neural-Fuzzy systems due to producing more accurate
results in the NF-GMDH model. Indeed, the number (k) of Fuzzy rules is introduced by Fkj
which is applied in the bound of the jth input vector (xj):

Fkj
(
xj
)
= EXP[

(xj − akj)
2

bkj
] (24)

where actual values of bkj and akj indicate the constant coefficients of the Gaussian member-
ship function called the Fuzzy rule. Moreover, output vector, y, is computed as the result of
a neural-Fuzzy network using Equation (25):

y = ∑K
k=1 ukwk (25)

where wk and uk = ∏j Fkj
(
xj
)

are the observed values for kth Fuzzy rules. Each PD or
neuron has mainly one output and two inputs through the NF-GMDH model. As seen in
Figure 2, the input vector in the next layer is the output vector for each PD in the current
layer. The average of outputs in the last layer gives the final output of the NF-GMDH
method. The inputs from the pth layer and the mth neuron in the p− 1 layer are considered
as the output of the m− 1th and mth PDs which create input vector in the pth layer and
mth PD. The mathematical relationship between yp−1, m−1, yp−1,m, and ypm is obtained
from Equation (26):

ypm = f
(

yp−1,m−1, yp−1,m
)
= ∑K

k=1 µ
pm
k .wpm

k (26)

where µ
pm
k is a mathematical expression to compute the kth Gaussian function. Finally, the

NF-GMDH network output is as below:

y =
1
M ∑M

m=1 ypm (27)

The trial–error process computes the weighted coefficients and Gaussian functions [57,58].
In the hybrid NF-GMDH model, associated parameters in partial descriptions act

as a form of Gaussian function. Fuzzy MFs parameters need to be tuned using a back-
propagation algorithm. This conventional trainer has a vital problem wherein this algorithm
cannot find which PD or link desires to be excluded; hence, the network structure has
some needless PDs and links. For tuning and optimization of Fuzzy MFs parameters, as
well as attaining optimal weighting coefficients related to PDs in GMDH over the NF-
GMDH model’s complex topology, an effective and robust algorithm is essential. In the
present study, the GOA algorithm is applied due to its superiority in exploitation and
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exploration for seeking the best solution for complex problems. This novel approach has
the potential to be simultaneously implemented for training network parameters and
structural identification [16,57].
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Adjustable variables in the GOA algorithm can control the best solution to provide
minimum difference from the objective function. Equation (28) is the objective function of
the optimization operation in the NF-GMDH based on GOA:

Eval = ∑N
i=1(y(i)− ŷ(i))2

N
(28)

Table 1 shows the values of the GOA and PSO algorithms’ setting parameters. All
weighting factors are determined after the model optimization. Consequently, NF-GMDH
based on GOA and PSO gives the Gaussian functions.

Table 1. Initial parameter of the proposed algorithms.

Algorithm Parameters Value

PSO

Acceleration constant (C1 and C2) 2
Inertia Wmax 0.9
Inertia Wmin 0.4
Number of particles 50

GOA

Seeking memory pool 5
Counts of dimension to change 0.8
Seeking rang of the selected dimension 0.2
Mutative ratio 0.9

2.8. Case Study Description

The Tajan River basin, as a river in Mazandaran, has a mostly humid or semi-humid
climate. The annual rainfall, average river discharge, and area slope are 539 mm, 20 m3/s,
and 85%, respectively. The difference between minimum and maximum level of the Tajan
basin is approximately 3700 m; 90% of the forest surface is covered by brown soil and the
remainder is covered by widespread types such as alluvial soil [6] Various agricultural,
aquacultural, aquafarming, and industrial activities are implemented in this river basin.
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Moreover, different operations, including damming and sand mining, are done in the river,
which affect the average amount of measured TDS. Due to the high rate of rainfall and
the beginning of agricultural production, TDS monitoring is needed annually in the fall
and winter [23]. In the basin, there are nine active hydrometric gauging stations. For TDS
modeling, data from the Soleyman Tange and Rig-Cheshme stations were collected as
shown in Figure 3.
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The characteristics of the physiochemical parameters of the case study are shown
in Table 2. TDS reached its peaks at two suggested stations based on observations (Rig-
Cheshmeh (1270) and Soleyman-Tangeh (650)). According to Table 1, the standard deviation
of TDS records was distributed over a wide range compared to input variables. Although
there are various parameters which have a significant effect on TDS estimating, monthly
magnesium (Mg), calcium (Ca), bicarbonate (HCO3), and sodium (Na), which are provided
from the Meteorological Organization of Mazandaran Province (MOMP) during March
1984–August 2016 and March 1974–August 2016 at Soleyman-Tangeh (390 monthly data
record) and Rig-Cheshmeh (505 monthly data record) gauging stations, respectively, were
used in the TDS modeling. In this regard, about 75% of the total dataset was used for
training and the rest was set aside for testing the AI’s networks.

Table 2. Monthly averages of statistical indices of the Tajan basin.

Variables Indices Rig-Cheshmeh Soleyman-Tangeh

HCO3 (mg/L)

Min 1.6 1.2

Mean 3.88 1.2

Max 12.2 0.5

Std 0.89 0.08

Variation 0.79 156

Ca (mg/L)

Min 1.1 3.84

Mean 3.16 3.41

Max 7.5 2.07

Std 0.68 0.87

Variation 0.46 408.87
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Table 2. Cont.

Variables Indices Rig-Cheshmeh Soleyman-Tangeh

Mg (mg/L)

Min 0.1 7.7

Mean 2.17 6.3

Max 6 4.5

Std 0.69 2.94

Variation 0.48 650

Na (mg/L)

Min 0.2 0.91

Mean 1.54 0.66

Max 6.5 0.68

Std 0.75 0.42

Variation 0.57 63.1

TDS (mg/L)

Min 271 0.83

Mean 446.49 0.44

Max 1270 0.46

Std 78.7 0.18

Variation 6194.38 3981.8

2.9. Model Performance Criteria

For assessing the model’s robustness, correlation coefficient (R), root mean square
error (RMSE), Nash-Sutcliffe efficiency (NSE), and ratio of RMSE to standard deviation
(RSD) were used,

R =
∑N

i=1
(
Tobs − Tobs

)
.
(
Tpre − Tpre

)√
∑N

i=1 (Tobs − Tobs)
2

∑N
i=1
(
Tpre − Tpre

)2
(29)

RMSE =

√
1
N ∑N

i=1

(
Tpre − Tobs

)2 (30)

NSE = 1− ∑N
i=1
(
Tpre − Tobs

)2

∑N
i=1
(
Tobs − Tobs

)2 (31)

RSD =
RSME

∑N
i=1
(
Tobs − Tobs

) (32)

In the above equations Tobs and Tpre represent the observations and predictions, re-
spectively. Tobs and Tpre are the means of the observations and predictions, respectively.
The R index was used for selecting suitable predictors for predicting the target variable.
In addition, N stands for the total number of datasets. NSE evaluates the model’s output
using a set of (−∞, 1) and an ideal value of unity. As a result, perfect fitting between
observations and predictions has NSE equal to 1, and NSE with a negative value indicates
that the model performs poorly in terms of the arithmetic mean of the models tested. With
a range of (0 to +), RSD and RMSE are calculated, and an ideal value of zero indicates the
model accuracy.

After model optimization, the testing dataset is used for the model validation. Valida-
tion measures are adopted in this study [59]. For the projections based on observations, the
gradients of the regression line through the origin (k), or for the predictions via observations
(k′), at least one needs to be near to 1.

k = ∑n
i=1(Ti × Pi)/P2

i or k′ = ∑n
i=1(Ti × Pi)/T2

i (33)
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Additionally, the coefficient of determination for the regression lines through the
origin m′ and n′ should be less than 0.1.

m′ =
(

R2 − R2
O

)
/R2 and n′ =

(
R2 − R′O

2
)

/R2 (34)

Moreover, the cross-validation coefficient Rm should satisfy:

Rm = R2 ×
(

1−
√∣∣R2 − R2

O

∣∣) > 0.5 (35)

Between the observed and predicted values, the determination coefficients through
the origin R′O

2 and conversely (the estimated and observed values) R2
O are calculated thus:

R2
O = 1−∑n

i=1 P2
i (1− k)2/ ∑n

i=1
(

Pi − P
)2 &

R′O
2 = 1−∑n

i=1 T2
i (1− k′)2/ ∑n

i=1
(
Ti − T

)2 (36)

A sensitivity analysis may be used to assign the effect of input variables on TDS using
the best suited model. In this study, one input variable parameter was eliminated at a
time to assess the impact of that input on output. The following relationships are used to
measure the percentage of sensitivity of each output variable to each input variable:

Ni = fmax(xi)− fmin(xi) (37)

Si =
Ni

∑n
j=1 Nj

× 100 (38)

where fmax(xi) is the maximum and fmin(xi) is the minimum of the predicted output over
the ith input domain, whilst other variables have mean values.

3. Results and Discussion
3.1. Performance Results of Standalone and Hybrid Models
3.1.1. The Case Study of Rig-Cheshmeh Station

Monthly TDS was modeled based on data collected from the Rig-Cheshmeh gauging
station. The performance of proposed techniques for forecasting TDS in calibration and
validation stages is shown in Table 3.

Table 3. Statistical evaluation of proposed models at calibration and validation stages for Rig-
Cheshmeh station.

ANN ELM ANFIS GMDH NF-GMDH-
PSO

NF-GMDH-
GOA

Calibration

R 0.947 0.975 0.973 0.968 0.980 0.986

RMSE (mg/L) 29.991 18.053 22.222 20.784 16.099 13.478

RSD 0.369 0.222 0.273 0.256 0.198 0.166

NSE 0.864 0.951 0.925 0.934 0.961 0.972

Validation

R 0.906 0.935 0.970 0.924 0.962 0.985

RMSE (mg/L) 27.178 22.439 14.975 24.579 20.564 10.744

RSD 0.440 0.363 0.242 0.398 0.333 0.174

NSE 0.805 0.867 0.941 0.840 0.888 0.970
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Evidently, integrated NF, GMDH, and GOA (NF-GMDH-GOA) yielded the best pre-
diction (i.e., largest R, as well as lowest RMSE) in comparison to other models, indicating
integrating proposed approaches can be considered as a robust modeling approach for
non-stationary evaluation and increasing the accuracy of the model for Rig-Cheshmeh
station in calibration and validation stages. The integrated NF-GMDH and GOA algorithm
had the best predictive ability, rather than other hybrid methods, based on the performance
criteria (lowest RMSE = 13.478 mg/L, NSE = 0.972, R = 0.986, and RSD = 0.166). The
NF-GMDH-PSO model with higher errors in terms of RMSE (19.44%) and RSD (1.131%)
ranked next in this study.

The standalone ANN, ELM, ANFIS, and GMDH models and combined approaches
(NF-GMDH-PSO and NF-GMDH-GOA) were employed in the validation stage (Table 3).
The evaluation metrics of the NF-GMDH-GOA model with respect to RMSE (10.744 mg/L)
and NSE (0.970) outperformed other models such as ELM (RMSE = 22.439 mg/L and
NSE = 0.867) and ANN (RMSE = 27.178 mg/L and NSE = 0.805). Additionally, among the
proposed models, ANFIS achieved higher accuracy compared to the other approaches.

The coefficient of determination and the Pearson’s correlation coefficients (R) between
TDS observations and predictions are shown in Figure 4. The scatterplots exhibit the
agreement between predictions and observations. For each sub-panel, the determination
coefficient (R2) and least-squares regression (LSR) were presented.
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As illustrated in Figure 5 for the Rig-Cheshmeh station, NF-GMDH-GOA successfully
predicted the TDS variations; therefore, it is recommended as the best model. Figure 5
demonstrates the error plots of TDS observations via predictions and their time series dur-
ing calibration and validation stages at the Rig-Cheshmeh station. Obviously, NF-GMDH-
GOA was confirmed to be a potential model to model the TDS variations (especially peak
values), while ANN underestimated the peak values, representing the weak performance
ability of this model in TDS predicting in the Tajan river basin in the case study. Moreover,
the minimum variation of errors of TDS measured and estimated by NF-GMDH-GOA was
between−100 and 100. On the other hand, these variations for other alternative approaches
were out of that interval. For example, the error variation of the GMDH model was from
−200 to 300.



Sustainability 2023, 15, 7016 15 of 23

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 23 
 

As illustrated in Figure 5 for the Rig-Cheshmeh station, NF-GMDH-GOA success-
fully predicted the TDS variations; therefore, it is recommended as the best model. Figure 
5 demonstrates the error plots of TDS observations via predictions and their time series 
during calibration and validation stages at the Rig-Cheshmeh station. Obviously, NF-
GMDH-GOA was confirmed to be a potential model to model the TDS variations (espe-
cially peak values), while ANN underestimated the peak values, representing the weak 
performance ability of this model in TDS predicting in the Tajan river basin in the case 
study. Moreover, the minimum variation of errors of TDS measured and estimated by NF-
GMDH-GOA was between −100 and 100. On the other hand, these variations for other 
alternative approaches were out of that interval. For example, the error variation of the 
GMDH model was from −200 to 300. 

 
Figure 5. Error bar plots and time series of estimated vs. observed TDS by proposed techniques at 
the Rig-Cheshmeh station. 

3.1.2. The Case Study of Soleyman-Tangeh Station 
This process was conducted for data obtained from the Soleyman-Tangeh gauging 

station as presented in Table 4. Results showed that the integrated model (NF-GMDH-
GOA) significantly improved the performance of all metrics (R, RMSE, NSE, and RSD). 
Therefore, NF-GMDH-GOA was superior to other models with the lowest error (RMSE = 
14.376 mg/L and RSD = 0.228) and highest predictive power (NSE = 0.948, and R = 0.974). 
Conversely, ANN performed poorly, with significant difference in RMSE (40.295 mg/L) 
and NSE (0.589) compared to ANFIS (RMSE = 22.807 mg/L and NSE = 0.868) and GMDH 
(RMSE = 19.938 mg/L and NSE = 0.899), and showed insufficient performance for the WQP 
modeling in the calibration stage. 

  

Figure 5. Error bar plots and time series of estimated vs. observed TDS by proposed techniques at
the Rig-Cheshmeh station.

3.1.2. The Case Study of Soleyman-Tangeh Station

This process was conducted for data obtained from the Soleyman-Tangeh gauging sta-
tion as presented in Table 4. Results showed that the integrated model (NF-GMDH-GOA)
significantly improved the performance of all metrics (R, RMSE, NSE, and RSD). Therefore,
NF-GMDH-GOA was superior to other models with the lowest error (RMSE = 14.376 mg/L
and RSD = 0.228) and highest predictive power (NSE = 0.948, and R = 0.974). Con-
versely, ANN performed poorly, with significant difference in RMSE (40.295 mg/L) and
NSE (0.589) compared to ANFIS (RMSE = 22.807 mg/L and NSE = 0.868) and GMDH
(RMSE = 19.938 mg/L and NSE = 0.899), and showed insufficient performance for the
WQP modeling in the calibration stage.

Table 4. Statistical evaluation of proposed models at calibration and validation stages for Soleyman-
Tangeh station.

ANN ELM ANFIS GMDH NF-GMDH-
PSO

NF-GMDH-
GOA

Calibration

R 0.891 0.950 0.932 0.948 0.948 0.973

RMSE (mg/L) 40.295 19.538 22.807 19.938 20.107 14.376

RSD 0.640 0.310 0.362 0.317 0.320 0.228

NSE 0.589 0.903 0.868 0.899 0.898 0.948

Validation

R 0.817 0.905 0.781 0.892 0.975 0.989

RMSE (mg/L) 27.823 19.378 35.364 22.254 10.113 9.687

RSD 0.655 0.456 0.833 0.524 0.238 0.223

NSE 0.567 0.790 0.300 0.723 0.942 0.948
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At the validation stage, evaluation metrics proved that NF-GMDH-GOA had the
highest potential to model TDS compared to other modeling approaches. The computed
value of NSE rose from 0.723 to 0.948 for the GMDH model. Similarly, the RSD and RMSE
decreased by 0.223 and 9.687 mg/L, respectively.

Moreover, the scatter plots of TDS observations, via predictions and observations, are
presented in Figure 6 for the Soleyman-Tangeh station. The obtained slope lines of the TDS
values for NF-GMDH-GOA model were near to the best-fitting line; however, some TDS
values were underestimated. The ANN and ANFIS models could not estimate the WQP
parameter more precisely than the other models, and this indicates the poor performance
of these models for TDS modeling.
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validation stage.

At the Soleyman-Tangeh station, the feasibility results of the proposed NF-GMDH-
GOA showed the highest accuracy regarding general tendency and ability in prediction
of the TDS peaks (Figure 7). In addition, ANN and ANFIS had poor performance for
the TDS modeling, demonstrating that these models were incapable of predicting TDS
variations. Therefore, integrated AI methods had more ability than standalone models in
TDS prediction. In terms of error plot: it can be concluded that the minimum interval (−100
to 100) and maximum interval (−200 to 200) of variation error were obtained by the ANN
and NF-GMDH-GOA techniques, which illustrated the high capability of the integrated
model (NF-GMDH-GOA) in TDS forecasting.
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3.2. Further Analysis and Discussion

The external validation associated with the proposed artificial intelligence models
by the relevant criteria is summarized in Table 5. As presented in Table 5, NF-GMDH-
GOA’s performance was compromisingly satisfied with K = 1.002 and Rm = 0.804 at the
Rig-Cheshmeh station, and achieved the best results in selecting the most accurate model
in comparison with other models. However, although the values of n, m, K, and K′ of the
ANN model were in agreement with the required conditions, the criterion of the Rm value
(Rm = 0.487) was obtained as marginally less than 0.5 and subsequently the condition was
not met. In terms of Rm and R-values, ANFIS was able to capture TDS variations with an
acceptable level of validated criteria, rather than ELM and GMDH.

Table 5. External validation statistical measures for forecasting TDS using AI models.

Metrics ANN ELM ANFIS GMDH NF-GMDH-PSO NF-GMDG-GOA

Rig-Cheshmeh station
R (R > 0.8) 0.906 0.935 0.97 0.924 0.962 0.985
K (0.85 < K < 1.15) 1.017 1.001 0.997 1.003 0.975 1.002
K′ (0.85 < K′ < 1.15) 0.979 0.996 1.001 0.994 1.024 0.998
m (m < 0.1) −0.202 −0.143 −0.062 −0.171 −0.047 −0.03
n (n < 0.1) −0.185 −0.142 −0.062 −0.17 −0.042 −0.03
Rm (Rm > 0.5) 0.48 0.565 0.714 0.527 0.732 0.804
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Table 5. Cont.

Metrics ANN ELM ANFIS GMDH NF-GMDH-PSO NF-GMDG-GOA

Soleyman-Tangeh station
R (R > 0.8) 0.817 0.905 0.781 0.892 0.975 0.989
K (0.85 < K < 1.15) 0.965 0.987 0.943 1.026 1.004 1.022
K′ (0.85 < K′ < 1.15) 1.031 0.101 0.055 0.972 0.996 0.979
m (m < 0.1) −0.36 −0.206 −0.226 −0.191 −0.051 0.013
n (n < 0.1) −0.301 −0.212 −0.211 −0.116 −0.051 0.015
Rm (Rm > 0.5) 0.341 0.483 0.384 0.485 0.741 0.866

In addition, Table 5 indicated that integrated NF-GMDH with the GOA algorithm
could provide more accurate values for TDS for the Soleyman-Tangeh station, on the
basis of criteria values, when compared with PSO. According to the outcomes of external
validation, the m and n values given by NF-GMDH-GOA were fixed at 0.013 and 0.015, for
NF-GMDH-PSO both m and n were obtained as −0.051, and the other alternative models
such as ELM and GMDH were not able to produce TDS predictions with acceptable Rm as
external validation criteria. Table 5 presents criteria of Rm for the proposed ANN, ELM,
ANFIS, and GMDH approaches, which were 0.341, 0.483, 0.384, and 0.485, respectively.
In general, statistical indices have shown the high performance of the NF-GMDH-GOA
model in TDS estimation.

Moreover, a sensitivity analysis approach was employed to define the independent
variables which have the highest influence on the dependent variables. Similar to the quan-
titative comparisons, NF-GMDH-GOA model had the highest accuracy for TDS modeling.
Hence, four input variables, namely HCO3, Ca, Mg, and Na, have been considered whose
output was WQP, predicted by NF-GMDH-GOA with the highest accuracy.

The primary model was built using all input parameters and then, one of the param-
eters was removed, and modeling performance was determined to evaluate the effect of
each parameter on targets. To study the relationship between input variables and TDS,
statistical criteria including R, RMSE, RSD, and NSE parameters were applied. The results
of error benchmarks have been summarized in Figure 8. The results demonstrate that
among the independent variables, Na with maximum value of error (RMSE = 56.4 mg/L &
NSE = 0.752) was the most significant parameter in the TDS modeling. Conceivably, Mg
with RMSE = 43.251 mg/L and RSD = 0.668 stood second.

As seen in Figure 8, error criteria showed that Na with the lowest value of accuracy
(R = 0.426) had the highest influence on the TDS estimation for the Rig-Cheshmeh station.
By removing Na from the model, other criteria included RMSE, RSD, and NSE for TDS
modeling, which were 56.404 mg/L, 0.752, and 0.421, respectively. Similar to what was
found in the Rig-Cheshmeh station, Na with R (0.458) and RMSE (51.254 mg/L) was the
most important parameter in TDS prediction for the Soleyman-Tangeh station. According
to the sensitivity result, the main factor which may have contributed to the large amount of
Na is the land use in, and land cover of, the area. In the downstream part of the region,
which covers the agricultural sectors, due to the use of chemical fertilizers, the amount of
Mg in this region essentially contributes to TDS. In general, contributors for the Na and Mg
that cause water quality pollution in this region are the use of rivers to transport urban and
industrial wastewater and the drainage of agricultural and horticultural fields.

To compare the difference between two models’ means, Table 6 tabulates the Wilcoxon
signed-rank test results as the nonparametric statistical hypothesis test at a significance
level equal to 0.05 on the standalone and hybrid TDS predictive models. As a result, the Z
value for those six AI models was greater than the critical Z. The P value calculated for the
models should be less than 0.05 which shows the standard significance level. According
to the results, the null hypothesis is rejected and the performance of the AI models in the
prediction of monthly TDS is significantly different.
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Table 6. Results of Wilcoxon signed-rank test between the proposed integrative NF-GMDH-GOA
and other models.

Number Pairwise Comparison Z p (<0.05) Significance

1 NF-GMDH-GOA vs. ANN −4.496 0.003 Yes

2 NF-GMDH-GOA vs. ELM −5.621 0.001 Yes

3 NF-GMDH-GOA vs. ANFIS −7.255 0.001 Yes

4 NF-GMDH-GOA vs. GMDH −7.158 0.002 Yes

5 NF-GMDH-GOA vs.
NF-GMDH-PSO −8.157 0.001 Yes

4. Concluding Remarks

In this study, the capability of the neuro-fuzzy group method of data handling systems-
based grasshopper optimization algorithm (NF-GMDH-GOA) was studied in forecasting
monthly TDS at the Soleyman-Tangeh and Rig-Cheshmeh stations located in the Tajan
River basin, Iran. The most significant parameters of water quality, such as Ca, Mg,
Na, and HCO3, were included in the model. Comparing the results of the hybrid and
standalone models showed that the grasshopper optimization algorithm has a major effect
on the performance of NF-GMDH. At the Soleyman-Tangeh station, NF-GMDH-GOA
could predict TDS with more accuracy in terms of NSE (0.948), RSD (0.223) and RMSE
(9.687 mg/L) in comparison to other models at the validation stage. The accuracy of
GMDH and NF-GMDH-GOA revealed that the coefficient of determination was raised
from 0.892 to 0.989 for the Soleyman-Tangeh gauging station. For the Rig-Cheshmeh
station, the outcomes showed that NF-GMDH-GOA showed the best performance in
forecasting TDS in terms of RSD (0.174) and RMSE (10.744 mg/L). Furthermore, sensitivity
analysis was utilized to determine the most significant parameters on the TDS modeling
and fairy justification of the relative effectiveness of independent variables. The results of
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the sensitivity analysis demonstrated that Na was the effective factor on TDS values at two
proposed stations.

In the same scale of the input/output parameters used in this study, as well as water-
shed physical characteristics, the presented methodology is recommended for optimization-
based methods for different TDS assessments to study the generalization of the AI ap-
proaches. However, this kind of evaluation imposes a negative computational burden, and
can be useful for large and complicated river systems modeling; dynamic and/or nonlinear
AI programming, depending on the modeling approach, can be employed to seek the
contributors to the TDS in the river system. Moreover, the presented methodology may
help in providing the size of the training dataset to build an optimum approach to model
water quality parameters. It could be better to train and validate the model’s capability with
smaller scales of hydrological datasets, such as daily water quality parameters; this was
the main limitation of the current study. Regarding influential input parameters: it should
be noted that the findings of the current study are only based on the available dataset
that could be collected from the relevant organizations. Based on the above-mentioned
explanations, the area is potentially contaminated by various cations and anions from
agricultural, aquacultural, aquafarming, industrial, and other activities like damming and
sand mining, and there is a high potential for other major components of TDS, such as
chloride, sulfates and potassium, to get into the river. Another limitation of the current
study is related to the length of the prediction: it was not possible to provide a long-term
prediction of TDS due to the accumulation of errors, and this reduced the accuracy of
the prediction.

The scale of the training dataset has a high impact on the prediction accuracy for AI
models. The prediction is improved by increasing the size of the training dataset, and this
enables the model to predict TDS variations over time. The future of TDS modeling using
soft computing techniques seems remarkable and bright with upgrading AI techniques,
which provide novel and more intelligent algorithms. In addition, TDS prediction depends
on the appropriate selection of water quality parameters. In this regard, it is suggested
to use feature selection methods such as pointwise mutual information, mutual informa-
tion, relief-based algorithms, and minimum-redundancy-maximum-relevance in order to
improve the model’s capability.
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