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Abstract: There are significant differences between expectations and fulfillment in the building deliv-
ery process. Many researchers have emphasized the need for design strategies that establish a direct
correlation between design proposals and building performance. One of the main objectives is to
support performance-driven primary design, which occurs before the design performance modeling
(DPM) phase. To achieve this, a case study of retrofitting existing buildings on campus is presented.
A normative calculation approach is used to identify the optimal combinations of a dozen retrofit
strategies based on the Energy Performance Calculator (EPC) model. This approach reduces or elimi-
nates the impact of parametric uncertainties on modeling assumptions and simplifies calculations,
particularly in restrictive studies. These retrofit solutions involve structural and functional zoning
renovation, meaning that disparity between expectations and fulfilments is considered, and a timely
related information feedback route to architects is achieved. In the first step of the narrative devel-
opment of the EPC model, EPC-Calib was used to find the optimal combination of input variables
in the model that satisfies the desired target and complies with the problem constraints. Secondly,
the retrofit study was implemented with EPC-TechOpt, and 16 retrofit solutions for three design
performance models were examined based on the local climatic conditions, building features, and
retrofit costs. Finally, design schemes were determined, and the cost-optimal mix of the measures
was desired with a 40% energy saving.

Keywords: primary design; energy-efficient retrofit; normative model; calculation calibration; strategic
optimization approach

1. Introduction

Due to the growing population on campuses and the expanding range of activities
available in the new century, modern university buildings are becoming more open and
their functions are becoming increasingly complex, leading to a richer campus life [1].
Building renovation should pay attention to the development of function and space as
well as the improvement in energy computation efficiency. Buildings on campus have
three outstanding characteristics. Firstly, the renewable and diversified educational and
sociable needs of the building space require confirmation. Secondly, the energy distribution
of a single building unit is affected by others in the network. Thirdly, obvious energy
consumption periodicity could be observed due to winter and summer vacations, and it
is profitable to have energy-efficient strategies in special periods. This paper attempts to
develop a deterministic decision-making method for finding the optimum set of retrofit
solutions for existing buildings on campus. These retrofit solutions include structural
and functional zoning renovation, meaning that disparity between expectations and fulfil-
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ments is considered, and a timely related information feedback route to the architects is
achieved [2–4].

1.1. Performance-Driven Architectural Design

Many scholars emphasize the importance of establishing a direct correlation between
design proposals and environmental performance [5]. Typically, performance evaluation
is conducted as a review after design completion in traditional design processes. Dur-
ing the process, a professional division of labor occurs, with architects concentrating on
morphological design while HVAC and green building engineers assess environmental
performance [6]. This approach separates the design process from performance optimiza-
tion, which is commonly referred to as the “post-evaluation” paradigm [7]. However,
this separation may result in the incomplete optimization of building performance. It has
been demonstrated that improving designs in later stages results in minimal benefits with
significant costs [8]. Therefore, extensive research has been conducted on the early stages
of design [9] (Figure 1). In this situation, certain architectural design studios and firms,
such as Architectural Intelligence Group (AIG), Digital Future Studio (DF), and AECOM
iLAB (Innovation Laboratory), are dedicated to finding appropriate pre-evaluation tools or
procedures in response to the expectations expressed by owners and occupants, and their
fulfillment by designers and building operators. One critical aspect is to facilitate dialogue
between designers, engineers, and building managers, as differences in expectations and
fulfillment are common throughout the building delivery process [7].
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In recent years, architectural generative design has tended to develop in two directions.
(1) Using data-driven models for building design. This mainly involves using artificial
intelligence technologies (such as convolutional neural networks and generative adversarial
networks) to learn from computationally intensive numerical simulation cases (i.e., data sets
pre-set for machine learning), generating a large number of multidimensional parameters
that fit the target within a certain period of time, and then iterating optimization to mimic
the human thought process of architects repeatedly deducing based on limited building
environmental information during the design phase (calculations are generally based
on the black-box model). For example, Chenyu Huang etc. [5] propose an automated
design process that utilizes a generative adversarial network (GAN) as a surrogate model
to expedite environmental performance-driven urban design. Soowon Chang et al. [11]
propose a data-driven urban design approach to generate possible design alternatives using
reinforcement learning, and a design-driven analysis was conducted to evaluate multiple
performance criteria of urban buildings using parametric modeling. The multivariate
analysis presented relationships between urban geometric forms and performance criteria
using 30 samples. (2) Architect-centered human-computer interaction is used to improve
the interactivity of performance evaluation during the design process (calculations are
generally based on the white-box or grey-box model). Some researchers have built data and
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visual interfaces between numerical simulation software and 3D modeling platforms [12,13].
Multiple versions of Ladybug tools have been developed and embedded in mainstream 3D
modeling platforms, providing user interfaces to environmental performance simulation
engines, such as Radiance, EnergyPlus, and OpenFOAM. These softwares and plug-ins
make it much easier to evaluate the environmental performance of buildings in the early
design stages.

These numerical simulations primarily rely on detailed physical models, such as Ener-
gyplus. However, the core algorithm of this model is not specifically tailored for data-driven
generative design with limited quantitative information and a significant computational
load. This limitation affects both the accuracy and computational efficiency of the model.
As the design phase progresses, the amount of graphical information increases while the
level of abstraction decreases due to the continuous input of conditional information. The
spatial quantity, shape, and quality of the building are interdependent and constantly
changing, making it challenging to quantify building information. Therefore, a large num-
ber of core parameters must be assumed to carry out Design Performance Modeling (DPM),
which may lead to calculation errors due to insufficient assumptions. The physical detailed
model itself also requires assumptions and simplifications, which have been proven to
increase calculation errors. Currently, surrogate models are generally used to balance the
computational load, but this further exacerbates calculation errors. The calculation process
has a certain time and resource cost, and the use of surrogate models makes it almost
impossible to retrace the calculation process. We propose the normative energy calculation
method for this research area that releases a large amount of computational power while
ensuring the same accuracy as the physical detailed model. Its standardized calculation
process is transparent and conducive to retrospective checks. It is easy to program, operates
quickly, and can be better integrated with data-driven models, and embedded in building
intelligent generative design workflows [14,15].

1.2. Application Feasibility of the Normative Energy Calculation in Building Performance Prediction

It is evident that the current methods for “post-evaluation” are insufficient to maintain
and support dialogues between engineering technology and architecture design in the
conceptual or preliminary design stage (as well as for building renovation) [16,17]. Many
aspects of performance in this stage can only be interpreted based on qualitative judgments
since sophisticated dynamic energy simulation programs (e.g., the European ESP-r, the
US standard program DOE-2 and its successor EnergyPlus, and the IDA program) require
whole building modelling [18,19]. However, the specifications of every single material
parameter and the dynamic environmental conditions are unavailable in the initial stage.
It is also time-consuming for comprehensive data preparation and computing processing,
and unpredictable manifestations of the architectural design in its future and changing
context of use make it more difficult to be conducted by quantitative analyses [1,20]. In
this situation, the EPC is appropriate for estimating where and when the availability of
the specialized strategies or the optimal combinations among a dozen strategies can be
considered in the initial stages of design for architects and then can be followed up by the
appropriate provision in the actual design.

The normative EPC rating method could be regarded as an alternative to the LEED-
EAcl score, a non-simulation-based simpler method, which is widely accepted in Eu-
rope based on the EN ISO 52016-1:2021 [21]. Each building energy performance rating
method has a distinct approach to the calculation of building energy efficiency. Many
papers [15,19,22–27] discussed the basis of the calculations and compared them on the mer-
its of their methods. The absolute differences between the outcomes of the two methods
were found to be 20% or less in the Energy Use Intensities (EUIs), and EPC was observed
to be equally adequate for the building rankings [28]. Figure 2 depicts a schematic diagram
of this normatively defined calculation procedure for building performance analysis. In
level one, the total thermal energy demand is calculated without any system information.
It could be interpreted as the building energy performance evaluation in the primary stage.
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It takes into account energy gain (i.e., solar, internal, and system heat sources) and loss (i.e.,
transmission and ventilation), as well as thermal inertia driven by the building mass. This
thermal energy demand, in turn, determines the energy consumption in level two, where
the delivered energy is separately designed and calculated for each energy carrier (water or
air delivery and transmission losses). On-site renewable energy generation is considered,
and according to the delivered energy calculation of this level, the primary energy and
carbon emissions are calculated in level three. The specific details of the energy supply
utilities and network could be added. This study uses Tech-Opt [29], an added feature to
the EPC calculator, in level one, which is based on a metaheuristic method. Due to the
complexity of the optimization problem, the evolutionary algorithm is the means that best
suits this optimization task [30,31].
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2. Methodology

To establish an effective dialogue between architectural design and engineering-related
building thermal performance assessment, a deterministic optimization mechanism was
developed for sustainable building retrofit measures. Three outstanding characteristics
of buildings on campus were considered during the retrofitting decision-making. (1) The
renewable and diversified educational and sociable needs of the building space require
confirmation. (2) The energy distribution of a single building unit is affected by others in
the network. (3) Obvious energy consumption periodicity could be observed due to winter
and summer vacations, making it profitable to implement energy-efficient strategies during
these periods.

In this study, for question (1), EPC-TechOpt was utilized to redesign the building
according to the functional needs, while considering optimal solutions for diverse needs
such as space function, cultural environment, heritage of historical buildings, energy
conservation, and performance maintenance and update. For questions (2) and (3), EPC
Calibration was employed for information acquisition and input data optimization. The
calibration process was based on the minimization of the overall difference between the
values from the real building utility data and the results from the simulation. The weighted
method was used to adjust the energy supply based on the needs of teaching activities
(Figure 3).



Sustainability 2023, 15, 7094 5 of 19

Sustainability 2023, 15, x FOR PEER REVIEW 5 of 19 
 

method was used to adjust the energy supply based on the needs of teaching activities 
(Figure 3). 

 
Figure 3. Research framework of the methodology. 

2.1. Building Prototype 
A French Building (AFB) located on the campus of the Georgia Institute of Technol-

ogy (Atlanta, GA) is employed as an office building prototype (Figure 4). It serves as one 
of the main office buildings on campus and was completed in 1898. There are 20 adjacent 
buildings within a 200 m radius. The north–south height difference of the construction 
environment is 11.2 m, and the east–west height difference is 14.0 m (Figure 5). 

AFB is a single building (2.5 floors above ground and 0.5 floors underground) with a 
basement, which is used as the electro-mechanical room and the ECS room. According to 
the EPN, thermal zoning is divided into two thermal zones (office area as well as corridor, 
elevator hall, and leisure area) on each floor of the above-ground building and two ther-
mal zones on the basement floor (mechanical zone as well as corridor and elevator hall). 
Moreover, the heat and cold sources come from the network of campus utilities. 

Figure 4. Exterior and interior panorama of the A. French Building (Openstudio model L: Space 
type, R: Thermal zone). 

Figure 3. Research framework of the methodology.

2.1. Building Prototype

A French Building (AFB) located on the campus of the Georgia Institute of Technology
(Atlanta, GA) is employed as an office building prototype (Figure 4). It serves as one of
the main office buildings on campus and was completed in 1898. There are 20 adjacent
buildings within a 200 m radius. The north–south height difference of the construction
environment is 11.2 m, and the east–west height difference is 14.0 m (Figure 5).
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AFB is a single building (2.5 floors above ground and 0.5 floors underground) with
a basement, which is used as the electro-mechanical room and the ECS room. According
to the EPN, thermal zoning is divided into two thermal zones (office area as well as
corridor, elevator hall, and leisure area) on each floor of the above-ground building and
two thermal zones on the basement floor (mechanical zone as well as corridor and elevator
hall). Moreover, the heat and cold sources come from the network of campus utilities.
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AFB design information is summarized in Table 1. The MECH-HVAC data were the
original value in 1983, and AFB was retrofitted. There are common differences between the
historic building utility data (provided by the Georgia Institute of Technology Libraries).
Annual real-life electricity data were collected for a baseline scenario of the current usage
profile of the modeling production for 15 min as an interval and 01/01-12/31 as a period.
In addition, it had 35,136 measured points with 11 data points missing in this case.

Table 1. General properties of the aimed building.

Building Total
Ventilated

Volume [m3]

Building
Height

[m]

Envelope Heat
Capacity

[J/K]

Cooling
System Full
Load COP

Material

Roof
U-Value

[W/m2/K]

Opaque
U-Value

[W/m2/K]

Window
U-Value

[W/m2/K]
SHGC

9083.00 13.80 Medium:
165,000*Af 4.10 0.45 0.70 2.67 0.20

In some cases, the utility data may be shared among neighboring buildings, and the
ammeter may be outdated or subject to external factors that are not accounted for in the
EPC. The solution was testing and finding the optimal combination of input variables
in the EPC energy-building model that satisfied the desired target and complied with
the problem constraints using Tech-Opt, an added feature to the EPC calculator, which
brings a template into the EPC input spreadsheet to be populated with data related to the
optimization problem (Table 2).

Table 2. Envelope properties of the prototypical building.

Climate
Zone

Representative
City

Main Building Design Information

General Geometry

Envelope
Heat

Capacity
(J/K)

Building
Energy

Management
System

Temperature Setpoint
[◦C]

3A,
ASHRAE
Standard

Atlanta
Volume

[m3]
Wall
[m2]

Window
[m2]

Window
Overhang

Direction and
Angle

[degrees]

Heavy
(260,000*Af)

No building
automation

function

For heating For cooling

14,000 1650 390 SW (30) 21 24

2.2. Shading Analysis

As an effective parameter for solar heat gain, the shading reduction factor (SRF) of
the facade and roof is calculated as input data for EPC. The construction environment is
displayed in Figure 6 to provide better visualization of truthful reflection emitted as heat
or energy.
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2.3. Data Optimization

In this section, we concentrate on the common problems in information acquisition and
input data optimization of historical campus buildings using EPC calibration. For delivery
of energy-related parameters, firstly, most middle-size campus buildings (e.g., AFB) do not
have independent cooling and heating sources. Hence, direct COP data input will make the
calculation result inaccurate; hence, the weighted method was used in this study. Secondly,
the dispersion of some public functions on campus is generally undertaken by non-teaching
buildings. In this case, there are electrical and mechanical rooms on the underground floor
where appliances are quite different from the official zones. Hence, the Mechanical Room
(MR) performance was calculated separately, and two independent cases were tested. In
addition, the related values reduce significantly for cooling and heating energy-related
input data during the winter and summer vacation, and the weighted percentage in EPC
calibration could be adjusted to suit the specified scenario.

The process of determining the range of input parameters in the calibration operation
was as follows: (1) obtaining the actual energy consumption data by interpreting the meter
and inserting it into EPC-Calib as a parameter, and (2) determining the range of calibration
parameters (continuous variables). This simulation set a range of values for 9 unknown
input values (Table 3).

Table 3. Main calibration parameter ranges.

Inputs Variable Limits
Reference

Parameter Unit Minimum Maximum

Heating COP kW/kW 0.5 5 Based on the typical VAV cooling system general values
Cooling COP kW/kW 0.5 5

Building air
leakage level (m3/h)/m2 0.05 2.2 Building air leakage level and ASHRAE 90.1-2019: B2

Compliance [32]

Appliance-OF W/m2 6 11
For the light-weight partition interior, considering

200–250 W/m2 equal to 1 computer/m2, thus, we gave a
range 1–100 for office rooms; 30–750 for serves rooms

Lighting-OF W/m2 5 12

A standard official open-plan consists of three-lamp
luminaires spaced is set at 8 ft. × 10 ft. (2.4 m × 3 m) (Lighting

and Standard 90.1-ASHRAE)
Older technologies of T12 lamps and magnetic ballasts will
result in an LPD range of 1.2 to1.4 W/ft2 (12.9 to15 W/m2),

which exceeds the maximum of 1 W/ft2 (10.8 W/m2) allowed
under the ASHRAE 90.1-2016 [33]

Appliance-MC W/m2 350 750 ASHRAE Handbook—HVAC Applications

Lighting-MC W/m2 5 20 ASHRAE Handbook—HVAC Applications

Outdoor Air liter/s/person 5 15 ASHRAE Fundamental (SI)
DHW liter/m2/month 0.05 10 ASHRAE Fundamental (SI)
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The calibration process was based on the minimization of the overall difference be-
tween the values from the real building utility data and the results from the simulation.
The solver was set to minimize the value contained in the cell that calculates the overall
difference during the entire year. There were two modes for this calculation:

1. The non-weighted method: It calculated the average of all four sets of comparisons
throughout the whole year.

2. The weighted method: It calculated the average value of the differences multiplied by
the established weights. This formulation is convenient because it enables the user
to consider impact weights for the building data. This is performed on a monthly
basis for each set of building data. Whenever weight is specified as zero, it means that
the respective set or the respective month is not considered in the calibration process.
The range of variation of the weights is defined in the maximum and minimum
weight cells.

The main governing equations for these two methods are as follows:
For District Heating

Φst = Hdi * QHnd * | S |
If there is district heating (user decision), then Hdi = 1 ELSE Hdi = 0.

(1)

where QHnd is the heating need energy (kWh/m2), S is the gross floor area (m2), and Φst is
the district heating (e.g., steam) (kWh).

For District Cooling

Φcw = Cdi * QCnd * | S |
If there is a district cooling source, then Cdi = 1 ELSE Cdi = 0.

(2)

where QCnd is the cooling need energy (kWh/m2), and Φcw is the district cooling source
(e.g., chilled water) (kWh).

For Electricity Delivered

Φel = (Etotal − ECool − Eheat) * | S | (3)

where Φel is the electrical energy (kWh/m2), Etotal is the total delivered energy (kWh/m2),
Ecool is the delivered cooling (kWh/m2), and Eheat is the delivered heating (kWh/m2).

For the Overall Difference During the Entire Year (Weighted)
The building utility data (kWh) are divided into four categories: delivered electricity,

district heating, district cooling, and delivered gas, which are weighted twice: once for the
monthly weight decision and another for the category weight decision. For example, the
overall difference during the entire year (weighted) is defined as:

Went= (AVel * W′el + AVht * W′ht +AVcl * W′cl +AVgas * W′gas)/SUM(W′el + W′ht +
W’cl + W’gas)

(4)

where AVel is the annual average of the electricity delivered energy (kWh/m2), AVcl is the
annual average of the cooling district energy (kWh/m2), AVht is the annual average of
the heating district energy (kWh/m2), and AVgas is the annual average of the gas energy
(kWh/m2). Furthermore, Wel, Wht, Wcl, and Wgas are the average of the four differences,
which are manually entered, and the minimum weight and maximum weight are 0 and 3,
respectively. However, if the weight of an item is 0, the difference of that item should not
be taken into account. That is:

W′el, W′ht, W′cl, W′gas = IF (Wel, Wht, Wcl, Wgas <> 0, 1, 0) (5)
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2.4. Scenarios and Criteria

According to a reference resource of energy efficiency measures (EEMs), when per-
forming an energy audit, efficiency measures available were considered without extensive
changes (e.g., converting an internal courtyard into an atrium to reduce external wall
surfaces). Sixteen optimization scenarios were set to derive the optimistic and cost-effective
measures (Figure 3). The optimization algorithm was run for each measure with starting
conditions and was controlled by the users with the main index input at various technology
levels. The baseline index or value in this study is displayed in Table 4.

Table 4. Potential retrofit measures for A. French Building.

Optimization Technology Levels Cost ($) Reference

Lighting
daylighting

factor

Baseline (NULL) 0.00 IES Lighting Handbook:
The Standard Lighting

Guide [34]
Partial sensor 600.00

Fully automated sensor 1400.00

Lighting
occupancy

factor

Baseline (NULL) 0.00 https://www.homewyse.
com/maintenance_costs/

index.html; http:
//www.homedepot.com/,

accessed on 5 April 2023

Partial sensor 600.00

Fully automated sensor 1400.00

Lighting
constant

illumination
control factor

Baseline (NULL) 0.00

Partial sensor 500.00

Fully automated sensor 1000.00

Heating and
Cooling Plants

efficiencies
(COPs)

Baseline HVAC 0.00
The R.S. Means. 2021.

Facilities Maintenance &
Repair Cost Data

handbook [35]

HVAC variation 2 1200.00

HVAC variation 3 2350.00

HVAC variation 4 4120.00

Heat
recovery type

No heat recovery 0.00

The R.S. Means. 2009.
Facilities Maintenance &

Repair Cost Data. R.S.
Means Company. [36]

Heat exchange plates or
pipes (0.65) 2750.00

Two-elements-system (0.6) 2300.00

Loading cold with
air-conditioning (0.4) 1800.00

Heat-pipes (0.6) 2200.00

Slowly rotating or
intermittent heat
exchangers (0.7)

3460.00

Exhaust air
recirculation
percentage

No exhaust air recirculation 0.00

Exhaust air
recirculation 20% 620.00

Exhaust air
recirculation 40% 1200.00

Exhaust air
recirculation 60% 1830.00

https://www.homewyse.com/maintenance_costs/index.html
https://www.homewyse.com/maintenance_costs/index.html
https://www.homewyse.com/maintenance_costs/index.html
http://www.homedepot.com/
http://www.homedepot.com/
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Table 4. Cont.

Optimization Technology Levels Cost ($) Reference

Building air
leakage level

Minimum infiltration
0.4 (Air flow

m3/h per floor
area at Q4Pa)

Maximum infiltration
1.5 (Air flow

m3/h per floor
area at Q4Pa)

DHW
Generation

System

Electric (0.75) 0.00

VR-Boiler (0.61) 475.00

Gas Boiler, HR-Boiler (0.75) 620.00

Co-Generation (0.9) 1300.00

District Heating (0.9) 450.00

Heat Pump (1.4) 1800.00

Steam (0.61) 530.00

Type of BEM
system

installed

Class D 0.00

Class C 650.00

Class B 2780.00

Class A 4200.00

PV module
Surface Area

Minimum # PV modules 0 (PV module
surface area, m2)

The R.S. Means (2010).
Building Construction Cost

Data. R.S. Means
Company. [37]Maximum # PV modules 35 (PV module

surface area, m2)

Solar Collector
Surface Area

Minimum # Solar Col. 0 (Solar collector
surface area, m2)

Maximum # Solar Col. 4 (Solar collector
surface area, m2)

Appliance

Energy-Star Baseline 0.00
http://www.dcd.com/,
accessed on 5 April 2023

Energy-Star Top 10% 1350.00

Energy-Star Top 5% 2120.00

Lighting type

100%CFL 0.00 https://www.energy.gov/
eere/buildings/building-

retrofit, accessed on 5 April
2023; The NREL database is

also a good help:
http://www.nrel.gov/ap/

retrofits/group_listing.
cfm/, accessed on 4

September 2022

LED&CFL combo 3100.00

LED 6700.00

Roof1

Roof Baseline 1 0.00
http://www.dcd.com/,
accessed on 5 April 2023

Roof Improvement 2 600.00

Roof Improvement 3 2700.00

Opaque1

Wall Baseline 1 0.00
http://www.dcd.com/,
accessed on 5 April 2023

Wall Improvement 2 3460.00

Wall Improvement 3 6840.00

Window1

Window Baseline 1 0.00
http://www.dcd.com/,
accessed on 5 April 2023

Window Improvement 2 2140.00

Window Improvement 3 8700.00

http://www.dcd.com/
https://www.energy.gov/eere/buildings/building-retrofit
https://www.energy.gov/eere/buildings/building-retrofit
https://www.energy.gov/eere/buildings/building-retrofit
http://www.nrel.gov/ap/retrofits/group_listing.cfm/
http://www.nrel.gov/ap/retrofits/group_listing.cfm/
http://www.nrel.gov/ap/retrofits/group_listing.cfm/
http://www.dcd.com/
http://www.dcd.com/
http://www.dcd.com/
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The criteria to evaluate the retrofitting performance are defined below.
Objective Function: The net present cost (NPC) of 20 years, in dollars, is defined as:

NPC = P1 + P3 (6)

Overall Parameter 1 (P1): The premium cost of the mix of technologies, in dollars, is
composed of the cost of a group of retrofit solutions used in the prototype as follows:

P1 = Cdl + Coc + Cil + Ccop + Chr + Car + Cal + Cdhw + Cbew + Cpv + Csol + Cap + Clt + Crf
+ Copa + Cwin

(7)

where Cdl is the daylighting factor of lighting energy effectiveness, Coc is the occupancy
factor of lighting affection, Cil is the lighting constant illumination control factor, Ccop is the
heating and cooling plants efficiencies (COPs), Chr is the heat recovery type, and Car is the
exhaust air recirculation percentage. Moreover, Cal refers to the building air leakage level
(air flow m3/h per floor area), Cdhw denotes the DHW generation system, Cbew is a type
of BEM installed system, Cpv is the PV module surface area (m2), Csol is the solar collector
surface area (m2), Cap is the appliance (W/m2), Clt is the lighting (W/m2), Crf is one type
roof being studied, referred to “the roof 1”, Copa is the opaque 1, and Cwin is the window 1.

Each part of the calculation relies on the EPC internal logic according to the ISO91
standard (Figure 2). The impact of each strategy on the building performance is converted
into energy consumption results, and the criteria are as follows. Take light Cdl as an example:

Cdl = OFFSET (inside, variable,0,1) (8)

where the variable (a sequential index, 1, 2, 3, 4...) is linked with the solver.
Overall Parameter 2 (P2): Total delivered energy savings per cost of 20 years (kWh/USD)

is defined as [1]:

P2 = ((Eheat + ECool + Elight + Efan + Epump + Eos + EDHW − Egen_pv − Egen_wind) * S * 20)/ P1 (9)

where P2 is the delivered energy (kWh/m2/yr), Eheat is the delivered heating energy
(kWh/m2/yr), ECool is the delivered cooling energy (kWh/m2/yr), Elight is the lighting en-
ergy (kWh/m2/yr), and Efan is the fan energy (kWh/m2/yr). In addition, Epump is the pump
energy (kWh/m2/yr), Eos is the appliance energy (kWh/m2/yr), EDHW is the domestic hot
water energy (kWh/m2/yr), Egen_pv is the photovoltaic generation energy(kWh/m2/yr),
Egen_wind is the wind turbine system generation energy(kWh/m2/yr), and S is the gross
floor area (m2).

Overall Parameter 3 (P3): Total electricity cost (i.e., present cost, dollars) is defined as:

P3 = −PV (Dic, Pan, Cel) (10)

where Dic is the discount rate, Pan is the period of analysis (years), and Cel is the annual
electricity cost (USD/yr).

Since the evolutionary algorithm is a metaheuristic method, one cannot assure that a
solution will be achieved, and if found, it is already the global optimal solution. Therefore,
different values are kept in a range. For example, based on scenarios tested in Tech-Opt,
the simulation times and results showed that the Mutation Rate may be kept in the range
between 0.3 to 0.95, and 0.75 is inserted. The Population Size should be in the range of
10 to 50, and population numbers of 10 or 20 have been key elements to help the solver
escape from pitfalls in the solution space. However, depending on the configuration of this
problem, a smaller population number may require repeated runs in order to achieve better
solutions. Moreover, the value of the Random Seed is left empty to try a different search
at every run. In addition, the Maximum Time without improvement is set to make quick
checks to see where the optimization is going or to let it run through more time to try to
find better solutions, which is 80 in this case.
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3. Results
3.1. Shading Analysis

In this study, the shading reduction factor (SRF) of the facade and roof was calculated
as input data for the EPC. The annual average shadow percentage value for each facade
was compared in Figure 7. It can be observed that the sunshine hours of the south facade
were susceptible to the surrounding environment with an annual average shading rate of
17.7%, while the roofs were less affected with an annual average rate of 3.7%.
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3.2. Data Optimization

The overall difference (weighted) in the various indicators obtained using the cali-
brated parameter values was analyzed (Figure 8). The bar chart represents the value range
of each parameter, and the gray dots indicate the calculated selection. The measured energy
consumption data during the entire year was maintained below 10% (Figure 9). It should
be noted that the weighted value was employed because AFB has no district heating source
(e.g., steam), which made the actual measured value deviate from the simulated one.
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togram) and selections.
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Figure 9. Monthly differences between measured energy consumption data and verification results
of A. French Building (delivered electricity).

Figure 10 illustrates that cooling and heating needs for above-ground structures
accounted for the largest portion of energy consumption (59.8% of total delivered energy
consumption), followed by appliance energy (12.9% of total consumption). Lighting and
ventilation-related factors also contributed significantly (16.3% and 9.1%, respectively),
which should draw the attention of architects. This is because improving daylighting
conditions or increasing natural ventilation by reducing building depth are common
strategies for designing semi-enclosed spaces.
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3.3. Renovation Strategy Ranking and Primary Design Scheme

Design strategies that take into account local microclimatic conditions can lower the
overall energy consumption of buildings. In this study, the renovation strategies that
guide the primary architectural design were focused on, which aimed to redistribute the
unit function space to meet diverse needs while also saving energy. The construction
phase involved the use of EPC-TechOpt to calculate the efficiency variation in energy
consumption caused by specific design values (such as the area of the south facade of the
newly added structure), which helped architects balance the benefits of spatial adaptability
and energy conservation. The Renovation Strategy Ranking and Primary Design Scheme
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were assessed using a retrospective analysis approach, wherein the energy consumption
data of the pre-renovation and post-renovation periods were compared. The results showed
that the proposed renovation strategies and primary design scheme successfully reduced
the energy consumption of the building.

In Figure 11, two design schemes were presented that were created by architects
who concentrated on meeting diverse educational and social needs, as well as renovating
the building. These schemes were compared to the original model, which only included
improvements related to thermal performance. The architectural design details were shown
in Figure 11a,b. It is important to note that comparing the energy consumption performance
of each scheme for deterministic retrofitting was not meaningful, as the renovation of space
functions had to be taken into account. However, it could provide useful indicators for
designers to assess the impact of design decisions on energy consumption performance, in
conjunction with optimization options.
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Figure 11. Design schemes considering the instant presentation of performance quantification indices.
(a) Design Scheme I: The lobby and traffic area are centralized to provide sufficient and efficient
public space. (b) Design Scheme II: The traffic evacuation units are rearranged for more applicable
public space creation. (c) Rendering of design Scheme I. (d) Rendering of design Scheme II.

Figure 11a depicts a design scheme that concentrated on creating a more open and
collaborative space for students and staff. The scheme included the removal of walls and
the addition of glass partitions to create a more open and flexible space. The scheme also
included the installation of solar panels on the roof, which helped to generate renewable
energy and reduce the building’s reliance on fossil fuels. The scheme also included the
installation of energy-efficient lighting and HVAC systems.

Figure 11b depicts a design scheme that concentrated on creating a more sustainable
and energy-efficient building. The design also included the installation of energy-efficient
glazing and insulation, which helped to reduce heat loss and improve thermal perfor-
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mance. The scheme included the use of natural ventilation and daylighting to reduce
energy consumption.

Overall, both design schemes demonstrated the potential for architects to create
buildings that meet diverse needs while also improving energy performance. By using
computational design tools and optimization options, architects could assess the impact
of design decisions on energy consumption and make informed decisions that led to
better-performing buildings.

The optimistic efficiency performance of 16 retrofit measures for three design models
(Original model, Scheme I, and Scheme II) is displayed in Figure 12. As is mentioned
above, indexes (variables) of each retrofit measure are automatically calculated and sorted
by the EPC calculator to help architects find the optimal solution of each retrofit solution.
The following is an analysis of the energy-effective performance of each strategy in each
scheme. The NPC and P2 (total delivered energy savings per cost) were treated as the
main index, while a detailed evaluation could be depicted by P1 (premium cost of a mix of
technologies) and P3 (total electricity cost). Slight drop trends were observed for the net
present cost of the schemes (4.90% for Scheme I and 4.60% for Scheme II) from the original
model, which improved thermal properties without space change, primarily driven by the
distinct total electricity cost. In comparison, the energy-saving effect of Scheme I for total
delivered energy savings per cost was significantly better than others (24.80% compared to
the original model).
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Furthermore, the type of installed BEM system accounted for a relatively higher
premium cost ($22,200.00, the average value of the three models), second only to the
window improvement ($24,780.00), indicating an obvious potential for the total electricity
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cost of 20 years ($3,866,552.34). It also demonstrated a remarkable positive performance
regarding the net present cost. The second recommended option is a lighting constant
illumination control factor improvement, with a 37.77% cost increase compared to the
installed BEM system type.

Figure 12b indicates a view different from the NPV and P3 implications since the
premium cost of the mix of technologies and total electricity cost were not a level amount.
According to this index, the building air leakage level was regarded as the most favor-
able option (198.23 kWh/USD), followed by the alternative envelope improvement (roof,
171.29 kWh/USD). The PV module in Scheme I shows significantly effective delivered
energy savings per cost (215.68 kWh/USD) because there were newly added surface areas
in the south and west façade of this scheme.

Overall, if sufficient and efficient public space is valued, Scheme I could be obtained
by achieving 39% energy saving (with the top four retrofit measures: type of BEM system
installed, lighting constant illumination control factor, lighting daylighting factor, heat
recovery type) with the premium cost of the mix of technologies at $134.12 kWh/m2/yr.
While the traffic evacuation unit rearrangement was esteemed, Scheme II could be obtained
by achieving a 44% energy saving (with the top four retrofit measures: type of BEM system
installed, lighting constant illumination control factor, lighting daylighting factor, heat
recovery type) with the premium cost of the mix of technologies at $124.49 kWh/m2/yr.

4. Discussion
4.1. Limitations and Effects on the EPC Calculation

The EPC calculation is more effective for cooling calculations than for heating. One rea-
son for this is that heating calculations involve many complex factors and interrelationships.
Energy performance is calculated on a monthly basis, and generally, buildings in Atlanta
require more cooling than heating. Additionally, some heating demands may be unknown,
such as when cooling is needed during the daytime when the outdoor temperature is 20 ◦C,
while heating is required during the night when the outdoor temperature is 0 ◦C. This can
result in an average heating requirement being overlooked. Only when a building’s heating
needs are significantly greater than its cooling needs will the heating calculation be more
accurate than the cooling calculation.

4.2. Discussion on Performance-Driven Architectural Design and Its Theory and Ethics

It is convenient for architects to use this normative model with renovation strategies
that include energy conservation measures for identifying and determining costs when
designing architecture, particularly when the space is partially reformed and performance
calculations need to be synchronized. However, it is important to acknowledge that
this approach requires architects to have a basic knowledge of HVAC and the ability
to reprogram software. It is not as effective to simply bind each design choice with a
performance indicator. Some researchers argue that directly comparing the indicator of each
component and then making a design decision will render the overall significance irrelevant.
This requires a higher level of perceptual judgment (this study employs a globally optimal
solution, but in comparison to the human brain’s ability to integrate information from
multiple perspectives, it apparently remains rudimentary). Apart from assisting human
architects in design, there are also models that enable performance-driven generative design
for spatial form, as mentioned in the introduction. This type of model is generated based
on artificial intelligence in the preliminary design stage and is then submitted to architects
for final manual selection. However, architects cannot fully understand the entire process,
which is a black-box without traceability (compared with gray-box and white-box).

5. Conclusions

Timely-related information feedback to the architects and engineers in primary design
is essential to help overcome the fixation of empiricism and achieve a performance-informed
and performance-aware design process. DPM supports these rational dialogues, and
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this case study employed a normative energy calculation method, the EPC, beyond the
performance rating of sustainable building renovation strategies on campus since the
context and purpose of the dialogue vary constantly. The common problems in information
acquisition and input data optimization of historical campus buildings concentrate on EPC
calibration. The weighted method is for the rhythmic change in energy supply to satisfy
the needs of teaching activities. The divided modeling is used to suit the flexible functional
space of non-main buildings, and the calibration process is based on the minimization of
the overall difference between the values from the real building utility data and the results
from the simulation. Furthermore, the retrofit study including the spatial form redesign is
implemented by EPC-TechOpt. Energy conservation measures are identified to improve
energy performance, while the cost of each measure is determined. Based on this model,
while redesigning according to functional needs, designers can always be aware of the
changes in these performance calculations to find the optimal solution for various needs,
whether it is the space function, cultural environment, heritage of historical buildings,
energy conservation, or performance maintenance and update.

Architecture-related studios or firms have concentrated their attention on the primary
design stage in response to the expectations expressed by owners and occupants and their
fulfillment by designers and building operators. Some firms even attempt to replace the
work of designers by utilizing machine learning for intelligent management of design
elements, architectural drawing recognition, and generative design for spatial form. It is
important to note that building design concentrated on performance should enhance human
capacity. This means that it should not only serve as a tool to measure design intuitively,
but also broaden designers’ perspectives to deliver greater value. In other words, architects
should possess some programming knowledge to achieve the most accurate performance
calculations and expand their design thinking to include software creation. Providing this
support is crucial to prevent software limitations from restricting human creativity.
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