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Abstract: Blade Element Momentum Theory (BEMT) is the most used method to design horizontal-
axis wind turbines worldwide. This is because BEMT has a low computational cost and easy
numerical implementation. Additionally, it is demonstrated in the literature that the prediction of
output power using BEMT agrees well with experimental data. Another important feature of the
BEMT is its applicability to small, medium, and large-sized turbines. However, BEMT models are
usually implemented and adjusted for a specific power range turbine, and they are not applied
in a more general form. Thus, this article presents an analysis of additional correction methods
for tip and root losses, high values of the axial induction factor, and high angle of attack to better
represent horizontal-axis turbines in terms of numerical stability. The approach has the intention of
combining several complementary correction methods strategically inserted in the BEMT in order
to compile an algorithm that is more general, stable, and workable for any turbine size. The main
contribution of this work is to propose a stable BEMT numerical algorithm through the assessment
of the combination of the correction methods available in the literature, i.e., classical and modern
ones. The algorithm ensures applicability for small, medium, and large-sized wind turbines, as
well as being fast and easy to implement in any computer and extendable even to turbines with
a diffuser. This approach is validated by comparing the results with experimental data from four
turbines of different power ranges (1.9 kW to 7.3 MW). The results show the best approximations
for performance power curves against the measured values of all turbines. Moreover, it is effective,
less complex, and quick in analyzing the performance of those turbines. Furthermore, the need for
high-performance computers to analyze the performance of horizontal-axis turbines is avoided.

Keywords: wind turbine; turbine performance; energy conversion; wind energy

1. Introduction

Wind energy, both onshore and offshore, grows at a high rate driven by global decar-
bonization policies [1]. This has accelerated the evolution of turbines [2] and the need for
additional research and development to meet market pressure [3,4]. In general, Compu-
tational Fluid Dynamic (CFD) simulations are commonly used in wind turbine modeling
of high precision, mainly in the prospecting of power and energy density [5]. However,
some barriers arise when working with CFD techniques, such as the high investment in
computational machines, the high computational burden, and the high level of difficulty in
parameterizing and creating the shapes of the models. Due to these barriers, integral meth-
ods such as BEMT have been researched with the intention of working with less complex
and fast-resolution simulations compared to CFD. The BEMT is an integral method capable
of accurately predicting wind turbine performance [6,7].

Despite the fact that the classical BEMT is consolidated, considering the correction
methods of Prandtl and Glauert [8], more is needed to analyze and predict the performance
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of turbines in some specific conditions. In situations where the angle of attack oversteps
the stall, the BEMT has considerable errors in the calculation of the thrust and torque forces
along the blades [8]. Therefore, mathematical correction models are needed and must be
capable of equating the performance of the turbines in these situations.

Some of these mathematical models can be found in the state of the art presented in [9],
in which the aerodynamic performance of real onshore wind turbines is evaluated and
discussed. The analysis presented in [9], unlike the one proposed in this article, considered
ideal flow conditions for wind turbine research. Even so, the state of the art presented and
discussed in that article, and the model used to predict output power generation, contribute
to studies of turbine performance prediction. The work described in [10] predicted wind
turbine power generation using a forecasting method. Machine learning-based modeling is
proposed to predict the wind turbine power output. The methodology applied in [10] is
based on the measurement of physical variables such as wind speed and shaft rotational
speed. This approach is interesting to analyze the performance of turbines from data
acquisition, from a database, or in a real dynamic way since the mathematical model
of the turbine power train is not necessary. In [11], diffuser-augmented wind turbine
technologies are investigated according to developments in the literature. The effect of the
diffuser on power generation is ascertained based on experimental and numerical studies.
Improvements in performance have been noticed among the reviewed studies.

Several methods derived from the BEMT are proposed for the performance analy-
sis of wind turbines [12–14]. In these methods, the authors implemented functions for
complementary corrections focusing on the calculations of at least one of the following
approaches: tip losses, high values of the axial induction factor, and high values of angle
of attack in post-stall conditions. Some of these authors generally take into account only
one of these complementary correction functions. They used the study of a single turbine
as validation [15], which can restrict the application, especially when empirical methods
are proposed. Similar to [16,17], the work in [18] presents research that addresses the
direct calculation of tip loss, which can be solved in three different ways. Two of them
are more accurate than the Prandtl method and have simple and faster implementation.
They are appropriate and good for the blade element calculation of turbine performance
but only address one type of correction method of BEMT. In [19], a study on different
correction methods is performed, but the analyses are limited to a single 100 kW turbine.
Therefore, these methods are not tested for different turbine sizes regardless of the nominal
output power range. According to [20], small turbines differ significantly from medium
and large ones in rotor design and manufacture. The main challenges for small ones are
low operational Reynolds number (Re), as small rotors usually operate at low wind speed,
and the structural requirements of more rapidly rotating turbines. Moreover, most small
turbines use “free yaw” whereby a tail fin, rather than an automatized yaw drive as on
larger rotors, is used to align the turbine with the wind direction. It is worth noting that this
work does not cover yaw behavior and associated issues of tail fin design and aerodynamic
over-speed protection.

In this article, a study of a single, simple, and quick approach to estimating the
power performance of any size turbine is employed. A comparative analysis of the
simulated results with experimental data from real turbines is performed to validate
the implemented approach. Table 1 shows the data of small, medium, and large-sized
turbines simulated. These data are obtained from published works in technical reports.
The turbines correspond to one of 1.9 kW [20] and four others of NASA MOD-X series
turbines that are: 100 kW [21–23], 2.5 MW [24–26], and 7.3 MW [27–29]. For the small
turbine of 1.9 kW, a two-bladed and 3 m diameter turbine tested by Anderson et al. [30]
is used. Lift and drag coefficients for the airfoil NACA4412 for a Reynolds number
range 42, 000 ≤ Re ≤ 640, 000 is considered in the simulations. For the medium turbine
of 100 kW, a two-bladed 38 m diameter rotor is employed. Lift and drag coefficients
for the airfoil NACA23012 for a Reynolds number range 50, 000 ≤ Re ≤ 9, 000, 000
is taken into account. For the large turbine of 2.5 MW, a two-bladed 91.44 m di-
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ameter turbine is used. Lift and drag coefficients for the airfoil NACA23012 for a
Reynolds number range 50, 000 ≤ Re ≤ 9, 000, 000 is applied. For the large turbine of
7.3 MW, a two-bladed 121.92 m diameter turbine is used. Lift and drag coefficients
for the airfoil NACA64015 for a Reynolds number range 50, 000 ≤ Re ≤ 9, 000, 000 is
considered in the simulations. Unfortunately, airfoil data from experimental studies
in wind tunnels are not easily available in the literature, even more when these data
are desired for different Reynold numbers [31]. Based on this context, the airfoil data
for the NASA turbines are obtained from [32], so they could be simulated. Except for
the small turbine, each of the others uses the same class of airfoils along the blade.
Where the airfoil thickness increases from the tip to the hub blade. The blade root area
provides mechanical resistance to support the distribution of forces along the rotor.

Table 1. Data of small, medium, and large-sized turbines simulated.

Turbine Airfoil Series * Blades Diameter (m) Power

Small-sized NACA4412 2 3 1.9 kW
NASA MOD-0 NACA23012 2 38 m 100 kW
NASA MOD-2 NACA23012 2 91.44 m 2.5 MW

NASA MOD-5A NACA64015 2 121.92 m 7.3 MW
* Turbine blades are constructed with a group of airfoils that have different thicknesses.

Approaches based on BEMT are easy to implement, with low computational burden
and good accuracy in calculating turbine performance [7]. They can be implemented
and executed in largely available software. Additionally, they can run on the Simulink
Platform and integrate power system simulations that can be solved in a few minutes.
CFD simulation methods use numerical techniques to solve problems related to fluid
dynamics [33]. These methods are based on the discretization of a domain with so many
degrees of freedom from a finite system, using different mathematical equations [34]. Finite
Volume Methods, for example, are based on the discretization of the differential form of
the governing equations (continuity equations) and work by approximating the derivative
through expansions of mathematical series [35]. CFD software is indeed a great tool to
analyze wind turbine performance, [34,36]. However, they can take hours, days, or even
weeks to obtain a result.

In this context, the proposed study is developed from the classical BEMT with the
addition of complementary corrections for tip and root losses, for high values of the axial
induction factor, and for high angle of attack to better represent the performance of the
turbines. The research is based on a study of the mathematical model involved in the BEMT.
The complementary correction methods were exhaustively researched in the literature.
The corrections are included in the BEMT in order to analyze the best performance for
simulating small, medium, and large turbines. The results combine three kinds of correction,
and the best ones are presented and discussed. The main contribution of the work is to
propose a stable BEMT numerical algorithm through the assessment of the combination
of the correction methods available in the literature, classical, and modern ones. The
algorithm ensures applicability for small, medium, and large-sized wind turbines, as well
as being fast and easy to implement in any computer and simpler than CFD, which is
usually time-consuming and complex to operate [37]. Another important characteristic of
the proposed algorithm is the extensibility of turbines with diffusers, which can be achieved
through the inclusion of the direct calculation of tip loss as described by Wood et al. [18].

The remainder of this article is organized as follows. In Section 2, the summarized
modeling of the classical BEMT method and the justification for the need for complementary
correction methods are presented. It also discusses the types of complementary corrections,
for which different methods proposed in the literature are shown. In addition, the modified
and implemented BEMT method to perform the wind turbine simulations is presented in a
flowchart form. Section 3 presents the results, discussing the accuracy obtained from the
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simulations of the implemented BEMT algorithm. Finally, Section 4 states the conclusions
about the approach that best calculates turbine performance, regardless of the power range.

2. Description of Methods

Simple mathematical modeling based on Betz’s research can be used to determine
the output power of an ideal turbine rotor. This modeling is based on a linear momentum
theory. The analysis of this theory considers a control volume whose boundaries are the
surface of a stream tube and two cross-sections of the stream tube. A uniform actuator disc
represents the wind turbine and creates a discontinuity of pressure through it [38]. This
analysis considers (i) steady-state fluid flow; (ii) homogenous and incompressible fluid;
(iii) insignificant frictional drag (can be approximated to zero); (iv) infinite number of
blades; (v) uniform thrust over the disc or rotor area; (vi) non–rotating wake; (vii) the static
pressure far upstream and far downstream of the rotor is equal to the undisturbed; and
(viii) ambient static pressure. Furthermore, this model is not valid for an axial induction
factor higher than 0.4, as it complicates the flow patterns, not representing the thrust coeffi-
cient, which can be higher than 2.0 [8,38]. Therefore, these high values of the axial induction
factor are corrected through complementary correction methods that are presented and
discussed in the following sections.

In the case of a wind turbine, the flow behind the rotor rotates in the opposite direction
to the shaft in reaction to the torque exerted by the flow on the rotor blades. The generation
of rotational kinetic energy in the wake results in less energy extraction by the turbine than
would be expected without wake rotation. If the wake rotation becomes high, extra suction
will be created behind the turbine since a radial pressure gradient is needed to maintain
the curved streamlines. Then, the pressure becomes lower as the radial distance becomes
smaller. This lower pressure at the center behind the disc creates an extra mass flow through
the disc, which needs to be accounted for when using the momentum equation, where the
pressure is assumed constant [8].

2.1. Effects Related to Loss of Performance

Three conditions lead to a decrease in turbine efficiency and should be considered in
the analysis [8,39]: (i) the finite number of blades and related tip losses [40]; (ii) rotation
of the wake in the region behind the rotor; and (iii) aerodynamic drag. Whenever the
wake rotation is accounted for in the analysis, the induced velocity at the rotor consists of
the axial component and of the component in the rotor plane. As a result, (i) the power
coefficient curve increases exponentially from zero to the maximum theoretical limit, 0.59,
as a function of the increase in tip speed ratio; (ii) the axial induction factor increases
exponentially from an initial value to the maximum theoretical limit, 1/3, along the rotor
radius from the hub; and (iii) the rotation induction factor decreases exponentially from an
initial high value to the minimum along the rotor radius from the hub.

Concerning wake rotation, typical for BEMT analysis, any velocity in the radial direc-
tion is ignored, and only rotational velocity is included. In this work, the same condition
is considered, and no attempt is made to include radial effects of the wake rotation in
the blade element calculations. Additionally, it is important to emphasize that for airfoil
behavior the flow along the radius of the rotor can remain at angles of attack of the stall
region. In the literature, it is still not clear what causes the stall. Possibly, the stall can be
influenced by Coriolis and centrifugal forces, as pointed out by [20,41]. According to [20],
stall supposedly depends on a parameter that does not measure the centrifugal and Coriolis
forces because it does not contain the turbine’s rotational speed. It mostly occurs near
the hub, so it is probable that solidity, which is typically higher near the hub and delays
separation, is at least in part responsible. In other words, the cascade effect is relevant to
account for the stall, especially for multibladed turbines. It is important to highlight that
the stall does not significantly influence turbines with optimized performance. In this work,
the stall phenomenon is corrected using the model presented by Viterna and Corrigan [42],
as detailed later.
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2.2. Blade Element Momentum Theory

The BEMT method and its derivations are discussed in this work. The main approach
is the combination of two theories: (i) the axial momentum, and (ii) the blade element. In
these analyses, a free, unidirectional, and incompressible flow is considered to derivate
mathematical equations [41,42]. This method analyzes the transformation of kinetic energy
transported by the fluid into mechanical energy through the axis of the turbine due to the
interactions of the fluid with the rotor blades. It is an integrative model, calculated by
semi-empirical data of aerodynamic forces that act on the blade based on sections of airfoils.
These forces are calculated using the lift and drag coefficients, which can be acquired from
a two-dimensional flow model or from experimental data.

Combining these unidimensional and two-dimensional procedures is based on equa-
tions of thrust and torque forces from each theory [41,42]. According to the axial moment
theory, the elemental thrust (defined in this theory as dT) and elemental torque (dQunid)
equations are presented in Equations (1) and (2), respectively.

dT = 4ρU2
∞a(1− a)πrdr (1)

dQunid = 4ρU∞Ωa′(1− a)πr3dr (2)

where U∞ is the velocity of the free upstream fluid, ρ is the density of the fluid, r is the
local radius of the ideal turbine, Ω is the rotational speed of the rotor, a is the axil induction
factor, and a′ is the rotational induction factor.

With respect to the blade element theory, the elemental thrust (defined in this theory as
dFN) and elemental torque (dQbid) are expressed in Equations (3) and (4), respectively [41,42].

dFN = σ′π

[
ρ

(
U∞(1− a)

sin(ϕ)

)2
Cnrdr

]
(3)

dQbid = σ′π

[
ρ

(
U∞(1− a)

sin(ϕ)

)2
Ctr2dr

]
(4)

where σ′ is the local solidity, ϕ is the flow angle formed between the plane of rotation and
the flow relative velocity, Cn and Ct are the coefficients of normal and tangential forces,
respectively.

The elemental mechanical output power (dPmec) and the power coefficient (Cp) can be
calculated using Equations (5) and (6), respectively. The mechanical power output (Pmec)
can be calculated by integrating Equation (5) as a function of the radial position [41,42].

dPmec = Ωσ′π

[
ρ

(
U∞(1− a)

sin(ϕ)

)2
Ctr2dr

]
(5)

Cp =

∫ R
0 dPmec

1
2 ρU3

∞πR2
(6)

where R is the tip radius of the rotor.
Figure 1 illustrates the combination of these two theories, from which the classical

BEMT is built. The specifications of this method can be checked in [19]. Additionally, the
necessary types of corrections to complement this theory are shown, so that the simulation
results can reach satisfactory outcomes for wind turbines. The following sections will
present and review these corrections proposed in the literature.
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2.3. Description of Complementary Methods to Classical BEMT

Although the BEMT is consolidated, the derivation of thrust, torque, and power equa-
tions do not correctly express turbine performance. Therefore, complementary corrections
are needed.

2.3.1. Tip and Hub Losses

Classical BEMT does not consider tip and hub losses, but they are important for
analyzing the turbine’s performance since they directly interfere with torque calculation.
The classic approach assumes that there is an appropriate number of blades for all fluid
particles passing through the rotor to interact with the blades. However, with a minor
number of blades (modern turbines are built with three blades), some particles of the
fluid will interact with them. However, most will pass between the blades and the loss of
momentum by a particle will depend on its nearness to a blade [41]. The tip loss on the
blade is a consequence of the influence of the vortices that arise along the blade, which
reduces the circulation, and consequently, the aerodynamic efficiency. The axial induced
velocity will, therefore, vary around the blade. This directly influences the torque to which
the blade is submitted. In practical terms, the loss factor is always less than unity impacting
around 5 to 10% in predictive calculations of the power performance curve [20].

The extension of the BEMT, to take into account a finite number of blades, usually
needs a tip loss factor (F). Okulov et al. [43] extended the Betz limit to a finite number of
blades using the Prandtl method [44]. Therefore, the F of Prandtl is defined as the ratio
between the actual limited circulation and that of a rotor with an infinite number of blades.

The blade element calculations made with the Prandtl model show good accuracy
with the experimental data [45,46] for a high tip speed ratio. Wood et al. [18] showed
that blade element calculation is imprecise for a very low tip speed ratio (smaller than 1).
Nevertheless, all simulations in this article are performed for tip speed ratio superior unity.

In general, the mathematical models for correcting losses along the blade consider
only the tip region. However, even though the contribution to the power and thrust from
the hub region is small [47]. The losses due to circulation at the blade root need to be
physically consistent with the classical vortex theory, e.g., lifting line analyses of horizontal-
axis turbines demonstrate that helicoidal vorticity shed from the blades goes to zero at the
blade root for a bare turbine, as further described in [48]. According to [41], at the root of
a turbine blade without a diffuser, the circulation must fall to zero as it does at the blade
tip. This tendency can be observed in [49], which used CFD simulation to analyze blade
tip flow past a 95 kW Tellus rotor equipped with LM8.2 blades. Then, it is presumable
that a similar process occurs in both regions, tip and root. At the blade tip, the impact of
losses is considerable compared to the root, directly influencing turbine power by 5–10%,
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as in [18,50]. Therefore, the Prandtl correction factor is calculated for the tip (Ftip) and root
regions (Fhub) of the blade as shown in Equations (7) and (8), [8,42].

cosFtip =

(
2
π

)
cos−1

[
e−(

B
2

(R−r)
(rsin(ϕ))

)
]

(7)

Fhub =

(
2
π

)
cos−1

[
e
−( B

2
(r−rhub)

(rhubsin(ϕ))
)

]
(8)

where r is the rotor radius, rhub is the root radius of the rotor, and B is the number of blades.
The total factor loss (Floss) resultant considers the losses at the blade’s tip and root, as

shown in Equation (9). Some blades’ shape is uniform up to the hub. In this condition, the
losses in the root region can be ignored [8,38,41,42].

Floss = FtipFhub (9)

Figure 2a,b shows in the upper graphs that the losses due to vortices shedding affect
Floss only the blade’s tip, leading to a reduction. When the correction is applied to both
root (r/R < 0.3) and tip (r/R > 0.9), Floss reduces. Analyzing the bottom graph of
Figure 2a, which shows the force distribution curve along the rotor radius in the turbine
starting condition, it is possible to observe that both root and tip corrections decrease,
influencing the force distribution along the radial position, in ranges 0.2 < r/R < 0.3 and
0.9 < r/R < 1.0. This becomes more evident at the turbine starting condition because the
blade root has a significant torque contribution, as the angle of attack at very low rotational
speed is much lower at the root than at the tip, affecting the torque. The bottom graph of
Figure 2b shows the force distribution curve along the blade. The turbine is under operating
conditions close to nominal. It is possible to observe the influence of the tip correction
rather than the root correction. This happens because, close to the nominal condition, the
tip loss is by far the most significant contributor to turbine torque, as the lift-to-drag ratio is
close to the optimum.

Prandtl proposed more expressions [51] with Betz, which are named the Prandtl M1
given by Equation (10) and the Prandtl M2 given by Equation (11). In this model, Prandtl
and Betz assumed a finite number of blades and considered the wake vortex theory. The
difference between these methods is that, in Equation (10), the velocity component at
the rotor plane (Ut) is calculated exactly by Ut = Ωr(1 + a′), and in Equation (11) it is
calculated approximately by Ut = Ωr [51].

Floss =
2
π

acos

e
(− B

2 (1−
λr
λ )

√
1+λ2( 1+a′(R)

1−a(R) )
2
)

 (10)

Floss =
2
π

acos

e
(− B

2 (1−
λr
λ )

√
1+( λ

1−a(R) )
2
)

 (11)

where λ is the tip speed ratio and λr is local tip speed ratio.
Burton proposed a method [38], shown in Equation (12), similar to that of Prandtl [51],

shown in Equation (10). The results obtained with these methods are overestimated for any
power range of the turbines.

Floss =
2
π

acos
[

e(−
B
2 (

λ
λr −1)

√
1+( λr

1−a )
2
)
]

(12)
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Among all the methods found in the literature to consider tip loss, the simplest empiri-
cal method is the Effective Radius [42], which can be calculated by Equations (13) and (14).
The vortices in the blade tip region significantly affect the rotor torque and thrust compared
to the hub region. Based on this knowledge, tip loss can be accounted for by defining an ef-
fective rotor radius (re), which is about 3% smaller than the true tip radius (re = 0.97R) [42].

Floss = 1 i f 0 < r < re (13)
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Floss = 0 i f re ≤ r ≤ R (14)

Once the Floss is calculated, the equations of the induction factors must consider it. Those
equations are shown in Figure 1, a and a′ can be calculated by Equations (15) and (16) [8,38,41,42].

a =

[
1 +

Floss4sin2(ϕ)

σ′Cn

]−1

(15)

a′ =
[

Floss4cos(ϕ)sin(ϕ)

σ′Cn
− 1
]−1

(16)

2.3.2. Correction Method Applied Simultaneously for the Tip Loss and Induction Factors

BEMT calculations with Prandtl tip loss present good accuracy at a high value of λ,
as seen in [52]. However, it is shown in [18] that it is inaccurate at very low λ, and in the
region close to the turbine axis, it does not represent Floss for values greater than unity.
Moreover, Floss is found to be imprecise along the blade and has a significant error in the
region close to the hub at any λ.

Wood et al. [18] proposed an alternative method using helical vortex theory, ana-
lyzing the nonlinear terms in equations of the streamtube with attention to angular and
axial momentum. They found an accurate way of including these equations in BEMT
calculations [53]. From these works, the calculated results showed higher induced axial
velocities in the tip and hub regions. Therefore, the trailing vorticity functions could be
used in conditions where Floss cannot. For this method, the torque and thrust coefficients
are calculated using Equations (17) and (18) [53].

dCT
dr

= 8abFu(1− ab)r (17)

dCQ

dr
= 8a′bFwλ(1− ab)r3 (18)

where ab is the induction factor value at the blade, a′b is the rotational induction factor at the
blade; Fu and Fw are the loss for axial and circumferential motion. ab and a′b are calculated using
Equations (19) and (20), and Fu and Fw are calculated using Equations (21) and (22) [53].

ab =
1

Y′1 + 1
(19)

a′b =
1

Y′2 − 1
(20)

Fu =
a

a + uwb
(21)

Fw =
a′

a′ + wwb
λr

(22)

where Y′1 and Y′2 are two intermediate functions similar to those implemented by Shen et al. [47],
and are defined by Equations (23) and (24).

Y′1 =
4Fusin2φ

σCa
(23)

Y′2 =
4Fwsinφcosφ

σCa′
(24)
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The equation for wwb can be obtained by multiplying the uwb by p(t)/r, where uwb is
calculated using Equation (25) [53].

uwb ∼ 1
4π

r∫
0

∂Γ
∂t

[
p2(t)+t2

p2(t)+r2

]1/4
[

−N
p(t)(1−eξN)

+ 1
24

(
2p2(t)+9t2

(p2(t)+t2)
3/2 −

2p2(t)−3r2

(p2(t)+r2)
3/2

)
log
(
1− e−ξN)]dt

+ 1
4π

1∫
r

∂Γ
∂t

[
p2(t)+t2

p2(t)+r2

]1/4
[

N
p(t)(1−e−ξN)

+ 1
24

(
2p2(t)+9t2

(p2(t)+t2)
3/2 −

2p2(t)−3r2

(p2(t)+r2)
3/2

)
log
(
1− eξN)]dt

(25)

where eξ is an auxiliary variable and it is calculated by (26).

eξ =
r
[

p(t) +
√

p2(t) + t2
]
exp
√

1 + r2/p2(t)

t
[

p(t) +
√

p2(t) + r2
]
exp
√

1 + t2/p2(t)
(26)

where p is the pitch calculated using Equation (27) and Γ is the bound circulation of the
blade element. Γ is calculated using Equation (28).

p = dCQ/dCT (27)

Γ =
1
2

UTCl

(
1− Cd

Cltanφ

)
(28)

Similar to the other methods, the use of vortex theory does not account for high thrust and
the need to correct Equation (17) in this region. By analogy, with equations of Shen et al. [29],
for ab > ac = 1/3, Equations (29) and (30) are used.

dCT
dr

= 8
[

a2
c + (1− 2ac)ab

]
Fur (29)

ab = 1 + Y′1

(
1
2
− a2

c

)
−

√
Y′1
2

√
4 + Y′1 + 4ac

(
ac − 2−Y′1(1− ac)

)
(30)

2.3.3. Induction Factor Correction

The methods for the correction of the classical BEMT, for high values of the axial
induction factor, generally, are based on relationships derived from the study conducted
by Glauert [8,41,42]. Glauert’s empirical relationship states that under turbulent wake
conditions (a > 0.5), the thrust coefficient ( CT) increases up to 2.0 for a = 1, [38]. The
BEMT fails for a > 1/3 and for this region the induction factor correction is particularly
important. The correction proposed by Glauert [38] is applied for a > 0.4 or CT > 0.96,
as presented in Equations (31) and (32). Glauert fit a parabola to some data of rotors
operating in a turbulent wake state to obtain these equations. This parabola agrees well
with the classical momentum curve up to a = 0.4. However, a numerical problem arises
in the classical momentum equation when the loss correction factor [54] is applied: a
discontinuity appears between the theoretical curve and the correction method.

CT =
σ′(1− a)2Cn

sin2(ϕ)
(31)

a =

(
1

Floss

)[
0.143 +

√
0.0203− 0.6427(0.889− CT)

]
(32)



Sustainability 2023, 15, 7021 11 of 26

Peter Smith presents modeling for a > 0.5 [23,24], and it can be calculated using
Equations (33)–(35). The development of this model is based on applications with low wind
speeds where a is large.

a = 1−

√
ft

Ft
(33)

ft =
1[

0.11
(

1
Ft

)3
− 0.70

(
1
Ft

)2
+ 2.15

(
1
Ft

)
+ 2.15

] (34)

Ft =
a

(1− a)
(35)

where ft and Ft are auxiliary variables.
Robert Wilson presents modeling for a > 0.4 [55,56], and it can be calculated using

Equations (36) and (37). In low-thrust regions, the results can show considerable errors.

S =
σ′Clcos(ϕ)

8sin2(ϕ)
(36)

a =
2S + Floss −

√
F2

loss + 4SFloss(1− Floss)

2
(
S + F2

loss
) (37)

where S is an auxiliary variable.
Robert Wilson also presents another modeling method with Spera for a > ac and

ac = 0.2, [8,42], and it can be calculated using (38) and (39). This correction consists of
simply using a straight line that is tangent to the thrust calculated through the momentum
theory at a critical point called ac. Then, CT can be calculated using Equation (40) for a > ac,
and the results of this variable are higher when compared to the other methods.

K =
4Flosssin2(ϕ)

σ′Cn
(38)

a =
1
2

[
2 + K(1− 2ac)−

√
(K(1− 2ac) + 2)2 + 4(Ka2

c − 1)
]

(39)

CT = 4Floss

[
a2

c + (1− 2ac)a
]

(40)

where K is an auxiliary variable.
Marshall Buhl presents modeling for a > 0.4 (equivalent for CT > 0.96), [54,57], and

it can be calculated using Equations (41) and (42). This method is based on adjusting a
parabola for some information of rotors operating under a turbulent wake state, based on a
derivation for an equation that solves the discontinuity problem described in the method
proposed by Glauert.

CT =
8
9
+

(
4Floss −

40
9

)
a +

(
50
9
− 4Floss

)
a2 (41)

a =
18Floss − 20− 3

√
CT(50− 36Flos) + 12Floss(3Floss − 4)

36Floss − 50
(42)

Madsen described a method for CT < C and CT > C [51], which can be implemented
using Equations (43) and (44), respectively.

a = k0 + k1CT + k2C2
T + k3C3

T (43)
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a =
(

k1 + 2Ck2 + 3Ck2
3

)
(CT − C) + k0 + 2.5k1C + k2C2 + k3C3 (44)

where C, k0, k1, k2, and k3 are specific coefficients. C = 2.5 and the other coefficients of
Equations (43) and (44) are given by Equation (45). In this method, the coefficients must be
adjusted for each turbine, regardless of the rated power. This makes the model non-generic.

k0 = −0.001701 k1 = 0.251163 k2 = 0.054496 k3 = 0.089207 (45)

Shen et al. [58] described a method with two intermediate functions, Y1 and Y2, which
are given in Equations (46) and (47), respectively, for which Y1 ≥ 2 represents a region
of low thrust. This condition is the same for a > 1/3 and is used for the calculation of
the induction factors, as shown in Equations (48) and (49). The axial induction factor is
calculated as a function of the radial position, considering the vortices along the blade.
The results show that the method better predicts the aerodynamic force in the vicinity of
the tip, resulting in more accurate power curves. This method proved to be more efficient
for predicting the power performance of small turbines than the others presented in this
article [58].

Y1 =
4Flosssin2(ϕ)

σ′Cn
(46)

Y2 =
4Flosssin(ϕ)cos(ϕ)

σ′Ct
(47)

a =
2 + Y1 −

√
4Y1(1− F) + Y2

1

2(1 + FY1)
(48)

a′ =
(1− a)− 1
(1− aF)Y2

(49)

2.3.4. Post-Stall Correction

The blade elements can be subjected to high angles of attack, especially when the
wind speed is high. In this situation, the blade is subjected to the stall region, characterized
by a decreased aerodynamic efficiency (reduced lift force and increased drag force). The
classical BEMT cannot adequately represent the resulting aerodynamic forces in this post-
stall region. In this region, lift and drag coefficients (Cl and Cd, respectively) are not
correctly calculated. As a result, it is not possible to accurately represent the aerodynamic
forces and the thrust and torque values. In addition, generally, the experimental polar data
(aerodynamic coefficients) used in the BEMT method are available for a small range of
angles of attack.

Concerning the high angles of attack on the turbine blades, the best method is the one
proposed by Viterna and Corrigan [42,51,59,60], as shown in Equations (50) and (51).

Cl = A1sin(2α) + A2

[
cos2(α)

sin(α)

]
(50)

Cd = B1sin2(α) + B2cos(α) (51)

where A1, A2, B1 and B2 are variables dependent on Cl and Cd coefficients, and they are
defined from Equations (52)–(55).

A1 =
B1

2
(52)

A2 = Cls − Cdmaxsin(αs)cos(αs)

[
sin(αs)

cos2(αs)

]
(53)
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B1 = Cdmax (54)

B2 =
Cds − Cdmaxsin2(αs)

cos(αs)
(55)

where Cls is the lift coefficient and Cds is the drag coefficient, both at the stall angle (αs).
The maximum drag coefficient (Cdmax) is calculated for α = 90o. In this condition, the

flow on one side of the airfoil is assumed to be completely separated. To calculate this
drag coefficient, Viterna and Corrigan proposed Equation (56), Montgomerie proposed
Equation (57), and Radkey proposed Equation (58) [28].

Cdmax = 1.11 + 0.018µ (56)

Cdmax = 1.98− 0.81
[
1− e(−

20
µ )
]

(57)

Cdmax = 1.98− 0.81tanh
(

12.22
µ

)
(58)

where µ is the aspect ratio, while c the blade chord. The aspect ratio is defined in Equation (59).

µ =
R− rhub

c
(59)

2.4. Algorithm and Considerations Proposed for the Correction Methods

The proposed BEMT algorithm to carry out the simulations of the correction methods
is illustrated in the flowchart shown in Figure 3. Starting from the input data, the algorithm
works with three calculation loops: for the fluid velocity (in blue color), for the blade section
or element (in green color), and for the axial induction factor (in orange).

The first loop starts by selecting the first fluid velocity value in the desired range to
analyze the turbine operation, through which λ is calculated. The second loop, internal to
the first, starts from the first section of the blade. The blade shape is selected as a function
of the rotor radius and the local solidity is calculated. The third loop, internal to the second
one, is started to iteratively calculate the value of the axial induction factor. Initial guesses
are configured for the axial and rotational induction factors in this loop. Based on these
initial values, the following variables are calculated: fluid velocity components; angles of
ϕ, θp and α; Cl and Cd; corrections of tip and root losses; corrections of the high values of
the angle of attack α and Cl and Cd again; force coefficients, Cn and Ct; correction of high
values of the axial and rotational induction factors. Only when the calculation of the axial
induction factor reaches the number of allowed iterations or when the error is less than the
tolerance does the third loop end and the second loop runs again.

Once the third loop finishes, the increment rates of lift, drag, normal, and tangential
forces at the rotor are obtained. Then, the incremental torque, thrust, and power values
are calculated. Only when these forces and incremental values are calculated for all blade
sections does the second loop end and the first one runs again.

Once the second loop is completed, the integrals of torque, thrust, and power are
calculated for the whole blade length, as well as their respective coefficients. The first loop
finishes when these integral calculations are made for the whole fluid velocity range.

The main expressions for thrust, torque, power, and power coefficient calculations
are those presented in Equations (3)–(6). The thrust coefficient (CFN ) and torque coefficient
(CQbid ) are calculated by Equations (60) and (61), respectively.

CFN =

∫ R
0 dFN

1
2 ρU2

∞πR2
(60)
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CQbid =

∫ R
0 dQbid

1
2 ρU2

∞πR3
(61)
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The proposal of this work is based on a methodology whose intention is to combine
several correction methods, which are strategically inserted in the Classical BEMT and
compiled in the proposed algorithm. The objective is to extract the best results from
the possible permutations between methods. From the results obtained, which are
discussed in the following sections, it is possible to define and validate a unified model
compiled in the algorithm capable of representing horizontal-axis turbines. From now
on, this compilation is called the proposed approach, which integrates the following
correction: (i) the tip loss correction, proposed by Prandtl; (ii) the induction factor
correction, proposed by Shen; and (iii) the angle of attack correction in the post-stall
region, proposed by Viterna with Corrigan.

The complementary correction methods are simulated using the algorithm mentioned
in the previous subsection. Therefore, it is possible to carry out comparative analyses
between them and to define a single structure for the BEMT method (now no longer called
classical) that correctly represents the performance of wind turbines in general, regardless
of the rated power range.

The small-sized turbine used for the simulations and validation is available in [20],
where further details of design, construction, operation, and performance can also be
found. The medium and large-sized turbines used are available in technical reports by
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NASA, which are Turbine MOD-0 with 100 kW, Turbine MOD-2 with 2.5 MW, and Turbine
MOD-5A with 7.3 MW. Design, construction, operation, and performance details can be
found in [21–29]. It is important to highlight that the methods must represent well the
turbine performances, mainly in the region below rated power since the power converters
operate at their power limit from that point on. Therefore, the turbine may operate with
mechanical torque reduction from that point if the wind speed is available.

3. Results and Discussion

The correction methods are analyzed in separate groups, shown in the following
subsections: for the tip loss, for the axial induction factor, and for the angle of attack. First,
the results are discussed based on the power curves to evaluate whether the methods
correctly represent the performance curve of the turbines. In this way, it is possible to
identify the most accurate methods. Additionally, the methods are discussed in terms of
power coefficient curves because the errors related to the real data are easier to observe.

3.1. Comparative Analysis of Tip Loss Corrections

Figure 4 shows that the modeling described by Burton and those by Betz with Prandtl
(defined as Prandtl M1 and Prandtl M2), under the same condition, do not correctly
represent the power data curve for the four simulated turbines. The results of these methods
are similar due to the similarity between the mathematical models used. On the other hand,
the other two methods analyzed present results close to the turbine data, and the method
described by Prandtl is the closest one. This can be seen more easily in Figure 4a,b. These
results are also observed in Figure 5, now from the curve of power coefficients, where
Burton, Prandtl M1, and Prandtl M2 exceed the Betz limit, being physically inconsistent.
In Figure 5 it is evident that the method described by Prandtl is more assertive than the
Effective Radius in relation to turbine data, being more evident for λ > 10 in Figure 5a.
The modeling described by Prandtl is assumed to be the best for correcting tip loss. Table 2
shows a summary of the correction methods.

3.2. Comparative Analysis of Induction Factor Corrections

The results presented in Figure 6 show that the modeling described by Madsen
presents significant numerical instabilities for the small turbine in the low wind range
(U < 7.5 m/s), as well as big numerical instabilities for the large turbine (MOD-5A) across
the entire wind speed range, see Figure 6d for U < 12.5 m/s. The modeling described
by Buhl presents significant errors for the MOD-0 and MOD-2 turbines, specifically for
high wind speeds, approximately U > 10 m/s. Furthermore, Buhl’s method is the one that
presents the biggest error for the MOD-5A turbine data when considering the wind speed
range between 5 and 10 m/s.

Considering the results in Figure 6, the methods described by Peter Smith, Robert Wil-
son, Glauert, Robert Wilson with Spera, Shen, and Wood present the best results compared
to the experimental data.

For the small turbine and MOD-0 in Figure 7b, the methods described by Peter Smith
and Glauert show inconsistent results for approximately λ > 15, in which Cp continues
to increase after the maximum point of the curve. However, in this region, the Cp should
continuously decrease when λ increases due to, usually, stall conditions on the blades,
which leads to a low value of torque and, consequently, a low rotational speed on the
turbine axis.

Robert Wilson’s method presents results that oscillate in the range of 10 < λ < 20 for
the small turbine shown in Figure 7a. This highlights the problem of correctly representing
the low torque region for high λ.

Finally, the models proposed by Robert Wilson with Spera, Shen, and Wood present
good Cp × λ curves. However, the results using Shen’s method are more proximate to the
real data from the simulated turbines (see Figure 7a,b for λ > 10). In Figure 7a,b, for λ > 10,
the results of Robert Wilson with Spera tend to be somewhat greater than the turbine data.
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On the other hand, the results of Wood tend to be somewhat lower than the turbine data
for λ > 11, but all of them, in general, are in good agreement with the experiments.

Based on the simulations performed, it is noticed that the most assertive correction
methods for the behavior of the turbines, considering the comparative analysis of induction
factor correction, are those in which specific calculations for the induction factor in the low
torque region are implemented. The results from the Cp × λ curve confirm this statement.

The method proposed by Wood is based on improving the accuracy of the tip loss
calculation in the region of low tip speed ratio below unity. Furthermore, the method
calculates the induction factor for the entire length of the blade rather than calculating an
average value for the streamtube. This approach is good for any size of turbine, mainly
for those where the flow around the rotor has restriction (diffuser-augmented turbines),
where the induction axial velocity component is different to the circumferential one. Due to
this, the accuracy of this method is good, as it considers the influence of vortices along the
blade in a more general form than that using Prandtl. Therefore, taking all this into account,
the methods described by Shen and Wood are considered the best ones for correcting the
induction factor. Table 3 shows a summary of the methods.

Sustainability 2023, 15, 7021 16 of 27 
 

  
(a) (b) 

  
(c) (d) 

Figure 4. Output power curves considering different blade tip loss correction methods for turbines 
with different power ratings: (a) small-size; (b) NASA MOD-0; (c) NASA MOD-2; and (d) NASA 
MOD-5A. 

  
(a) (b) 

Figure 4. Output power curves considering different blade tip loss correction methods for
turbines with different power ratings: (a) small-size; (b) NASA MOD-0; (c) NASA MOD-2; and
(d) NASA MOD-5A.



Sustainability 2023, 15, 7021 17 of 26

Sustainability 2023, 15, 7021 16 of 27 
 

  
(a) (b) 

  
(c) (d) 

Figure 4. Output power curves considering different blade tip loss correction methods for turbines 
with different power ratings: (a) small-size; (b) NASA MOD-0; (c) NASA MOD-2; and (d) NASA 
MOD-5A. 

  
(a) (b) 

Sustainability 2023, 15, 7021 17 of 27 
 

  
(c) (d) 

Figure 5. Power coefficient curves considering different blade tip loss correction methods for 
turbines of different power ratings: (a) small-size; (b) NASA MOD-0; (c) NASA MOD-2; and (d) 
NASA MOD-5A. 

Table 2. Correction methods for the tip loss. 

Correction Methods 
Correctly Represents the 
Entire Operating Range 

Suitable for Any  
Turbine Power 

Used in the 
proposed 
Algorithm 

Prandtl Yes Yes Yes 
Effective Radius Yes Yes - 

Burton No No - 
Betz/Prandtl M1 No No - 
Betz/Prandtl M2 No No - 

3.2. Comparative Analysis of Induction Factor Corrections 
The results presented in Figure 6 show that the modeling described by Madsen 

presents significant numerical instabilities for the small turbine in the low wind range 
(𝑈 < 7.5 m/s), as well as big numerical instabilities for the large turbine (MOD-5A) across 
the entire wind speed range, see Figure 6d for 𝑈 < 12.5 m/s. The modeling described by 
Buhl presents significant errors for the MOD-0 and MOD-2 turbines, specifically for high 
wind speeds, approximately 𝑈 > 10 m/s . Furthermore, Buhl’s method is the one that 
presents the biggest error for the MOD-5A turbine data when considering the wind speed 
range between 5 and 10 m/s. 

Considering the results in Figure 6, the methods described by Peter Smith, Robert 
Wilson, Glauert, Robert Wilson with Spera, Shen, and Wood present the best results 
compared to the experimental data. 

For the small turbine and MOD-0 in Figure 7b, the methods described by Peter Smith 
and Glauert show inconsistent results for approximately 𝜆 > 15, in which 𝐶௣ continues 
to increase after the maximum point of the curve. However, in this region, the 𝐶௣ should 
continuously decrease when λ increases due to, usually, stall conditions on the blades, 
which leads to a low value of torque and, consequently, a low rotational speed on the 
turbine axis. 

Robert Wilson’s method presents results that oscillate in the range of 10 < 𝜆 < 20 
for the small turbine shown in Figure 7a. This highlights the problem of correctly 
representing the low torque region for high 𝜆. 

Finally, the models proposed by Robert Wilson with Spera, Shen, and Wood present 
good 𝐶௣  ൈ  𝜆 curves. However, the results using Shen’s method are more proximate to 

Figure 5. Power coefficient curves considering different blade tip loss correction methods for
turbines of different power ratings: (a) small-size; (b) NASA MOD-0; (c) NASA MOD-2; and
(d) NASA MOD-5A.

Table 2. Correction methods for the tip loss.

Correction Methods Correctly Represents the
Entire Operating Range

Suitable for Any
Turbine Power

Used in the Proposed
Algorithm

Prandtl Yes Yes Yes
Effective Radius Yes Yes -

Burton No No -
Betz/Prandtl M1 No No -
Betz/Prandtl M2 No No -

3.3. Comparative Analysis of Angle of Attack Corrections

Among the types of corrections to the classical BEMT, the angle of attack correction
is the one that has fewer models. Among those, the mathematical expressions are very
similar because all these corrections are based on the post-stall model developed by Viterna
and Corrigan.

Montgomerie and Radkey proposed the correction only for the Cdmax variable, which
considers the drag of the nacelle and the blade. Due to the mathematical similarity between
the methods, the results obtained for all simulated turbines are almost the same for the
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entire wind speed range, as shown in the power coefficient curves of Figure 8. Furthermore,
all the results obtained are close to the data from the simulated turbines. Therefore, any of
these three modeling techniques could be used to correct the angle of attack in the post-stall
region since the drag effect does not differ a lot between these modeling.
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Figure 6. Output power curves considering different induction factor correction methods for
turbines of different power ratings: (a) small-size; (b) NASA MOD-0; (c) NASA MOD-2; and
(d) NASA MOD-5A.

Therefore, the modeling described by Viterna and Corrigan is considered in this article
the best modeling for correcting the high values of α. Comparable to the power coefficient
curves, the results of those three modeling techniques are almost the same. Thus, it is
assumed that the curves of the power coefficients are not needed. Table 4 shows a summary
of the methods.

3.4. Comparative Analysis of the Proposed Algorithm

In this subsection, a comparative analysis is performed in terms of numerical insta-
bility, in which the correction methods available are submitted to the same operating
condition, considering small, medium, and large rotors. Thus, the approach with better
numerical stability will be called here the “proposed algorithm”, only for convenience,
which is composed of the corrections of Viterna and Corrigan for high angle of attack, the
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correction developed by Shen for high values of the axial induction factor, which brings
very good numerical stability, and that by Prandtl for tip and root losses, due to its easy
implementation. All groups shown in the figures are composed of the method Viterna
and Corrigan. The groups are A—Peter Smith, B—Robert Wilson, C—Glauert, D—Robert
Wilson with Spera, and E—Wood.
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Figure 9a shows that group B presents significant numerical instability at the low-
speed region for the small-size turbine. The rest of the groups present good agreement
with the experiment, showing similar results between them. Figure 10a,b clearly show this
instability on power coefficient curves for λ > 10, where the results of groups are different
from each other. The method described by Peter Smith has higher numerical instability for
approximately λ > 15 to small and medium turbines, where Cp continues to increase after
the maximum point of the curve. Figure 10a,b show that the “proposed algorithm” follows
the trend of the turbine data and presents results closer to the real curve than group D.
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Table 3. Induction factor correction methods.

Correction Methods Correctly Represents the
Entire Operating Range

Suitable for Any
Turbine Power

Used in the Proposed
Algorithm

Madsen No No -
Peter Smith No No -

Robert Wilson No No -
Buhl No No -

Glauert No No -
Robert Wilson/Spera Yes No -

Shen Yes Yes Yes
Wood Yes Yes -
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Table 4. Angle of attack correction methods.

Correction Methods Correctly Represents the
Entire Operating Range

Suitable for Any
Turbine Power

Used in the Proposed
Algorithm

Bjorn Montgomerie Yes Yes -
Hibbs/Radkey Yes Yes -

Viterna/Corrigan Yes Yes Yes
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Therefore, it is correct to say that the results obtained with the “proposed algorithm”
correctly represent the real data of the four turbines for the entire wind speed range. This
occurs because the model described by Shen et al. [58] uses two intermediate functions,
which are given in Equations (46) and (47), respectively. This condition is used to precisely
calculate the induction factors as a function of the radial position at the turbine rotor, taking
into account the vortices along the blade. This better predicts the aerodynamic forces in the
vicinity of the blade tip, resulting in more accurate power curves.
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These intermediate functions combined with the corrections of Viterna and Corrigan
for high angle of attack, and that by Prandtl for tip and root losses proved to be, numerically,
very stable for predicting the power performance of small, medium, and large turbines
than the others presented here. Table 5 shows a summary of the methods.

Moreover, the alternative method proposed by Wood et al. [18], using helical vortex
theory is very stable. Even though it is more complex to implement, it considers the
nonlinear terms in equations of the streamtube for angular and axial momentum, leading to
precise results. This method is an accurate way of including these in BEMT calculations [53],
which can be extended for turbines with a diffuser, as it considers a distinguishing between
axial and circumferential induction velocities.

The algorithm proposed in this work is efficient and can be used in a generic way
to represent the performance of horizontal-axis turbines, from small to large. The main
differences between small, medium, and large wind turbines are in rotor design and
manufacture. The performance, in terms of power coefficients, of small, medium, and large
turbines is very similar, as shown in Figure 7.
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Table 5. Comparison with the proposed algorithm.

Correction Methods Correctly Represents the
Entire Operating Range

Suitable for Any
Turbine Power

Used in the Algorithm
Proposed

Group of methods—A No No -
Group of methods—B No No -
Group of methods—C No No -
Group of methods—D Yes Yes -
Group of methods—E Yes Yes -
Proposed algorithm Yes Yes Yes

The main challenges for small ones are low operational Reynolds number, as small
rotors usually operate at low wind speed; and the structural requirements of more rapidly
rotating turbines. Moreover, most small turbines use “free yaw” whereby a tail fin, rather
than an automatized yaw drive as on larger rotors, is used to align the turbine with the
wind direction. Additionally, usually, small wind turbines do not have pitch adjustment of
the blades, making the aerodynamic torque indeed relevant at very low rotational speeds.
All these concerns can be implemented using the “proposed algorithm”.

The time of simulation is infinitely lower when compared to the time of simulation
of programs that use finite volume analysis such as CFD, so the cost of computational
burden is low and consequently requires cheaper computers. The pre-processing of the
proposed algorithm is simple because it is based fundamentally on the information of the
blade shape (radius, chord, and angle of pitch) and the polar data of the airfoil. In CFD
simulation, the pre-processing is complex and involves the three-dimensional design of the
blades and nacelle, besides the generation of the mesh to the processing of the calculations
based on finite volume analysis. However, it is important to highlight that CFD methods
are indeed more robust than those based on BEMT.

4. Conclusions

A simple and fast-processing algorithm capable of estimating the power performance
curve for any turbine size is presented. The algorithm is a quick alternative to be applied for
predictive studies, ensuring the following aspects: (i) it guarantees widespread application
for small, medium, and large-sized wind turbines since the BEMT approaches found in
the literature are implemented and adjusted for a specific power range turbine, and cannot
be used generically; (ii) fast-processing for performance analysis; (iii) simple implemen-
tation when compared to those with CFD modeling, which demand more computational
burden and is more complex to simulate; and (iv) it avoids the need for high-performance
computers, which are expensive.

In a general context, a summary of the application of existing methods is presented as
follows: (i) the correction methods of tip losses proposed by Prandtl and the one of Effective
Radius can be applied to any turbine size since the results approximately represent the
power curve data; (ii) the correction methods of induction factor proposed by Shen, Wood,
and Robert Wilson with Spera can be applied to any turbine size. The methods proposed
by Peter Smith and Robert Wilson can be applied to medium and large turbines; (iii) the
correction methods of the angle of attack proposed by Bjorn Montgomerie, Hibbs with
Radkey, and Viterna with Corrigan can be applied to any turbine.

However, the proposed algorithm presented and discussed in the flowchart shown in
Figure 3 is composed of the corrections of Viterna and Corrigan for high angle of attack, by
Shen for high values of the axial induction factor, and by Prandtl for tip and root losses. It
is essential to highlight that the method proposed by Wood is more accurate for low tip
speed ratio, mainly for small turbines, as shown in Figure 7a for λ < 11. Moreover, it can be
extended to turbines with a diffuser. Therefore, it can perfectly replace Shen’s intermediate
functions in the proposed algorithm.

From the results obtained, mainly in the power curves, it is observed that the proposed
algorithm performs better in any operating conditions. The algorithm obtained the best
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approximations for the power curves against the measured values of all turbines, ensuring
a wide application. As the simulation takes a few seconds, it proved to be effective and
quick for turbine analysis. In addition to having less complexity, it can be very well applied
generically for predictive studies without needing additional adjustments or corrections.
Furthermore, the prior need for high-performance computers to analyze turbine power
coefficient is avoided.

For future work, it is important to extend the studies to assess the effect of the turbine
powertrain, in order to evaluate the influence of the electrical generator on the rotor
behavior in terms of time constant. Controllers implemented in power converters for wind
turbines depend on this time constant to improve the dynamic response of the system.
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