
Citation: Liu, J.; Yang, Y. Controlling

Industrial Air-Pollutant Emissions

under Multi-Factor Interactions

Based on a Developed

Hybrid-Factorial Environmental

Input–Output Model. Sustainability

2023, 15, 7717. https://doi.org/

10.3390/su15097717

Academic Editor: Elena

Cristina Rada

Received: 22 March 2023

Revised: 20 April 2023

Accepted: 25 April 2023

Published: 8 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Controlling Industrial Air-Pollutant Emissions under
Multi-Factor Interactions Based on a Developed
Hybrid-Factorial Environmental Input–Output Model
Jing Liu * and Yujin Yang

Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, School of Environmental
Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
* Correspondence: zyljing@126.com

Abstract: A hybrid-factorial environmental input–output model (HEIM) is proposed for controlling
industrial energy-related air pollution. HEIM has the advantages of analyzing industrial air-pollutant
emission system (IAES) performance, quantifying key factors’ individual and reciprocal effects
on the system, generating optimal system planning strategies under multiple scenarios. HEIM is
then applied to Fujian province, which is a special economic development region in China. The
significant findings are as follows: (i) the main sectors of pollutants’ (NOx, SO2, PM and VOCs)
emissions are electricity supply (ELE), transportation (TRA), nonmetal minerals (NON), chemical
products (CHE) and metal processing (MET); (ii) the proportion of air pollutants (NOx, SO2 and PM)
emitted from energy activities can reach 83.8%, 88.6% and 68.1% of the province’s total emissions,
implying that it is desired for industrial activities to improve the energy efficiency and promote
cleaner production; (iii) the system robustness was between 0.287 and 0.321 (maximum value is 0.368),
indicating the emission structure of IAES was not healthy; (iv) the contributions of the key factors to
air-pollutant emission equivalent are NOx emission (51.6%) > ELE coal consumption (25.8%) > SO2

emission (12.5%); (v) the contributions of the key factors affecting system robustness are equipment
manufacturing’s (EQU) direct consumption coefficient (81.4%) > CHE coal consumption (11.7%) >
NON coal consumption (5.0%). The optimal strategies should strictly control ELE coal consumption
(replaced by clean energy) and strictly limit NOx and SO2 emissions (e.g., technology upgrade) from
the main sectors.

Keywords: air pollutants; cleaner production; emission mitigation; input–output model; multistage
factorial analysis; robustness

1. Introduction
1.1. Importance and Motivation

The world has undergone rapid economic development and population growth as
well as accelerating industrialization and urbanization, which has also led to serious
environmental pollution [1]. For China, the emissions of sulfur dioxide (SO2), nitrogen
oxides (NOx) and particulate matter (PM) reached 18.6× 106, 18.5× 106 and 15.4 × 106 tons
in 2015; the shares of SO2 and NOx were more than 30% and 20% of global emissions [2,3].
In 2017, only 30% of China’s cities met the National Ambient Air Quality Standard, with
non-compliance of PM being the most prominent air pollution problem [4]. The Global
Burden of Disease report indicated that China is one of the top two countries for premature
deaths associated with air pollution, with 1.2 million deaths in 2017 [5]. Furthermore,
air pollution has caused huge economic losses, equivalent to 1.2% of China’s annual
gross domestic product (GDP) based on disease costs and 3.8% of annual GDP based on
willingness to pay [6]. Reducing air-pollutant emissions is a great challenge for the Chinese
government in the 21st century.
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Fossil energy combustion (e.g., coal and oil) for economic production activities is the
main source of air-pollutant emissions [7]. Due to differences in sectoral energy consump-
tion, the emission performance of various economic sectors varies significantly [8]. A sector
usually emits multiple air pollutants at the same time, and various pollutants have different
hazards due to different generation mechanisms. In addition, the generation of emissions
can be indirectly induced through intersectoral trade [9]. Many factors, such as sectoral
energy consumption structure, emission types and intersectoral trade, jointly affect the
regional air security. Such complexities would correspondingly bring more challenges to
mitigate air pollution [3,10]. It is essential to quantify such complexities for decision makers
to formulate reliable control strategies adopting more robust system analysis methods.

1.2. Literature Review

To seek effective emission reduction strategies from a socio-economic perspective, the
production-based approach (PBA) and consumption-based approach (CBA) are widely
employed for accounting the emissions of air pollutants [9,11]. PBA can restrain the
air-pollutant emission behavior of producers and can facilitate producers to improve
the energy efficiency of unit products [12]. Many scholars, based on PBA, analyzed the
generation mechanism of air pollutants and developed advanced cleaner production tech-
nologies [13,14]. For example, Mozaffar et al. [15] measured the concentration levels of
NOx, SO2, volatile organic compounds (VOCs), ozone (O3) and carbon monoxide (CO)
in the City of Nanjing and investigated their effects on the formation of O3. Zwolińska
et al. [16] developed an integrated method to remove NOx and SO2 from diesel off-gases
simultaneously. Moreover, in order to analyze and simulate regional air quality, a series
of air pollutants (e.g., NOx, SO2, PM, VOCs and CO) emission inventories were estab-
lished [17,18]. However, PBA ignores the existence of indirect emissions caused by sectoral
production activities in the supply chain, which can lead to pollution spillovers and affect
the effects of mitigation policies. Excluding indirect emissions can essentially lead to in-
equitable distribution of emission control assignments, further affecting regional emissions
control efficiency, and this can adversely affect active involvement in emission control.

Compared to PBA, CBA measures air-pollutant emissions from final products (and
imports), where responsibility for air-pollutant emissions control is taken by users. In
terms of CBA, an environmental input–output model (EIOM) provides a powerful tool
to assess direct and indirect emissions by considering intersectoral commodity trade and
final consumption [19,20]. In EIOM, the traditional economic system is converted into
an industrial air-pollutant emission system (IAES). EIOM has been widely employed to
support the reduction of various air pollutants. Specifically, Alcántara et al. [19] applied
EIOM to calculate NOx emission of different sectors in Spain; the results provided guidance
for different sectors to formulate corresponding NOx emission reduction strategies. Yang
et al. [21] used EIOM for analyzing the transfer of embodied PM2.5 emissions in north China,
which revealed that the embodied PM2.5 exports from the north China region mainly flows
to China’s central coastal areas and the Beijing–Tianjin region. Liu et al. [22] employed
EIOM to analyze the driving factors of SO2 emissions in 30 provinces of China, where
domestic final demands, domestic exports and international exports were screened out.
Li et al. [23] determined the flow patterns of PM2.5 emission in the Beijing–Tianjin–Hebei
region through EIOM; the results showed that Beijing is a net importer and Hebei is a net
exporter of PM2.5. Zhang et al. [24] used EIOM to investigate the changes in air pollutant
emissions among various sectors in China from 2012 to 2017; the results indicated that
the metal sector replaces the power sector as the largest net emitter. Bortoli and Agez [25]
developed an EIOM for analyzing the industrial environmental impacts of Canada, where
the main sectors were recognized depending on a comprehensive indicator, and strategy
adjustments were suggested (e.g., reducing concrete and asphalt products and increasing
investment in machines powered with clean energies). These proved that the EIOM can
reveal IAES performance and calculate emission amounts, analyze emission flows, explore
intersectoral relationships and detect system robustness.
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When considering the city as a “superorganism” in nature, various socioeconomic
factors are directly and/or indirectly linked [26]. IAES can be treated as a network where
economic sectors are analogous to nodes and inter-sector transactions are analogous to
edges. According to complex network theory, there are socioeconomic factors that are
critical to reducing emissions. An IAES can be likened to a network where economic
sectors are nodes and inter-sector transactions are edges. According to complex network
theory, there are socioeconomic factors (e.g., multiple sectors, energy sources, air pollutants,
treatment measures and reaction processes) that are critical to reducing emissions. These
factors may be featured with uncertainty and interact with each other, leading to plenty of
interactions hidden in IAES [27]. For example, changes in the production capacity of the
metal manufacturing sector can affect the transmission of electricity in the power sector and
the mining of metal minerals in the mining sector. EIOM can effectively classify sectors as
direct emitters or indirect emitters to allocate different emission responsibilities; however,
it cannot effectively identify the factors and their interactions that have a key impact on
emission reductions. Such ignorance may hinder the authorities in making sound pollution
control strategies.

An attractive method that can be used to address the above-mentioned obstacles is
factorial analysis (FA), which can quantify the individual and reciprocal effects of fac-
tors on system responses [28,29]. Liu et al. [30] employed FA for exploring greenhouse
gas types and sources’ effects on urban emission systems in Saskatchewan, where the
effects of individual factors and interactions were quantified. Wang et al. [29] proposed
an FA-based multivariate statistical prediction method to investigate the variation of the
Guangzhou–Foshan region forest coverage area, which effectively revealed the potential
relationship between human activity and natural factors. Zhang et al. [31] used FA to
analyze the interactions of temperature, oil type, gas composition, gas-oil ratio and pore
radius on the interfacial tension and minimum miscibility pressure of the light oil–CO2
system. Jia et al. [32] employed FA to explore the effects of human activity and hydrological
and ecological factors on inflow from the Syr Darya to the Aral Sea; the results revealed
that agricultural water consumption was the most important factor. The above-mentioned
studies are effective in exploring the effects of a small number of factors. FA may be infeasi-
ble when facing a great number of factors, due to the massive amounts of times required of
running the model [33]. A hybrid-factorial analysis (HFA) method can be formulated to
handle these problems. Taguchi analysis is employed to screen key factors by performing
only a fraction of the total number of running times. Full factorial analysis including
these factors can be employed to explore their reciprocal effects on IAES performance, and
optimal industrial air-pollutant emissions control strategies can be obtained by introducing
a commonly used selection method.

1.3. Objective and Contribution

Based on previous research, this study aims to put forward a hybrid-factorial environ-
mental input–output model (HEIM) for controlling industrial energy-related air pollution.
The main contributions are as follows: (i) this is the first attempt to develop such a new
HEIM for an industrial air-pollutant emission system (IAES); (ii) the model cannot only
identify the main industrial sectors and crucial paths of multiple pollutants’ emissions,
but can also reveal the associated relationships among sectors and the emission status
in IAES; (iii) the model can also calculate the contributions of multiple factors’ variation
to IAES’s emissions, flows, forces and robustness changes for exploring key factors and
their interactions; (iv) an entropy-based TOPSIS method is introduced for screening and
generating optimal industrial air-pollutant emission control strategies. HEIM is applied to
support IAES planning of Fujian province to verify its feasibility and practicality.

2. Methodology

HEIM is formulated through introducing the HFA method into an EIOM framework
(details are in Figure 1). In the model, NOx, SO2, PM and VOCs are generated from
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coal, gasoline, diesel, kerosene and fuel oil. EIOM reveals the performance of IAES and
recognizes the main sectors. HFA screens out the key factors by Taguchi analysis and
gains insight into the interactions between key factors by full factorial analysis. The
entropy-based TOPSIS method provides final decision-making support (details are listed
in Supplementary Material).
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Figure 1. The framework of HEIM.

2.1. Environmental Input–Output Model

An input–output model (IOM) is used to reveal the interdependent economic relation-
ships between various sectors [34]. In the input–output table (IOT) of IOM, the horizontal
direction represents where the output of the sector is consumed, and the vertical direction
indicates the input source required by the sector for production activities. The physical
IOM can be developed by introducing embodied environmental element intensity into
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conventional IOM, which is useful for reflecting the overall status of air-pollutant emissions
through sectoral monetary transactions [35]. It can be presented as follows:

Xi =
N

∑
j=1

Zi J + fi (1)

E + εZ = εX (2)

ε = E(X− Z)−1 (3)

ENap = diag(ε) ∗ Z (4)

DEt,i = ∑
p=1

CSi,p × ECt,i,p (5)

Ei = ∑
t=1

(DEt,i/SCt) (6)

where i and j represent the economic sectors in the IOT; Xi is the economic sectoral output,
X = diag(Xi)N×N; Zij is the use of product i assigned to sector j, Z = [Zij]N×N; fi is the sectoral
final demand; E indicates the air-pollutant emission equivalent (APEE) of a sector, which
is used to comprehensively reflect the environmental hazards of different air pollutants,
E = [Ei] 1×N; ε represents the embodied environmental emission matrix (ε = [εi] 1×N, εi
represents the emission coefficient of air pollutants form embodied in the products of a
sector); ENap is the flow of air pollutants between sectors; DEt,i is the emission of the air
pollutant t from sectoral energy consumption; CSi,p is the fuel, p, consumption by sector i;
ECt,i,p is the emission coefficient; SCt is the pollution equivalent value of air pollutant, t.

IAES can be constructed through Equation (7) to further analyze each kind of air
pollutant flow into or out of each sector [36]. Because there are different air-pollutant
emission flow paths between sectors, the non-dimensional integral air pollutant emission
matrix, N, can be computed by Equations (8) and (9). The matrix, Yap, which represents the
integral air-pollutant emission flow between sectors, can be calculated as follows:

Tap
i =

n

∑
j=1

ENap
ji + Ei (7)

gij = ENap
ij /Tap

j (8)

N = (G)0 + (G)1 + . . . (G)∞ = (I−G)−1 (9)

Yap = diag(Tap) ∗N (10)

where Tap
i represents the total air-pollutant emissions of sector i, including inflows from

other sectors and self-emissions; gij is the dimensionless air pollutant emission coefficient
from sectors i to j; Gn is the dimensionless air pollutant emission intensity matrix, with n
path lengths.

To reflect the influence of the input and output integral air pollutant flow of one sector
on the IAES, the driving force and pulling force indicators are introduced [37]:

Wi =
n

∑
j=1

yap
ij /

n

∑
i=1

n

∑
j=1

yap
ij (11)
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Wj =
n

∑
i=1

yap
ij /

n

∑
i=1

n

∑
j=1

yap
ij (12)

where yap
ij represents the integral air pollutant flow from sectors i to j; Wi is the sectoral

driving force; Wj is the sectoral pulling force.
In IAES, there are various emission paths with different intensities. When emissions

within the system are concentrated and in a limited path, it will show higher efficiency
and organization but will also be vulnerable to external disturbances. When emissions
are uniformly distributed, the system will show higher redundancy and be more resilient
to perturbations. According to ecological network theory, efficiency and redundancy are
significant indicators to characterize the health of the emission system [38]. The compre-
hensive indicator (i.e., robustness) can measure the tradeoff relationship between them,
and it can reflect the health condition of IAES. Robustness (R) is obtained as follows [39]:

Efficiency:

AMI = K∑
ij

 ENap
ij

∑
ij

ENap
ij

 log

 ENap
ij ∑

ij
ENap

ij

∑
i

ENap
ij ∑

j
ENap

ij

 (13)

Redundancy:

Hc = −K∑
ij

 ENap
ij

∑
ij

ENap
ij

 log

 ENap
ij

2

∑
i

ENap
ij ∑

j
ENap

ij

 (14)

Robustness:

R = −[AMI/(AMI + Hc)] log{[AMI/(AMI + Hc)]} (15)

Generally, indicators of E, Yap, W and R reflect the emission intensity, emission path,
intersectoral relationship and emission status in IAES, respectively.

2.2. Hybrid-Factorial Analysis
2.2.1. Taguchi Analysis

Taguchi analysis is an efficient experimental design method to identify factors that
have an impact on system performance. It contains certain standard orthogonal arrays (a
number of fixed designed matrix) to evaluate multiple factors’ independent influence in
a minimum number of calculation scenarios [40]. Each column in the matrix represents
a design factor, and each row represents an experiment with a combination of different
design factor levels. Response values under different scenarios are transformed into signal
to noise (S/N) ratio. This is used to calculate the deviation between the expected and the
test results to explore the ability of factors to affect the variability of the response. S/N ratio
is divided into three types, out of which the appropriate type should be selected based on
the response target. The S/N ratio can be obtained by:

(1) Larger the better (i.e., selected when the target maximizes the response).

S/N = −10log
(
∑
(

1/Y2
i

)
/n
)

(16)

(2) Smaller the better (i.e., selected when the target minimizes the response).

S/N = −10log
(
∑
(

Y2
i

)
/n
)

(17)
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(3) Nominal the better (i.e., selected when the target is the response itself and the S/N
ratio is based on the standard deviation only).

S/N = −10log
(
∑(Yi −Y0)

2
)

(18)

where Yi is the response value of the ith computation; n is the number of computations;
Y0 is the mean of all response values.

2.2.2. Full Factorial Analysis

Taguchi analysis can effectively identify key factors, but it cannot fully reflect the
interaction among these factors [41]. Some interactions that differ from the effects of a
single factor may be important. Full factorial analysis is adopted to detect the joint effects
of selected factors [42]. 2k factorial analysis is a commonly used method, where each factor
is divided into low (L) and high (H) levels, resulting in 2k (for k factors) treatment combina-
tions. The summation of the squares of individual factors and two factors’ combination can
be computed as follows:

SSa =
1

VW

U

∑
u=1

(
V

∑
v=1

W

∑
w=1

Yuvw

)2

− 1
UVW

(
U

∑
u=1

V

∑
v=1

W

∑
w=1

Yuvw

)2

(19)

SSb =
1

UW

V

∑
v=1

(
U

∑
u=1

W

∑
w=1

Yuvw

)2

− 1
UVW

(
U

∑
u=1

V

∑
v=1

W

∑
w=1

Yuvw

)2

(20)

SSc =
1

UV

W

∑
w=1

(
U

∑
u=1

V

∑
v=1

Yuvw

)2

− 1
UVW

(
U

∑
u=1

V

∑
v=1

W

∑
w=1

Yuvw

)2

(21)

SSa×b =
1

W

U

∑
u=1

V

∑
v=1

(
W

∑
w=1

Yuvw

)2

− 1
UVW

(
U

∑
u=1

V

∑
v=1

W

∑
w=1

Yuvw

)2

− SSa − SSb (22)

SSa×c =
1
V

U

∑
u=1

W

∑
w=1

(
V

∑
v=1

Yuvw

)2

− 1
UVW

(
U

∑
u=1

V

∑
v=1

W

∑
w=1

Yuvw

)2

− SSa − SSc (23)

SSb×c =
1
U

V

∑
v=1

W

∑
w=1

(
U

∑
u=1

Yuvw

)2

− 1
UVW

(
U

∑
u=1

V

∑
v=1

W

∑
w=1

Yuvw

)2

− SSb − SSc (24)

where a, b and c denote input factors; U, V and W represent the number of levels of each
factor; Yuvw represents the response value at level u, v and w of factor a, b and c, respectively;
SSx and SSx×y represent the summation of squares of individual factors and two factor
combinations.

3. Case Study
3.1. Statement of Problem

Fujian, a coastal province in East China, has been on the fast lane of extensive eco-
nomic development as a spearhead in the country’s reform and opening up. Fujian’s GDP
increased 661 times from 1978 to 2020, with an average annual growth of approximately
12%. In 2020, Fujian’s GDP reached RMB¥ 4.39 trillion, occupying 4.3% of the whole country
(ranking 7th in China). Rapid economic growth demands more energy, but this situation
exacerbates regional air pollution. From 2015 to 2019, Fujian’s energy consumption in-
creased by 18.9%. In 2015, the emissions of NOx, SO2 and PM in Fujian reached 337.9 × 103,
379.9 × 103 and 341.7 × 103 tons, respectively [43]. These pollutants have caused a series
of environmental problems such as increased ozone concentration, acid rain pollution and
haze. As China’s first national ecological conservation pilot zone, Fujian’s goal is to achieve
a green development pattern and establish a comprehensive ecological environment control
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system by 2035, while its industrial structure is still in a high energy consumption pattern
and relies heavily on fossil energy consumption. The local government urgently needs
to seek emission reduction and cleaner production strategies to support its sustainable
development.

3.2. Data Collection

The input–output table (IOT) of Fujian province containing 42 sectors were extracted
from the Fujian Statistics Bureau, and the IOTs for 2012 and 2017 are the latest available
data. Recent Fujian Statistical Yearbooks show that the provincial economic structure has
no obvious change. The proportions of primary, secondary and tertiary industries were
7%→6%, 49%→46% and 44%→48% (“→” denotes tend) in the most recent five years,
respectively. The energy consumption structure also barely changes. Secondary industry
was the largest energy user (i.e., accounting for more than 67% of total energy consumption).
The 42 sectors in the original table are merged into 16 sectors according to the Industrial
Classification for Nation Economic Activities (GB/T 4754-2017) and energy consumption
data (in Table 1). The sectoral emission coefficients and energy consumption were obtained
from the Fujian Statistical Yearbook, China Energy Statistical Yearbook, and official websites
and the literature [43–45].

Table 1. Abbreviations of 16 sectors.

No. Sector Abbreviation

1 Agriculture, forestry, animal husbandry and fishery AGR
2 Mining industry MIN
3 Food, drink, tea Manufacturing and tobacco processing FOO
4 Textile products TEX
5 Timber processing TIM
6 Paper products PAP
7 Petroleum processing, coking and nuclear fuel processing PET
8 Chemical products CHE
9 Nonmetal minerals products NON
10 Metal processing MET
11 Equipment manufacturing EQU
12 Electricity production and supply ELE
13 Construction CON
14 Transportation, storage and postal services TRA
15 Wholesale, retail and accommodation WHO
16 Service industry SER

3.3. Scenario Design

Based on the analysis results of Fujian province in 2012 and 2017 using EIOM, the main
direct and indirect emission sectors can be recognized. Then, HFA is conducted using the
following steps: (1) select the energy consumption of the main sectors, direct consumption
coefficient of the main sectors and sectoral pollutant emission coefficients as factors, and
divide them into two levels; (2) choose the indictors of APEE and robustness as responses;
(3) choose the appropriate orthogonal array Lx (e.g., L27, L32) by the factors and their levels,
leading to Lx scenarios; (4) run EOM to obtain a set of response values under all scenarios;
(5) calculate the S/N ratios to identify k key factors (i.e., those with 90% of contribution); (6)
calculate summation of squares of k factors based on response values under 2k scenarios.
Finally, the entropy-based TOPSIS method is used to help generate optimal scenarios for
supporting the regional industrial air-pollution control. According to Fujian province’s
14th Five-Year (2020–2025) energy conservation and emission reduction comprehensive
work plan, the high level of the selected factors is maintained at the 2017 value, and the low
level is reduced by 20%. The sectoral emission pollutant coefficients are divided according
to strict and loose environmental policies (in Table 2).
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Table 2. Sectoral emission coefficients (unit: kg/ton).

Sector
NOx SO2

Coal Gasoline Diesel Kerosene Fuel Oil Coal Gasoline Diesel Kerosene Fuel Oil

AGR (3.30, 3.75) (9.70, 16.70) (4.00, 5.77) (3.58, 4.48) (3.10, 3.50) (3.80, 4.19) (0.02, 0.10) (0.70, 0.90) (1.00, 2.24) (8.00, 10.00)
MIN-EQU (3.30, 4.30) (3.27, 3.67) (3.21, 3.67) (3.27, 3.67) (3.20, 3.60) (3.20, 4.00) (0.02, 0.10) (0.70, 0.90) (1.00, 2.24) (8.00, 10.00)

ELE (1.70, 2.70) (3.27, 3.67) (3.21, 3.41) - (3.00, 3.41) (2.40, 3.20) (0.02, 0.10) (0.56, 0.70) - (6.00, 8.08)
CON (5.25, 7.25) (9.70, 16.70) (3.27, 9.62) - - (7.66, 9.86) (0.02, 0.10) (0.70, 0.90) - -
TRA (5.25, 7.50) (3.65, 9.36) (12.66, 14.25) (21.00, 27.40) (21.00, 27.40) (3.60, 4.19) (0.02, 0.10) (0.10, 0.10) (1.00, 2.24) (8.00, 10.00)

WHO, SER (2.00, 3.70) (9.70, 16.70) (3.21, 5.77) - - (3.60, 4.19) (0.02, 0.10) (0.70, 0.90) - -

Sector
PM VOCs

Coal Gasoline Diesel Kerosene Fuel Oil Coal Gasoline Diesel Kerosene Fuel Oil

AGR (3.30, 3.71) (1.30, 1.74) (1.30, 1.74) (0.60, 0.90) (1.30, 1.74) (0.45, 0.60) (3.00, 3.37) (3.00, 3.37) (0.13, 0.15) (3.00, 3.37)
MIN-EQU (2.00, 2.50) (0.10, 0.31) (0.40, 0.50) (0.60, 0.90) (0.45, 1.03) (0.18, 0.39) (0.07, 0.10) (0.12, 0.15) (0.13, 0.15) (0.15, 0.17)

ELE (1.30, 2.06) (0.10, 0.31) (0.40, 0.50) - (0.45, 0.85) (0.15, 0.18) (0.07, 0.10) (0.12, 0.13) - (0.12, 0.13)
CON (3.30, 3.50) (2.00, 2.09) (2.00, 2.09) - - (0.18, 0.60) (3.00, 3.39) (3.00, 3.39) - -
TRA (3.30, 3.50) (0.03, 0.04) (1.00, 1.10) (0.60, 0.90) (0.45, 1.03) (0.45, 0.60) (3.00, 3.14) (0.12, 0.15) (0.13, 0.15) (0.15, 0.17)

WHO, SER (3.30, 3.50) (0.13, 0.31) (0.40, 0.50) - - (0.45, 0.60) (0.09, 0.10) (0.12, 0.15) - -

Note: (number, number) correspond to (L level, H level).

4. Result and Discussion
4.1. Air Pollutant Emissions

Figure 2 depicts air pollutants emitted from various sectors. In 2012, the emissions
of NOx, SO2, PM and VOCs related to sectoral energy activities reached 306.1 × 103,
258.9 × 103, 159.4 × 103 and 26.3 × 103 tons. Among them, the shares of NOx, SO2 and
PM were more than 65.5%, 69.8% and 63.0% of the province’s emissions. The emissions of
these four pollutants reached 232.3 × 103, 118.7 × 103, 115.6 × 103 and 18.2 × 103 tons in
2017, and the emissions of NOx, SO2 and PM accounted for 83.8%, 88.6% and 68.1% of the
total emissions, respectively. Compared with 2012, the proportion of pollutants emitted
from sectoral energy activities increased significantly, indicating that energy consumption
became the most important cause of local air problems. For sectoral emissions, ELE, TRA,
NON, CHE and MET dominated various emission in both years. In 2012, these five sectors
contributed 85.3%, 89.5%, 89.4% and 77.7% to NOx, SO2, PM and VOCs emissions. In 2017,
the emissions of these sectors occupied 87.1%, 84.6%, 88.1% and 71.2%, respectively. The
results imply that adjusting energy consumption structure and improving the use efficiency
of these energy-intensive sectors can reduce pollutant generation.
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Figure 2. Air pollutants emitted from various sectors.
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Figure 3 presents the flow of APEE among sectors. Each sector matches a specific
color; the line between sectors indicates the direction of APEE flow, and the width of the
line indicates the amount of inflow or outflow. It is shown that the flow of APEE among
sectors in 2017 is similar to that in 2012. The largest contributor of APEE flow was ELE,
occupying 21.9% (in 2012) and 19.7% (in 2017) of the total flow. ELE remained irreplaceable
in terms of supplying energy to other sectors. The largest recipients were CON and EQU,
which together accounted for 30.6% (in 2012) and 28.6% (in 2017) of the total flow. This is
because these two sectors mainly receive emissions from the upstream sector (e.g., MET
and NON) that produces raw materials for them. It is worth noting that, in 2017, TRA
replaced MET and NON as the largest contributor to CON. ELE reduced the inflow to the
advanced manufacturing industries (e.g., CHE, NON and MET) and increased the inflow to
SER and TRA. This is because the local government has increased its investment in tertiary
industry since 2012, with more resources such as electricity and heat tilted toward it.
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Figure 3. APEE flow among sectors.

Figure 4 presents the sectoral driving and pulling forces. The results show that ELE
has the highest driving force (0.434 in 2012 and 0.417 in 2017), followed by CHE (0.124
in 2012 and 0.097 in 2017) and EQU (0.106 in 2012 and 0.099 in 2017). These indicate that
they deliver high amounts of air pollutants to other sectors. Energy-related products (e.g.,
electricity, fertilizer and metal products) are regarded as outputs from the three sectors to
others, leading to their high driving force. Reducing these sectors’ driving forces can help
reduce air-pollutant emissions, such as adopting alternative energy (e.g., wind, solar and
nuclear power). The total pulling force of EQU, TEX, CON and SER were high (0.337 in
2012 and 0.336 in 2017), indicating that they have strong capacity to receive air pollutants.
This is because the production of commodities in these sectors depend on the supply of raw
materials (e.g., steel, plastic, ceramic) from upstream emission-intensive sectors. Compared
with 2012, the pulling force of these sectors had no obvious changes. It is imperative
to adjust their demands (i.e., reducing direct consumption of previous raw materials) to
reduce upstream emissions by seeking cleaner production alternatives.
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Figure 4. Sectoral driving and pulling forces.

The structure characteristic of IAES was diagnosed by a robustness curve. As shown in
Figure 5, the system robustness values in 2012 and 2017 were 0.287 and 0.321, respectively,
indicating that the efficiency of IAES has increased to a certain extent. Robustness values are
on the left side of the curve and are much smaller than the maximum value (i.e., 0.368). This
shows that IAES was in a state of high redundancy and low efficiency. The redundancy for
both years was 2.087 and 2.656, which were 5.5 and 4.1 times the corresponding efficiency.
Higher redundancy represents a more stable system and the ability to withstand external
disturbances. This is beneficial to the natural ecosystem, but very detrimental to pollution
control. Higher redundancy means APEE flows more spread out instead of concentrating in
a few paths, making the key sectors for controlling air pollution more difficult to determine.
Generally, the emission structure of IAES was not healthy due to high redundancy. Further
identifying these key influencing factors to formulate more targeted control strategies is
essential.
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Figure 5. The relationship between efficiency and redundancy of IAES.

4.2. Identification of Key Factors

Seventeen factors (Table 3) were designed to explore their impact on IAES. L32 (217)
orthogonal arrays were selected, and 32 scenarios were obtained correspondingly, as
shown in Table S1. Figure 6 depicts the amount and composition of APEE under Taguchi
analysis. The results showed that the APEE amount ranges from 286.6 × 106 (under S1) to
374.9 × 106 (under S31), revealing that the designed factors are effective in reducing air-
pollutant emissions. Under all scenarios, NOx emissions contributed the highest to APEE,
ranging from 56.6% (under S29) to 65.2% (under S20), followed by SO2 contribution from
27.8% (under S19) to 35.9% (under S30). This means that the most significant pollutants
causing air pollution are NOx and SO2. Emission reduction should focus on reducing the
emissions of these two pollutants. The results also indicated that the contribution of coal
to the emission of various air pollutants is much greater than that of other energy types,
ranging from 64.1% (under S7) to 71.0% (under S30). For example, the contribution of
gasoline, diesel and kerosene under S19–21 has obviously changed, but it is still far smaller
than that of coal. This is attributed to the huge use of coal and coal is more likely to generate
emissions. It is essential to reduce Fujian’s dependence on coal consumption.

Table 3. The abbreviations and descriptions of designed factors.

Factors Description Level (L) Level (H)

ELE_coal Consumption of coal in ELE (106 ton) 35.77 44.71
NON_coal Consumption of coal in NON (106 ton) 6.68 8.35
CHE_coal Consumption of coal in CHE (106 ton) 4.66 5.83
MET_coal Consumption of coal in MET (106 ton) 3.54 4.43

TRA_gasoline Consumption of gasoline in TRA (106 ton) 1.73 2.16
TRA_diesel Consumption of diesel in TRA (106 ton) 2.09 2.61

TRA_kerosene Consumption of kerosene in TRA (106 ton) 1.05 1.31
TRA_fuel oil Consumption of fuel oil in TRA (106 ton) 0.62 0.78

EQU_a Direct consumption coefficient of EQU 0.37 0.46
TEX_a Direct consumption coefficient of TEX 0.34 0.43
SER_a Direct consumption coefficient of SER 0.20 0.25

CON_a Direct consumption coefficient of CON 0.01 0.01
WHO_a Direct consumption coefficient of WHO 0.02 0.02

NOx NOx emission from unit energy (kg/ton) * *
SO2 SO2 emission from unit energy (kg/ton) * *

PM2.5 PM2.5 emission from unit energy (kg/ton) * *
VOCs VOCs emission from unit energy (kg/ton) * *

Note: ‘*’ please refer to Table 2.
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Figure 6. The amount and composition of APEE under Taguchi analysis.

Figure 7 presents the robustness of IAES under Taguchi analysis. Results showed that
robustness values range from 0.322 (under S4) to 0.365 (under S13). All robustness values
are greater than 2017, and the values under S9, S10, S13 and S14 are close to the maximum
robustness. The results illustrate that the efficiency of IAES can be improved through
reasonable adjustment. For example, the efficiency of IAES under S13 has improved by
60.1% compared to 2017, while the redundancy has decreased by 17.8%. The increased
efficiency means that emissions would become concentrated, which would contribute to
achieving emissions mitigation. The fluctuation of values under different scenarios implies
that the effect of the designed factors on the robustness varies significantly. It is crucial to
identify the key factors affecting robustness.
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Figure 7. System robustness under Taguchi analysis.
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Tables 4 and 5 display the S/N ratio of designed factors to APEE and robustness. Fac-
tors with higher delta value of S/N (maximum value—minimum value) response indicate
more significant effect. Results showed that for APEE, NOx has the largest effect followed
by ELE_coal and SO2. This means that APEE would be sensitive to the changes in NOx and
SO2 emission coefficients, and the coal consumption of ELE. These results may be related
to the production characteristics of sectors. ELE relates to active transactions with other
sectors, consuming large amounts of coal to meet the needs of others for essential services
such as electricity, gas and water supply; in addition, the combustion of coal is more likely
to result in the emission of large amounts of harmful gases such as NOx and SO2. The
robustness results showed that EQU_a has the largest effect followed by CHE_coal and
NON_coal. The most important factor affecting system robustness was EQU_a, indicating
that the direct consumption coefficients of EQU dominated the concentration of emis-
sion flows. EQU should improve resource utilization efficiency and optimize the supply
structure of production factors.

Table 4. S/N ratio response of designed factors to APEE (Smaller the better).

Level ELE_coal NON_coal CHE_coal MET_coal TRA_gasoline TRA_diesel TRA_kerosene TRA_fuel oil EQU_a

L −170.533 −170.745 −170.778 −170.800 −170.830 −170.798 −170.792 −170.812 −170.864
H −171.194 −170.983 −170.949 −170.928 −170.898 −170.929 −170.935 −170.915 −170.864

Delta 0.661 0.238 0.171 0.128 0.068 0.131 0.143 0.103 0
Rank 2 4 5 8 11 7 6 10 17

Level TEX_a SER_a CON_a WHO_a NOx SO2 PM VOCs

L −170.863 −170.865 −170.865 −170.866 −170.396 −170.633 −170.807 −170.835
H −170.865 −170.863 −170.863 −170.862 −171.332 −171.095 −170.921 −170.892

Delta 0.002 0.002 0.003 0.004 0.936 0.462 0.114 0.057
Rank 15 16 14 13 1 3 9 12

Table 5. S/N ratio response of designed factors to robustness (Larger the better).

Level ELE_coal NON_coal CHE_coal MET_coal TRA_gasoline TRA_diesel TRA_kerosene TRA_fuel oil EQU_a

L −9.352 −9.427 −9.472 −9.340 −9.344 −9.342 −9.340 −9.352 −9.003
H −9.335 −9.261 −9.215 −9.348 −9.343 −9.346 −9.347 −9.336 −9.684

Delta 0.017 0.166 0.257 0.008 0.001 0.004 0.007 0.016 0.681
Rank 7 3 2 10 17 13 11 8 1

Level TEX_a SER_a CON_a WHO_a NOx SO2 PM VOCs

L −9.373 −9.377 −9.341 −9.336 −9.335 −9.342 −9.343 −9.343
H −9.315 −9.311 −9.346 −9.351 −9.352 −9.345 −9.344 −9.344

Delta 0.058 0.066 0.005 0.015 0.017 0.004 0.001 0.002
Rank 5 4 12 9 6 14 16 15

Figure 8 shows the main effects of design factors on APEE and robustness. It is
shown that NOx, SO2 and ELE_coal have obvious positive effects on APEE, with 89.9% of
contribution to the APEE variation. Taking the plot of NOx as an example, APEE increases
from 331.8 × 106 to 368.7 × 106, with NOx increasing from its L level to its H level. NOx
has the steepest slope, indicating that it is the most influential (with a contribution of
51.6%) factor. To reduce Fujian’s APEE, the most effective way is to reduce the increment of
positive impact factors, such as reducing coal consumption in ELE and reducing NOx and
SO2 emission coefficients. The robustness results indicate that EQU_a has obvious negative
effects (contribute 81.4%), while CHE_coal and NON_coal have obvious positive effects
(contribute 11.7% and 5.0%, respectively). Therefore, the most effective way to improve the
robustness is to reduce the direct consumption coefficient of EQU (i.e., reducing reliance on
materials with high emissions) and to increase the coal use in CHE and NON. Based on
the delta value and the main effects of factors, ELE_coal, CHE_coal, NON_coal, EQU_a,
NOx and SO2 were identified as key factors, and other factors were excluded from further
analysis.
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Figure 8. The main effects of designed factors on (a) APEE and (b) robustness.

4.3. Determination of Optimal Strategies

Based on the aforementioned analysis, 26 combinations (i.e., the 64 scenarios in
Table S2) can be deigned and used to explore their interactions on IAES’s APEE and
robustness by calculating their summation of squares. Figure 9 shows the reciprocal effects
of key factors on APEE. It is shown that NOx would interact with ELE_coal, NON_coal and
CHE_coal; SO2 would have interactions with ELE_coal, NON_coal and CHE_coal. This
indicates that end-of-pipe treatment technologies and sectoral energy consumption can
affect each other when implementing direct emission reduction strategies. Figure 10 shows
the reciprocal effects of key factors on robustness. It is shown that EQU_a would interact
with ELE_coal, NON_coal, NOx and SO2. This is because the raw materials required for
EQU production are mainly supplied through the consumption of coal in ELE and NON.
This shows that optimizing emission paths in IAES requires coordinated development
of upstream and downstream sectors to reduce excessive flows of intermediate products
in other sectors. The complex interactions between different factors can jointly affect
air-pollution control of the entire region, and this is an inescapable finding.

Figure 11 shows the emissions of four air pollutants and system robustness under
64 scenarios. The results show that there are obvious changes in the emissions of various
air pollutants and system robustness values. For example, the emissions of NOx, SO2, PM
and VOCs under S1 would be 174.6 × 103, 86.3 × 103, 98.1 × 103 and 16.6 × 103 tons, re-
spectively, and the robustness value would be 0.343. The emissions of various air pollutants
under S64 would be as high as 232.3 × 103, 118.7 × 103, 115.6 × 103 and 18.0 × 103 tons,
respectively, and the system robustness value would be 0.333. Such differences are mainly
due to the different levels of design factors. Under S1, the designed sectors were simulated
to implement strict NOx and SO2 reduction policies and coal consumption restrictions, and
EQU’s direct consumption coefficient was simulated to be set at lower level. In contrast,
a loose NOx and SO2 reduction policy and coal consumption restrictions were adopted
under S64, and EQU’s direct consumption coefficient was simulated to be at higher level.
In addition, similar emission reduction effects were observed for some scenarios. For iden-
tifying more credible industrial air-pollutant emission control strategies, the entropy-based
TOPSIS method was used as a decision-making tool for scheme analysis.

Multiple simulation attributes such as NOx emissions, SO2 emissions, PM emissions,
VOCs emissions and robustness were considered in analyzing the mitigation effects of
different scenarios. By inputting the values of various indicators into the established
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entropy-based TOPSIS method, the pollution mitigation scores of different scenarios were
calculated (see Supplementary Material). It is indicated that S1, S5, S9, S13, S17 and S21
possess high satisfactory scores. Figure 12 shows the four air pollutant reduction ratios,
robustness improvement ratios and sectoral driving and pulling forces under selected
scenarios. The results showed that compared with 2017, NOx emissions would decrease by
23.1% to 24.8%, SO2 emissions would decrease by 24.9% to 27.6%, PM emissions would
decrease by 12.1% to 15.1% and VOCs emissions would decrease by 7.2% to 8.9%; robustness
would increase by 3.9% to 6.6%. This illustrates that the chosen scenarios can not only
reduce the emission of air pollutants, but also optimize the emission paths. The results
also showed that the driving and pulling forces of all sectors are different with varied
scenarios. The total driving force of ELE, CHE and EQU would be in the range of 0.511
(under S17) and 0.556 (under S13), a decrease of 9.3% to 16.6% compared to 2017. The
total pulling force of TEX, EQU, CON and SER would be in the range of 0.313 (under S1)
and 0.344 (under S13), an increase of −2.4% to 6.8% compared to 2017. According to the
previous analysis, it is necessary to reduce the total driving force of ELE, CHE and EQU
and increase the total pulling force of TEX, EQU, CON and SER. The results indicated that
the chosen scenarios would help optimize the emission structure of IAES. The commonality
of these scenarios is the imposition of strict coal consumption limits on ELE (consumption
would be reduced by 20%) and stringent controls on NOx and SO2 emissions from key
sector (emission coefficient would be reduced by 20%). Therefore, in order to optimally
mitigate air pollution, the local government should first reduce coal consumption in ELE by
developing clean energy based on resource endowment and by importing electricity, and
reduce emissions by setting strict emission policies for NOx and SO2 emission-intensive
sectors and increasing taxes on high-emitting products.
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Figure 11. The emissions of four air pollutants and robustness under full factorial analysis.
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Figure 12. The four air pollutant reduction ratios, robustness improvement ratios and sectoral driving
and pulling forces under selected scenarios.

4.4. Policy Implication

Although China continues to use coal and dirty energy, at the same time it is slowly
becoming a leader in renewable energy consumption. It now generates more solar energy
than any other country. By 2020, China’s wind installations also outnumbered those located
in other countries many times over. In addition, the main alternative to coal is expected
to be nuclear power—under the current plan, nuclear capacity consumption is expected
to increase from 50 GW to 70 GW by 2025, while the country already has 16 new nuclear
reactors under construction. China’s transformation is also expected to be achieved through
major advances in energy-related technologies. Already, Chinese tech giants are preening
to become promoters of green technologies. Ant Financial, an Alibaba affiliate, is one of
the co-founders of the “Green Digital Finance Alliance”. Alibaba is also responsible for the
“City Brain” platform, which is designed to streamline traffic and thus reduce polluting
travel times. The number of patents related to the environment is also on the rise, with a
60-fold increase in China between 1990 and 2014, compared to only a three-fold increase
for Organization for Economic Cooperation and Development (OECD) countries. Fujian
province is an important ecological barrier in southeastern China. In order to consolidate
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the local ecological advantages, Fujian province has formulated a series of air pollutant
emission reduction plans (e.g., the implementation rules of Fujian province air pollution
prevention and control action plan) and various pollutant mitigation targets (e.g., NOx
and SO2). However, the emission control of air pollutants involves multiple factors (e.g.,
sectoral energy consumption structure, exhaust gas treatment technology), and different
types of pollution control strategies often have differential impacts on sectoral development
and the emission of various air pollutants. Therefore, it is of great significance to seek the
optimal pollution control strategy to support the sustainable development of local economy,
energy and environment.

According to the results obtained from HEIM, ELE, NON, CHE and EQU, the for-
mulation of air pollution mitigation policies in Fujian province is preferrable. Specifically,
strict pollutant emission policies (e.g., promoting cleaner production technologies to reduce
the emission coefficients of various air pollutants from energy consumption) should be
implemented for ELE, NON and CHE. Advanced and applicable technologies, processes
and equipment should be adopted to EQU to reduce reliance on high-emission production
raw materials and improve resource and energy efficiency. In order to reduce the coal
consumption in the power generation process of ELE, the local government can vigorously
develop clean energy power plants (e.g., wind energy, solar energy, nuclear energy) based
on the resource endowment. In terms of emissions control of major air pollutants, the
reductions of NOx and SO2 emissions rely on the renovation of advanced equipment and
the improvement of cleaner production technologies (i.e., the implementation of low-NOx
combustion equipment renovation and off-furnace desulfurization technology reform).
Generally, the implications for local governments include: (i) optimizing the industrial
structure, promoting industrial transformation and upgrading and prohibiting processing
trade operations for large energy-consuming, heavy-polluting and resource-based products;
(ii) accelerating the energy structure adjustment, safely and steadily developing nuclear
power, controlling the development of coal power, and orderly developing wind and solar
power; (iii) key emission sectors (e.g., ELE, NON, CHE and EQU) should fully implement
ultra-low emission transformation and set strict air pollutant emission limitations; (iv) for
air pollutants (e.g., NOx and SO2) that require priority treatment, the standard of sewage
charges should be raised.

5. Conclusions

The hybrid-factorial environmental input–output model (HEIM) introduces a hybrid-
factorial analysis (HFA) method into an environmental-oriented input–output model
(EIOM) framework. An entropy-based TOPSIS method (as a decision-making tool) is
then employed for scheme analysis. HEIM has been applied to a real case study of Fujian
province to support its industrial air-pollutant emission control. The major findings are
summarized as follows: (i) ELE, TRA, NON, CHE and MET are the major air pollutant
emission sectors, which together contributed 87.1%, 84.6%, 88.1% and 71.2% to NOx, SO2,
PM and VOCs emissions in 2017; (ii) ELE is the main air pollutant outflow sector, and CON
and EQU are the main air pollutant inflow sectors; (iii) sectors with higher driving force
such as ELE and CHE should be encouraged to adjust their energy consumption structure,
and sectors with a higher pulling force such as EQU and CON should be encouraged to
seek more environmentally friendly production raw materials; (iv) in Fujian province, the
IAES has high redundancy and low efficiency, indicating that the emission paths are very
complicated; (v) NOx, ELE_coal and SO2 contribute 89.9% to APEE variation, indicating
that they are the most important factors contributing to the air hazard problems; EQU_a,
CHE_coal and NON_coal contribute 98.1% to robustness variation, indicating that they are
the most crucial factors for IAES’s health condition; (vi) under the optimal scenario, the
emissions of NOx, SO2, PM and VOCs would be reduced by 24.8%, 27.3%, 15.1% and 8.8%,
respectively, and the system robustness would be improved by 6.6%; strictly limiting coal
consumption in ELE (consumption would be reduced by 20%) and strictly controlling NOx
and SO2 emissions from key sectors (emission coefficient would be reduced by 20%) are
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the most effective strategies for mitigating air pollution in Fujian province. The findings
are beneficial for (i) providing policymakers with key adjustment factors for developing
emission reduction strategies to optimally mitigate air pollution and (ii) adjusting relevant
economic and energy activities to achieve sustainable development within the study area.

Several limitations and further improvements can still be handled in future studies.
First, because of data limitations, the input–output tables of 2012 and 2017 were used as
model inputs in this study. The prediction of IOT and the simulation of pollutants emissions
from the perspective of long-term planning could be conducted to generate future pollution
mitigation strategies. Second, it is desirable to integrate indeterministic analysis tools (e.g.,
stochastic analysis and fuzzy analysis) into HEIM to address the inherent factors in the
data and computational processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su15097717/s1, Table S1: Taguchi experiment orthogonal array;
Table S2: Full factorial experiment orthogonal array; Table S3: p-value test results for design factors
(Taguchi analysis, response is APEE); Table S4: p-value test results for design factors (Taguchi analysis,
response is robustness); Table S5: p-value test results for design factors (full factorial analysis, response
is APEE); Table S6: p-value test results for design factors (full factorial analysis, response is robustness);
Table S7: Standardization of indicators and evaluation results of scenarios.

Author Contributions: Data curation, Y.Y.; Writing—original draft, J.L. and Y.Y.; Visualization, J.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Youth Program of Fujian Provincial Social Sciences
Foundation, grant number FJ2020C010.

Institutional Review Board Statement: The study did not require ethical approval.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are very grateful to the editors and the anonymous reviewers for
their insightful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, G.; Jia, Y.; Su, B.; Xiu, J. Environmental regulation, economic development and air pollution in the cities of China: Spatial

econometric analysis based on policy scoring and satellite data. J. Clean. Prod. 2021, 328, 129496. [CrossRef]
2. National Bureau of Statistics. China Statistics Yearbook; China Statistics Press: Beijing, China, 2016.
3. Li, X.; Li, Y. A multi-scenario ensemble simulation and environmental input-output model for identifying optimal pollutant- and

CO2-emission mitigation scheme of Guangdong province. J. Clean. Prod. 2020, 262, 121413. [CrossRef]
4. Lu, X.; Zhang, S.; Xing, J.; Wang, Y.; Chen, W.; Ding, D.; Wu, Y.; Wang, S.; Duan, L.; Hao, J. Progress of Air Pollution Control in

China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering 2020, 6, 1423–1431. [CrossRef]
5. Health Effects Institute. Global Burden of Disease-Major Air Pollution Sources—A Global Approach. 2018. Available online:

https://www.healtheffects.org/research/ (accessed on 30 October 2021).
6. Zhou, L.; Tang, L. Environmental regulation and the growth of the total-factor carbon productivity of China’s industries: Evidence

from the implementation of action plan of air pollution prevention and control. J. Environ. Manag. 2021, 296, 113078. [CrossRef]
[PubMed]

7. Perera, F.; Ashrafi, A.; Kinney, P.; Mills, D. Towards a fuller assessment of benefits to children’s health of reducing air pollution
and mitigating climate change due to fossil fuel combustion. Environ. Res. 2018, 172, 55–72. [CrossRef]

8. Zaidi, S.A.H.; Zafar, M.W.; Shahbaz, M.; Hou, F. Dynamic linkages between globalization, financial development and carbon
emissions: Evidence from Asia Pacific Economic Cooperation countries. J. Clean. Prod. 2019, 228, 533–543. [CrossRef]

9. Guan, Y.; Huang, G.; Liu, L.; Zhai, M.; Xu, X. Measurement of air-pollution inequality through a three-perspective accounting
model. Sci. Total. Environ. 2019, 696, 133937. [CrossRef]

10. Sundar, S.; Mishra, A.K.; Shukla, J.B. Effects of Mitigation Options on the Control of Methane Emissions Caused by Rice Paddies
and Livestock Populations to Reduce Global Warming: A Modeling Study and Comparison with Environmental Data. J. Environ.
Inform. 2021, 38. [CrossRef]

11. Ou, J.; Meng, J.; Zheng, J.; Mi, Z.; Bian, Y.; Yu, X.; Liu, J.; Guan, D. Demand-driven air pollutant emissions for a fast-developing
region in China. Appl. Energy 2017, 204, 131–142. [CrossRef]

https://www.mdpi.com/article/10.3390/su15097717/s1
https://www.mdpi.com/article/10.3390/su15097717/s1
https://doi.org/10.1016/j.jclepro.2021.129496
https://doi.org/10.1016/j.jclepro.2020.121413
https://doi.org/10.1016/j.eng.2020.03.014
https://www.healtheffects.org/research/
https://doi.org/10.1016/j.jenvman.2021.113078
https://www.ncbi.nlm.nih.gov/pubmed/34252855
https://doi.org/10.1016/j.envres.2018.12.016
https://doi.org/10.1016/j.jclepro.2019.04.210
https://doi.org/10.1016/j.scitotenv.2019.133937
https://doi.org/10.3808/jei.202000447
https://doi.org/10.1016/j.apenergy.2017.06.112


Sustainability 2023, 15, 7717 21 of 22

12. Mi, Z.; Zheng, J.; Meng, J.; Zheng, H.; Li, X.; Coffman, D.; Woltjer, J.; Wang, S.; Guan, D. Carbon emissions of cities from a
consumption-based perspective. Appl. Energy 2018, 235, 509–518. [CrossRef]

13. Klemeš, J.J.; Varbanov, P.S.; Walmsley, T.G.; Jia, X. New directions in the implementation of Pinch Methodology (PM). Renew.
Sustain. Energy Rev. 2018, 98, 439–468. [CrossRef]

14. Xu, X.; Huang, G.; Liu, L.; Guan, Y.; Zhai, M.; Li, Y. Revealing dynamic impacts of socioeconomic factors on air pollution changes
in Guangdong Province, China. Sci. Total. Environ. 2019, 699, 134178. [CrossRef] [PubMed]

15. Mozaffar, A.; Zhang, Y.-L.; Fan, M.; Cao, F.; Lin, Y.-C. Characteristics of summertime ambient VOCs and their contributions to O3
and SOA formation in a suburban area of Nanjing, China. Atmos. Res. 2020, 240, 104923. [CrossRef]
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