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Abstract: Land use change is one of the key elements leading to carbon emission changes, and is
of great significance to the process of achieving the goals of carbon peaking and carbon neutrality.
In this study, we calculated the land-use carbon emissions (LCE) in the Guanzhong area (GZA) of
Shaanxi province from 2000 to 2019 by using an improved LCE measurement model. Meanwhile,
the spatial and temporal changes of LCE were analyzed and the driving forces were investigated
based on the correlation analysis and multi-scale geographical weighting regression (MGWR). The
results showed that the total amount of LCE showed a significant increasing trend from 2000 to 2019.
Regions where the LCE significantly increased occupied 71.20% of the total area; these regions were
distributed in the central and eastern parts of the study area. The LCE showed a significant positive
spatial correlation and had a remarkable aggregation state. The H-H agglomeration area of LCE was
distributed in the central urban agglomeration. The L-L agglomeration areas were always distributed
in the southwest part of the GZA with low carbon emissions. The average correlation coefficients
between LCE and nighttime light (NTL), population density (PD), and gross primary productivity
(GPP) were 0.13, 0.21, and −0.05, respectively. The NLT and PD had obvious positive effects on LCE,
while GPP has obvious negative effects on carbon emissions, which can be ascribed to the carbon sink
effect of forests and grasslands. The results of this study have important reference value regarding the
formulation of carbon emission reduction policies and the development of a low-carbon social economy.

Keywords: spatiotemporal changes; carbon emissions; correlation analysis; MGWR; Guanzhong area

1. Introduction

In recent years, with the rapid development of industrialization and urbanization,
energy consumption has increased dramatically in different countries around the world,
resulting in the climate warming, which is mainly caused by the increase of greenhouse
gases, such as carbon dioxide [1]. As one of the major countries with rapid economic
development in the world, China’s Gross Domestic Product (GDP) exceeded 100 trillion
yuan for the first time in 2020, with an average annual growth rate of 9.20% [2]. Meanwhile,
this rapid economic growth led to huge energy consumption [3]. The economic develop-
ment model of our country has shown the characteristics of ‘high energy consumption,
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high pollution, and high consumption’. For a long time, the energy type of our country
mainly consisted of fossil energy, which triggered a large number of carbon emissions
produced by energy consumption, and the contradiction between economic development
and resources and the environment became increasingly apparent [4]. According to the
World Bank, China’s carbon dioxide emissions will account for 30.93% of global carbon
dioxide emissions by 2020, which means China will face great pressure to reduce carbon
emissions [5]. As a result, the Chinese government has proposed peaking total carbon
emissions by around 2030 and becoming carbon neutral by 2060 [6]. Land use change is
one of the most important ways for humans to change the surface ecosystem, and also an
important factor affecting the carbon cycle process [7]. On the one hand, the changes in
land use patterns (such as construction land expansion, deforestation, returning farmland
to forest, etc.) can affect carbon dioxide content through the transformation of ecosystem
types [8]. Previous studies have shown that the direct carbon emissions from land use
change accounted for about one-third of the total carbon emissions from human activities, and
thus became the second largest source of greenhouse gas emissions [9]. On the other hand, as
the spatial carrier of economic and social carbon emissions, the change in human production
activities caused by land use also indirectly affects carbon dioxide emissions [10]. Therefore,
scientific calculation and dynamic monitoring of land use carbon emissions (LCE) are of great
significance to the sustainable utilization of regional land resources and the development of a
low-carbon economy.

The scientific and accurate accounting of carbon emissions and an in-depth anal-
ysis of the internal mechanism of LCE form an important basis for the formulation of
low-carbon target-oriented land use planning and management strategies [11]. Due to
different mechanisms, the research on LCE can be divided into direct LCE and indirect
LCE. Early land uses direct carbon emission accounting was mainly based on the survey
and statistical data of land use, vegetation, and soil, and it used relevant information and
some empirical parameter models to carry out greenhouse gas inventory accounting at
different levels [12–14]. Recently, with the development of remote sensing technology,
researchers have begun to use remote sensing data to analyze direct LCE [9]. For example,
remote sensing technology can provide driving parameters for biogeochemical models (etc.,
BIOME-BGC model, CENTURY model), such as inputting precipitation, solar radiation,
greenhouse, and other data, and simulate the carbon cycle impact of land use change on
vegetation [15–17]. Currently, many studies on LCE have focused on the driving mecha-
nism that affects LCE. For example, Zhang, et al. [16] constructed a carbon emission model
to estimate the total LCE in the Yellow River Delta of the Shandong Province of China and
examine the driving factors of LCE changes. Wu, Deng, Dong, Meng, Zhang, Jiang, Yang,
and Xu [13] used the emission factor method to calculate the land use carbon sources and
carbon sinks in Huainan City and identify the driving factors that influence the LCE based
on the Logarithmic mean Divisia index (LMDI) model. Liu, et al. [18] analyzed the spa-
tiotemporal changes in carbon emission intensity based on the nighttime light imagery and
socioeconomic data in China and explored the relationship between social and economic
development and carbon emission intensity. Moreover, previous studies often used the
input-output model, grey relational analysis model, ordinary least squares model (OLS),
and regression analysis to investigate the dominant factors of LCEs [19–21]. Notably, these
methods ignored the difference in the actual spatial scale of various influence factors that
impact the change in carbon emissions, which only revealed the relationship between LCE
and the driving factors in a global dimension [9]. In addition, previous studies focused
more on the carbon sink of terrestrial natural ecosystems, such as forests and grasslands, or
the carbon emissions of urban energy consumption alone; using a combination of the two
to analyze the overall net carbon emissions at the local scale is relatively rare, especially the
analysis of the spatial heterogeneity of the driving factors of LCEs, which is still insufficient.
Therefore, it is of great significance to the development of a low-carbon economy and to
the formulation of carbon emission reduction policies designed to quantitatively assess
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the carbon emissions of different land use types from the spatial pixel scale and reveal the
spatial heterogeneity of land carbon emissions in response to natural and human factors.

The Guanzhong area (GZA) is located in the middle reaches of the Yellow River basin,
which is an important economic zone in northwest China and an important ecological
barrier [22]. With ecological protection and the promotion of high-quality developments in
the Yellow River Basin presented as national and regional development strategies in 2019,
sustainable development with carbon emission reduction as the goal has become an impor-
tant breakthrough in the contradiction between protection and development [23]. However,
the rapid development of urbanization and industrialization in the GZA has had a serious
impact on the natural resources in recent years, such as the urban expansion, excessive
energy consumption, grassland and forest exploitation, and other activities, which have
aggravated the regional greenhouse effect [24]. Considering the backdrop of the carbon
peak and carbon neutralization strategy, realizing carbon emission reduction is essential
to creating regional high-quality developments in the GZA [25]. However, the current
research on the carbon emissions of different land use types in the GZA is still insufficient.
Therefore, the accurate estimation of LCE and the evaluation of its driving factors can
provide a decision-making basis for carbon emission reduction policy formulation and
low-carbon social and economic development in the GZA.

Therefore, based on the land use data and the carbon emissions raster data obtained
from the ODIAC platform, this study used the improved carbon emission estimation model
to analyze the LCE in the GZA of Shaanxi province, from 2000 to 2019, and investigate the
temporal and spatial variation characteristics of LCE based on trend analysis and Moran’s
I. In addition, correlation analysis and multi-scale geographically weighted regression
(MGWR) were used to explore the driving mechanism of LCE. The main objectives of this
study were: (1) to improve the simulation method of LCE and analyze the temporal and
spatial heterogeneity and evolution of LCE; (2) to examine the relationship between LCE and
the night light index (NLT), population density (PD), and gross primary productivity (GPP),
and clarify the differences regarding the influences of socioeconomic development and natural
factors on LCE in the spatial scale; (3) to put forward the management countermeasures of
low-carbon development for the GZA. Our findings might provide some theoretical basis for
the formulation of a carbon emission reduction strategy, and it could provide implications for
other energy-based areas to achieve low carbon and sustainable development.

2. Materials and Methods
2.1. Study Area

The Guanzhong area (GZA) is located in the middle of Shaanxi province, which
originally covered land from Baoji in the west to Tongguan in the east; it has an altitude
of about 325~800 m and an area of about 34,000 km2 (Figure 1). It has a warm monsoon
climate with an average annual precipitation of 500~800 mm [26]. The GZA mainly
consists of Xi’an City, Tongchuan City, Baoji City, Xianyang City, and Weinan City, and has
abundant resources, such as tourism and education; sound industries, such as aerospace
and high technology; and convenient transportation advantages, which have become
the center of the population, industry, and economy in Shaanxi province [27]. Although
the area of Guanzhong is only 55,500 km2, accounting for only 27% of the total area of
Shaanxi province in 2019, the permanent resident population is 24.48 million, accounting
for 63.83% of Shaanxi province [28]. The built-up area of Guanzhong occupies 67.40% of
Shaanxi province (913.66 km2) and the urbanization rate has reached 61.66%. Due to the
continuous increase of the inflow population, while the outflow population did not change
significantly, the GZA has become a net inflow area of Shaanxi province, resulting in urban
traffic congestion and increased consumption of water, oil, coal, and other resources [29].
Relying on primary energy consumption, coal consumption accounts for more than 70%
of the industry in the GZA, and the consumption of fossil energy continues to increase
rapidly, which seriously affects the air quality and consequently leads to air pollution [30].
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Figure 1. Map of the study area. (a) Location; (b) Altitude; (c) Land use types.

2.2. Research Framework

In order to investigate the response mechanism of LCEs to human and natural factors
in the GZA, we used the carbon emission coefficient method and the Open-source Data
Inventory for Anthropogenic CO2 (ODIAC) data to calculate the annual direct land carbon
emissions (DLCE) and indirect land carbon emissions (ILCE) from 2000 to 2019, respectively.
We also used the Fishnet tool in ArcGIS 10.8 to calculate the total LCEs in the GZA by
overlying the DLCE map and ILCE map. Then, trend analysis and spatial autocorrelation
analysis were used to study the spatiotemporal changes in LCEs, and correlation analysis
and MGWR models were adopted to analyze the driving forces of LCEs. The overall
technical roadmap of this study is illustrated in Figure 2.
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Figure 2. The overall technique diagram map.

2.3. Data Sources and Processing

In this study, the land use/cover data, carbon emission data, nighttime light (NLT)
data, population grid data, and gross primary productivity (GPP) data were used to analyze
the spatio-temporal dynamics of land use carbon emissions and their driving factors in the
study area (Table 1). The specific data information is as follows:

(1) Land use/cover data: the annual land use/cover data from 2000 to 2019 at a
spatial resolution of 300 m were collected from the European Space Agency (http://maps.
elie.ucl.ac.be/CCI/viewer/, accessed on 1 June 2022) and were divided into seven types,
including cropland, grassland, forestland, wetland, water, unused land, and construction
land (Figures 1c and A1).

(2) Carbon emission data: the monthly carbon emission datasets from 2000 to 2019
were published by the Open-source Data Inventory for Anthropogenic CO2 (ODIAC)
(http://db.cger.nies.go.jp/dataset/ODIAC/data_policy.html, accessed on 1 May 2022).
These datasets had a spatial resolution of 1 km and were estimated by combining the
space-based nighttime light data and the individual power plant emission, a method that
has been widely used for a variety of research applications (e.g., CO2 flux inversion, urban
emission estimation, and observing system design experiments) [9].

(3) Nighttime Light (NLT) data: the Defense Meteoro-logical Satellite Program Op-
erational Line scan System (DMSP-OLS) and Visible Infrared Imaging Radiometer Suite
Day/Night Band (VIIRS/DNB) Nighttime Light (NLT) data were obtained from the NOAA
website’s NGDC data center (https://www.ngdc.noaa.gov/eog/download.html, accessed
on 4 August 2022) [31].

(4) Population grid data: the population grid datasets at a spatial resolution of 1 km for
the years 2000–2019 were obtained from World Pop (https://www.worldpop.org/project/list,
accessed on 13 August 2022).

(5) Gross primary productivity (GPP) data: the annual GPP datasets at a spatial resolution
of 1 km were derived from the National Tibetan Plateau/Third Pole Environment Data Center
(https://data.tpdc.ac.cn/zh-hans/data/582663f5-3be7-4f26-bc45-b56a3c4fc3b7, accessed on
13 September 2022).

http://maps.elie.ucl.ac.be/CCI/viewer/
http://maps.elie.ucl.ac.be/CCI/viewer/
http://db.cger.nies.go.jp/dataset/ODIAC/data_policy.html
https://www.ngdc.noaa.gov/eog/download.html
https://www.worldpop.org/project/list
https://data.tpdc.ac.cn/zh-hans/data/582663f5-3be7-4f26-bc45-b56a3c4fc3b7
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In order to keep the resolution of all data consistent, we resampled these data to ensure
that the data resolution was 1 km.

Table 1. Description of data sources used in this study.

Data Type Spatial Resolution/Formula Source

Land Use/Cover 300 m
European Space Agency

(http://maps.elie.ucl.ac.be/CCI/viewer/, accessed on
1 June 2022)

Carbon Emission 1 km
Odiac—Fossil fuel CO2 emission data product

(http://db.cger.nies.go.jp/dataset/ODIAC/data_policy.html,
accessed on 1 May 2022)

Nighttime Light 1 km
NOAA website NGDC Data Center

(https://www.ngdc.noaa.gov/eog/download.html,
accessed on 4 August 2022)

Population Grid 1 km
Open Spatial Demographic Data and Research—WorldPop

(https://www.worldpop.org/project/list, accessed on
13 August 2022)

Gross Primary Productivity 1 km
National Tibetan Plateau/Third Pole Environment Data Center

(https://data.tpdc.ac.cn/zh-hans/data/582663f5-3be7-4f26-
bc45-b56a3c4fc3b7, accessed on 13 September 2022)

Digital Elevation Model (DEM) 90 m
China Geospatial Data Cloud

(https://www.gscloud.cn/sources/accessdata/305?pid=302,
accessed on 10 August 2022)

2.4. Calculation of LCE

In this study, the LCE consist of DLCE and ILCE [14]. Specifically, the DLCE represent
direct carbon emissions from grassland, forestland, cropland, water, and unused land, while
ILCE represent carbon emissions from construction land and cropland through energy
consumption. In this study, the carbon emission coefficient method was used to simulate
the DLCE of different land types in the GZA [32]. According to the previous studies and
IPCC [16], we determined the carbon emission coefficients for different land use types in
the study area, as shown in Table 2. Meanwhile, the DLCE can be calculated according to
Equation (1). In addition, we derived the monthly emission data regarding the production
of fossil-fuel CO2 emissions at a spatial resolution of 1 km from the ODIAC platform. Then,
the annual ILCE can be calculated from the monthly data based on Equation (2) (Figure A2).

DLCE = ∑Ci = ∑Si ×Vi (1)

ILCE = ∑Mi (2)

where Ci represents the DLCE for the land-use types i (t); Si donates the area of the land-use
type i (hm2); and Vi means the carbon emission coefficient of the land-use type i (t·hm−2·a−1).
Mi donates the monthly carbon emissions data obtained from the ODIAC (t) [9].

Table 2. Carbon emission coefficient of land use type (t·hm−2·a−1).

Land Use Type Carbon Emission Factor

Cropland 0.422
Grassland −0.021
Forestland −0.644
Wetland −0.0006132

Unused land −0.005
Water −0.253

http://maps.elie.ucl.ac.be/CCI/viewer/
http://db.cger.nies.go.jp/dataset/ODIAC/data_policy.html
https://www.ngdc.noaa.gov/eog/download.html
https://www.worldpop.org/project/list
https://data.tpdc.ac.cn/zh-hans/data/582663f5-3be7-4f26-bc45-b56a3c4fc3b7
https://data.tpdc.ac.cn/zh-hans/data/582663f5-3be7-4f26-bc45-b56a3c4fc3b7
https://www.gscloud.cn/sources/accessdata/305?pid=302
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2.5. Theil-Sen Median Trend Analysis and Mann–Kendall Test

The Theil-Sen Median was used to analyze the spatial dynamics trend of LCE from
2000 to 2019 in the GZA, while the significance of the change was determined by the
Mann–Kendall test [33].

Sβ = Median
( LCEj − LCEi

j− i

)
, 2000 ≤ i < j ≤ 2019 (3)

where S indicates the trend of LCE; LCEj is the LCE value in year j, and LCEi is the LCE
value in year i. When S > 0, LCE showed an increasing trend. Conversely, when S < 0, LCE
indicated a decreasing trend.

The Mann–Kendall test can be expressed as follows [34]:

I =
n−1

∑
i=1

n

∑
j=i+1

sgn
(

LCEj − LCEi
)
, 2000 ≤ i < j ≤ 2019 (4)

sgn
(

LCEj − LCEi
)
=


1, LCEj − LCEi > 0
0, LCEj − LCEi = 0
−1, LCEj − LCEi < 0

, 2000 ≤ i < j ≤ 2019 (5)

Z =


I−1√
Var(I)

, I > 0

0, I = 0
I+1√
Var(I)

, I < 0
(6)

Var(I) =
n(n− 1)(2n + 5)

18
(7)

where I represents the test statistic; Z indicates the standardized test statistic at a certain
significance level α, when |z| > z_(1 − α/2) represents a significant change in the time
series at the α level. The variation trend of the LCE in this study can be divided into the
5 change types based on the 95% significance test (Table 3) [9].

Table 3. Statistics of change trend types.

Change Type Definition

Significantly increasing s > 0, |z| > 1.96
Slightly significantly increasing s > 0, |z| < 1.96

No-significantly changing s = 0
Slightly significantly decreasing s < 0, |z| > 1.96

Significantly decreasing s < 0, |z| < 1.96
Note: At the significance level α = 0.05, a significant change occurs when |Z| >1.96, and an insignificant change
occurs when |Z| < 1.96.

2.6. Spatial Auto-Correlation Analysis

In this study, we used the Global Moran’s I index to detect the spatial auto-correlation
of LCE to analyze the degree of aggregation or dispersion of the spatial features in the GZA.
The calculation method of Global Moran’s I can be expressed as follows [17]:

Moran’s I =
n∑n

i=1 ∑n
j=1 wij(Zi − Z)(Zj Z)

∑n
i=1 ∑n

j=1 wij∑n
i=1 (Zj − Z)2 (8)

where n is the number of spatial units, Zi and Zj represent the carbon emissions of spatial
units i and j (1 ≤ i ≤ 23,972; 1 ≤ j ≤ 23,972), and Wij is the spatial weight matrix of the
adjacent prefecture-level units i and j.
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Additionally, the Local Moran’s I index was used to detect the local spatial auto-
correlation, which can be expressed as follows:

Local Moran’s I =
n(xi − x)∑n

j=1 wij
(

xj − x
)

∑n
i=1 (xi − x)2 (9)

where n denotes the number of space units; xi and xj represent the carbon emissions of
space units i and j; and Wij is the weight. When I > 0, it indicates that there is a positive
spatial auto-correlation between adjacent regions, showing a ‘high-high (H-H)’ or ‘low-low
(L-L)’ type, indicating that there is a high (low) concentration of carbon emissions between
adjacent regions. When I < 0, it indicates that there is a negative spatial auto-correlation
between adjacent regions, which is ‘high-low (H-L)’ or ‘low-high (L-H)’ type, indicating
that high (low) carbon emission regions are surrounded by low (high) carbon emission
regions [35].

2.7. Analysis of the Driving Factors Affecting Carbon Emissions

Previous studies have pointed out that the LCE are mainly influenced by both human
and natural factors [10]. Considering the analysis of LCEs drivers on a grid scale and the
availability of grid-scale data, we selected the NTL, PD, and GPP to evaluate the impacts of
human and natural factors on LCE levels in the study area. For the three driving factors,
the NLT can reflect the intensity of regional economic development and urbanization
development level, and the changes in PD will directly cause changes in carbon emissions.
Moreover, the GPP can reflect the carbon sink level of vegetation.

2.7.1. Correlation Analysis

In this study, correlation analysis was used to investigate the relationship between
the different driving factors and LCE from a global dimension, which can be expressed as
follows [15]:

Rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1 (yi − y)2

(10)

where n is the total year; xi and yi represent the value of the driving factor and the LCE of
the i-th year; and x and y represent the average value from 2000 to 2019.

2.7.2. The Multi-Scale Geographically Weighted Regression (MGWR) Model

In terms of driving factors that affect carbon emissions, many scholars have adopted
the geographical weighted regression (GWR) model for analysis. However, the GWR model
uses the ‘best average’ bandwidth, which leads to the same spatial scale characteristics of
all explanatory variables, and consequently, cannot reflect the spatial differences. Therefore,
the multi-scale geographic weighted regression (MGWR) model is used in this study
to analyze the influence strength of different driving factors on LCE [15]. The specific
calculation method is as follows:

yi = β0(ui, vi) +

p

∑
k=1

βbwk(ui, vi)xik + εi (11)

where (ui, vi) denotes the spatial coordinate of the i-th geographical location; bwk is the
bandwidth of the regression coefficient of the k-th explanatory variable; and β0(ui, vi) is
the intercept term of the model at i.

3. Results
3.1. The Land Use Cover Change in the GZA

This study reclassified the remote sensing data of land use data in the GZA from 2000
to 2019 based on the ArcGIS 10.8, and then carried out land use transfer matrix analysis.
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As shown in Figure 3, the proportion of cropland converted to construction land between
2000 and 2019 was relatively large (Figure 3b), which was mainly observed in most areas of
Xi’an City, the central area of Baoji City, and the southern area of Xianyang City, accounting
for 76.36% of the total area (Figure 3a). Meanwhile, 3.49% of the areas have changed from
grassland to construction land, which mainly occurred in the surrounding area of Baoji
and Xi’an City. The proportion of wetland, forest, and unused land converted to urban
land was relatively small. In addition, 7.21% of the regions have been transformed from
forest to grassland, mainly distributed in most areas of Baoji City. These transformations
showed that the urbanization process was fast in this period, and a large number of
cultivated land was occupied to develop cities. Table 4 showed that the cropland increased
by 79.47 km2 from 2000 to 2019, mainly due to the conversion of grassland (48.96 km2)
and forest (30.51 km2) to cropland. The total increase in forestland was 190.17 km2, mainly
due to the conversion of grassland (105.57 km2) and cropland (84.6 km2) to forestland.
The increase in grassland was mainly attributed to the transformation from forestland
(209.52 km2). In addition, the largest increase occurred in construction land. Among these
land-use changes, the area converted from cropland to construction land was the largest
(2218.05 km2), followed by the grassland (101.43 km2).

Figure 3. Land-use change in the GZA from 2000 to 2019. (a) Land use spatial transformation map;
(b) Chord diagram of land use type transformation.
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Table 4. Transfer matrix of land use in the GZA from 2000 to 2019 (km2).

2019
2000

Cropland Forestland Grassland Wetland Construction
Land

Water Unused
Land

Total in
2019

Transfer
in 2019

Cropland 33,275.07 30.51 48.96 0 0 0 0 33,354.54 79.47

Forestland 84.6 23,160.6 105.57 0 0 0 0 23,350.77 190.17

Grassland 99.27 209.52 3696.84 0.18 0 0 0 4005.81 308.97

Wetland 0 0 0 93.78 0 0 0 93.78 0

Construction land 2218.05 1.62 101.43 2.88 440.19 0.99 1.26 2766.42 2326.23

Water 0 0 0 0 0 104.58 0 104.58 0

Total in 2000 35,676.99 23,402.25 3952.8 96.84 440.19 105.57 1.26 63675.9

Transfer out in 2000 2401.92 241.65 255.96 3.06 0 0.99 1.26

3.2. Spatiotemporal Changes of LCE

As shown in Figure 4, the LCE in the study area showed a significantly increasing
trend from 2000 to 2019 (1.76 million t; p < 0.01). Specifically, the average value of LCE in
this period was 31.30 million t; the total amount of LCE in 2000 was 13.58 million t; LCE
increased to 31.02 million t in 2009; and the total amount of LCE reached 43.66 million t in
2019. From 2000 to 2009, the growth rate of LCE was relatively fast, but the growth rate
showed a significant downward trend from 2010 to 2019. This change may serve as a great
sign in terms of China’s emission reduction goals and the tasks established at the 2009
Copenhagen Conference and the 2015 Paris Climate Conference.

Figure 4. The temporal variations of LCE in the GZA from 2000 to 2019.

In addition, we found that grassland, forestland, and wetland all showed negative
carbon emissions (Figure 5), indicating that these land types had an important carbon
absorption role, therefore showing carbon sink. In general, the carbon absorption of these
three land use types showed a significant downward trend from 2000 to 2019. By contrast,
cropland and construction land were mainly characterized by positive carbon emissions. In
terms of inter-annual changes, carbon emissions from cropland showed an obvious increase
trend from 2000 to 2013 and then indicated a downward trend, which may be related to the
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conversion of large amounts of cropland area to construction land. Meanwhile, the carbon
emissions in the construction land showed a significant increase trend (0.54 million t/a;
p < 0.01). These indicate that the increase of carbon emissions in the GZA in the past two
decades has mainly been due to the increasing energy consumption and human-related
carbon emissions encouraged in the process of urbanization.

Figure 5. Temporal dynamics of LCE in different land-use types from 2000 to 2019. (a–c) represent
the inter-annual trend of carbon sequestration in grassland, wetland and forestland; (d,e) represent
the inter-annual trend of carbon emissions from cropland and construction land. “*” Significantly
indicating the trend of change (p < 0.05).

Based on the natural break point method, the land-use carbon emissions from 2000
to 2019 were divided into four types: high land-use carbon emissions, moderate land-use
carbon emissions, low land-use carbon emissions, and negative land-use carbon emissions
(Figure 6), and then the change characteristics of different types of land carbon emissions
were analyzed. Specifically, the regions with high land-use carbon emission levels ac-
counted for about 3–5% of the total area, showing an upward trend (from 0.77% in 2000 to
5.45% in 2019). These areas were mainly distributed in the Xi’an and Xianyang urban areas,
which may have been caused by the acceleration of urbanization and the intensification
of energy consumption. The regions with moderate land-use carbon emission grade oc-
cupied nearly 33% of the total area, indicating a decreasing trend overall (from 35.96% in
2000 to 29.82% in 2019). These areas were mainly observed in the cropland distribution
areas of Guanzhong, indicating that the improvement of agricultural farming methods has
promoted the reduction of carbon emissions in recent years. The regions with low land-use
carbon emission grade accounted for about 16% of the total coverage area and also showed
a downward trend (from 17.76% in 2000 to 14.81% in 2019). By contrast, the coverage area
of negative land-use carbon emission rating occupied nearly 48% of the total area, and
showed a slight increase (from 45.51% in 2000 to 49.92% in 2019). These areas were mostly
concentrated in the southern and northern parts of GZA, where grassland and forestland
were widely distributed, implying that ecological restoration has significantly promoted
the regional carbon sink in recent years.
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Figure 6. The level of LCE in the GZA from 2000 to 2019.

The spatial change trend and significance test of the LCE from 2000 to 2019 in GZA
is shown in Figure 7. As shown in Figure 7a, the regions with a decreasing trend in LCE
were mainly distributed in the eastern parts of Weinan and the central parts of Xianyang,
while cities such as Xi’an showed an obvious increase in LCE. The increase rate of LCE was
relatively low in other regions. The MK test results indicated that 77.2% of the total area
had significant changes in LCE in the study area (Figure 7b). However, areas with slightly
significant changes in LCE were mainly scattered in Weinan and other areas, accounting
for 13.7% of the total area. Meanwhile, the regions with insignificant changes in LCE only
accounted for 9.1% of the total area. Through the superposition analysis of the LCE change
rate and the significance test (Figure 7c), the regions where the LCE showed an increasing
trend accounted for 76.06% of the total area. Specifically, regions with a significant increase
in LCE occupied 71.20% of the total area; they were mainly distributed in the central and
eastern parts of GZA, such as the northern part of Xi’an City, the southern part of Xianyang
City, and most parts of Weinan City. These areas were mainly dominated by cropland
vegetation. The regions with a slightly significant increase in LCE were mainly scattered in
Xianyang and Weinan City, accounting for 4.86% of the total area. In contrast, the regions
with significant and slightly significant decreases in LCE accounted for 0.84% of the total
area; they were mainly distributed in the eastern part of Weinan City. The remaining 23.09%
of regional LCE showed no significant change, with these areas mainly concentrated in the
forest area in the south of the Guanzhong region.
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Figure 7. Spatial dynamics of LCE in the GZA from 2000 to 2019. (a) the spatial variation trend of
LCE; (b) Significance test results of change trends based on MK; (c) Superimposed results of spatial
change rate and significance test.

3.3. Spatial Autocorrelation of LCE

Table 5 shows that the Global Moran’s I was higher than 0 for different years within
the 2000–2019 range, with the normal statistic Z values found to be higher than 2.58 and the
p values found to be significant at the 5% level (i.e., p < 0.05), indicating that LCE showed
a significant positive spatial correlation in the GZA. In addition, temporally, Moran’s I
of LCE experienced an overall increasing trend in GZA from 2000 to 2017 (from 0.1117
in 2000 to 0.1755 in 2017), but it began to decrease after 2017, indicating that the spatial
correlation of LCE in the GZA was increasing and more spatially concentrated, but there
was somewhat of a decrease over time after 2017.

Table 5. Global Moran’s I of LCE in the GZA from 2000 to 2019.

Year Moran’s I Z Value p Value Year Moran’s I Z Value p Value

2000 0.1117 3.9563 0.001 2010 0.1244 4.4225 0.002
2001 0.1073 3.7998 0.001 2011 0.1566 5.6595 0.003
2002 0.1191 4.2129 0.001 2012 0.1566 5.6581 0.005
2003 0.1174 4.1606 0.001 2013 0.1565 5.6545 0.004
2004 0.1442 5.1692 0.002 2014 0.1565 5.6574 0.004
2005 0.1227 4.4282 0.002 2015 0.1562 5.6471 0.005
2006 0.1153 4.1100 0.002 2016 0.1570 5.6746 0.004
2007 0.1147 4.0877 0.002 2017 0.1755 6.3689 0.004
2008 0.1151 4.1009 0.002 2018 0.1413 5.2622 0.004
2009 0.1153 4.1091 0.002 2019 0.1413 5.2618 0.005

The local spatial autocorrelation clustering results of LCE from 2000 to 2019 were as
follows (Figure 8). From 2000 to 2001, the H-H agglomeration area of LCE in the whole
study area was distributed in the central urban agglomeration of the study area, including
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Xi’an, Xianyang and, Baoji. These regions had dense cities and large populations, which
led to high energy consumption, resulting in high concentrations of carbon emissions.
At this time, the H-H agglomeration area is large (accounting for about 10%). However,
from 2002 to 2019, the H-H agglomeration area showed an obvious downward trend, from
5.67% in 2002 to 2.89% in 2019. During the period of 2012–2019, the H-H agglomeration
area mainly formed core urban areas with rapid economic development and population
growth, such as Xi’an and Baoji. The L-L agglomeration area was always distributed in
scale, and the spatial distribution range was relatively stable (26~29%), mainly distributed
in the southwest parts of the GZA, such as the western and southern areas of Baoji City,
the southern areas of Xi’an City, and Weinan City; the area was also distributed in the
junction area of Tongchuan and Xianyang. These areas were mainly located on the east
side of the Qinghai-Tibet Plateau and the southwest side of the Loess Plateau, and most of
them were located on the edge of the Qinling Mountains, with high vegetation coverage,
strong ecological environmental constraints, sparse population, inadequate development
of the central city itself, and a weak connection with the surrounding cities, resulting in
low carbon emissions. The H-L aggregation area was the smallest part of the study area.
From 2000 to 2004, the L-H aggregation area showed an increase and remained stable after
2004, accounting for about 1%.

Figure 8. Spatial clustering features of LCE in the GZA from 2000 to 2019.
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3.4. The Response of LCE Changes to Different Driving Factors
3.4.1. Analysis of the Driving Factors Affecting LCE Changes at the Global Dimension

As shown in Figure 9, the average correlation coefficients between LCE and driving
factors (NTL, PD, and GPP) in the study area from 2000 to 2019 were 0.13, 0.21, and −0.05,
respectively. Specifically, the area of positive correlation between LCE and NTL in the GZA
was about three times that of negative correlation, accounting for 77.39% and 22.61% of the
total area, respectively. The area with a significant positive correlation (0~0.5) accounted for
38.84% of the total area. The negative correlation area (−0.5~−1) only accounted for 5.31%,
which was mainly observed to be distributed in Xi’an and Xianyang. The proportions
of positive and negative correlations between LCE and PD were relatively close. The
positive correlation area (0~0.5) accounted for 30.68% of the total area, which was mainly
found in the urban area of Xi’an, while other areas were scattered in a dotted pattern. The
negative correlation area (0~−0.5) occupied 29.19% of the total area, which was mainly
distributed in the eastern part of Baoji, the western part of Weinan, and the southern part
of Xianyang. The area of positive correlation between LCE and GPP in the study area was
slightly smaller than that of negative correlation, accounting for 66.44% and 33.56% of
the total area, respectively. In general, the area of positive and negative correlation was
more concentrated. The area with a positive correlation (0~0.5) accounted for 51.59% of
the total area, mainly distributed in the northwest of Baoji, the middle of Weinan, and
the central and western regions. The area with a negative correlation (0~−0.5) occupied
30.29%, mainly distributed at the junction of southern Xianyang and northern Xi’an, the
central and eastern part of Baoji, and the eastern part of Weinan. The analysis showed
that the correlation between LCE and the above three factors in the study area has obvious
spatial heterogeneity, which may be related to the different responses of LCE to the change
of factors.

Figure 9. Correlation of LCE with factors (NTL, PD, and GPP) at global dimension.

3.4.2. Analysis of the Driving Factors Affecting LCE Changes at the Local Dimension

For NTL variables, the estimated coefficients of most regions in the GZA were signifi-
cantly positive (Figure 10a,d), implying that the LCE was increasing with the increase of
the NTL index. Given that the NTL index can explain the level of urbanization and energy
consumption to a certain extent, the acceleration of urbanization significantly promotes the
increase of LCE. It showed that the high-value areas of the NTL index from 2000 to 2019
were mainly concentrated in the Guanzhong urban agglomeration area. It can be seen that
the urban agglomeration area, with Xi’an as the center, was driving the development of the
surrounding areas (Figure A3). From 2000 to 2019, the land-use type in the high-value area
of the coefficient estimation was mainly constructed land and cropland, while the land-use
type in the low-value area of the coefficient estimation was mainly forest. The NTL index
and LCE are mainly positively correlated. Therefore, the higher NTL index indicated that
the land-use type was to be a carbon source. On the other hand, compared with 2000, the
estimated average of the minimum and maximum levels of coefficients increased in 2019.
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Figure 10. Spatial distribution patterns of regression coefficients in MGWR.

For the PD variables, the coefficient estimation indicated a significant spatial pattern
of polarization across the whole study area (Figure 10b,e). Similar to the NLT, the high-
value areas of PD were also distributed in urban agglomeration areas, such as Xi’an,
Xianyang, and Baoji, and the high-value areas of PD showed an increasing trend from
2000 to 2019 (Figure A4). The significant negative correlation effect was mainly observed
in grassland, cropland, and the forest area in the west of Xianyang, while the significant
positive correlation effect was mainly found in construction land and cropland area. In
2000, the high estimated value was relatively small, mainly distributed in the north of
Xianyang. Compared with 2000, there were concentrated areas with a high estimated value
in all cities in 2019, which indicated that the development of the five cities had a center of
gravity, and the low-value areas were distributed in the west and east of the study area.

For GPP variables, the regression coefficients of most areas in the GZA showed
significant negative values (Figure 10c,f), indicating that LCE tended to decrease with the
increase of GPP. From 2000 to 2019, the total GPP in the study area indicated an increasing
trend (Figure A5). The frequency of human activities in low-value areas was high, resulting
in damage to the vegetation environment or growth difficulties. High-value areas were
mainly distributed in the Qinling Mountains in the south of GZA, where the vegetation
coverage was high and the ecological environment was well-preserved. Based on the
spatial distribution results estimated by the correlation coefficient between GPP and LCE
in 2000 and 2019, the high-value areas were mainly distributed in the southern part of
Xianyang and the eastern part of Weinan. The low-value areas were mainly distributed in
the junction of Xi’an, Xianyang, and Weinan, and in the middle and eastern parts of Baoji.
From 2000 to 2019, the land-use types in the areas with high coefficient estimates were forest
and grassland, while the land-use types in the areas with low coefficient estimates were
construction land and cropland. In general, GPP and LCE showed a negative correlation,
mainly because the land-use types in areas with high GPP value tend to be carbon sinks.
On the other hand, compared with 2000, the estimated value of the coefficient generally
declined in 2019.

4. Discussion

Scientific estimation and dynamic monitoring of the variation trend of LCEs in a
long time series is the scientific basis and basic guarantee for formulating, implementing,
and evaluating regional carbon emission reduction strategies [12]. Many previous studies
have used different methods to estimate regional LCEs, such as using energy statistical
yearbooks to calculate carbon emissions [12], but this method cannot achieve grid-scale
carbon emissions estimation [36]. Meanwhile, carbon emission research based on traditional
statistical data is often limited to national or provincial levels due to data limitations, and
it is difficult to refine to spatial scales which could provide more powerful support for
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formulating regional and differentiated carbon emission reduction policies [37]. In addition,
some studies selected the BK model to estimate LCEs. Although this model can quantify
the impact of land-use change on carbon emissions, it is difficult to obtain parameters [38].
Compared to previous studies, this study used the carbon emission coefficient method
to calculate direct LCEs and introduced the carbon emission grid data of fossil fuel data
released by the ODIAC platform to calculate indirect LCEs [39]. Through the superposition
of direct and indirect carbon emission results, we analyzed the temporal and spatial changes
of LCEs in the GZA at a grid scale. The method used in this study mainly calculated
indirect carbon emissions using 1 km high-resolution grid data; this simple process is
highly accurate [40].

This study found a significant increase in LCEs in the GZA (Figure 4), which was
consistent with most previous research [18,31,32,35]. Especially for urban and cultivated
areas, the LCEs show a significant increase (Figure 4). The land use transfer matrix shows
(Figure 3) that the area of construction land in the GZA significantly increased since 2000,
indicating that the urbanization process accelerated during this period. In the process
of urbanization, the increase in population density and various anthropogenic energy
consumptions has become the dominant factor that increases LCEs [41]. Spatially, regions
with high LCEs were mainly distributed in the Xi’an, Xianyang, and Baoji urban agglomer-
ations (Figure 6), and this distribution pattern was closely related to the development of
heavy industry and the human energy consumption in these cities [42]. For cropland, this
study found that LCE showed a significant increase in large areas of cropland. Although
cropland had a certain carbon sequestration effect, it became a major carbon source due to
the increased use of agricultural films, pesticides, and diesel fuel in various agricultural
production activities [9]. For grassland and forest areas, this study found that the LCEs
showed negative values, indicating that these areas showed obvious carbon sinks (Figure 5).
However, due to the overall small changes in the areas of grassland and forest, the impact of
grassland and forest changes on the total amount of carbon emissions was relatively weak
(Figure 3). Considering the analysis of LCEs drivers on a grid scale, this study selected
NLT, PD, and GPP as the driving factors to explore the impact of urbanization, population,
and ecological restoration on LCEs. The NLT can reflect the intensity of regional economic
development, and changes in PD will directly cause changes in carbon emissions [43]. The
GPP can reflect the carbon sink level of vegetation [44]. This study found that NLT, PD,
and GPP have significant spatial heterogeneity in their impact on LCE in the study area
(Figure 9). The NLT, PD, and LCE showed a positive correlation, while GPP showed a
negative correlation with LCE (Figure 10). The results of this study indicated that energy
consumption driven by regional industrial agglomeration, urban scale expansion, and pop-
ulation aggregation to cities became the main reason for the increase in LCEs in the study
area. This was consistent with most previous results [1,35]. Based on the above analysis,
the GZA should prioritize coordinated development, overall planning, the formulation of
carbon emission reduction policies and carbon trading volumes, and the implementation
of systematic and differentiated emission reduction policies to strive to reach the carbon
peak as soon as possible [11,45]. From the perspective of the spatial distribution and ag-
glomeration status of carbon emissions, cities will still be the basic implementation unit
for future carbon emission reduction [46]. Therefore, it is necessary to actively improve
energy utilization efficiency and optimize industrial and energy structures [47]. Economic
growth and urbanization construction were still the main reasons for the growth of LCEs
in the study area. Therefore, in the implementation of carbon emission reduction policies,
it is necessary to achieve regional low-carbon and green development while maintaining
stable economic growth. In addition, in combination with the regional resource and envi-
ronmental carrying capacity and territorial spatial planning, we should reasonably control
population size and urban development efforts, and optimize urban spatial development
structures and industrial layouts [11,48].

In this study, the carbon emission grid data of the ODIAC platform was superimposed
with the direct carbon emission results calculated by the carbon emission coefficient method,
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and then the LCE in GZA was calculated from 2000 to 2019. Based on the Moran’s I,
correlation coefficient and MGWR model, the spatiotemporal change characteristics and
driving factors of carbon emissions were evaluated. The research results have an important
reference value for the evaluation and driving mechanism analysis of LCE in Shaanxi
Province [18]. However, in the process of measuring LCE, the carbon emission coefficient of
land-use types was based on the existing research, which was somewhat different from the
research area. Therefore, it is necessary to further improve the data regarding the research
area, comprehensively consider carbon sources and sinks, and improve the accuracy of
carbon emission calculations in the future [49]. In addition, due to the many driving factors
of carbon emissions, only the nighttime light index, population density, and GPP were
selected in this study. Therefore, more possible influencing factors should be considered
when analyzing the influencing factors of land use carbon emissions in the future.

5. Conclusions

This study analyzed the spatial and temporal changes of LCE based on carbon emis-
sion data and land-use data, and examined the effects of NTL, PD, and GPP on LCE.
During the period of 2000–2019, the average value of LCE was 31.30 million t. Temporally,
the total amount of LCE showed a significant increase from 2000 to 2019 (1.76 million t;
p < 0.01). Meanwhile, the carbon absorption of grassland, forestland, and wetland showed
a significant downward trend, while the carbon emissions in the construction land showed
a significant increase (0.54 million t/a; p < 0.01). Spatially, regions where the LCE signifi-
cantly increased occupied 71.20% of the total area, which was distributed in the central and
eastern parts of the study area. Global Moran’s I of LCE indicated that the LCE showed a
significant positive spatial correlation, and had a remarkable aggregation state. The local
spatial auto-correlation clustering results of the LCE were mainly represented by the H-H
and L-L agglomerations. The H-H agglomeration area of LCE was distributed in the central
urban agglomeration of the study area, and showed a downward trend from 2002 to 2019.
The L-L agglomeration area was always distributed in the southwest part of the GZA
with low carbon emissions. The correlation analysis showed that the average correlation
coefficients between LCE and NTL, PD, and GPP were 0.13, 0.21, and −0.05, respectively,
which showed a large spatial heterogeneity distribution characteristic. The MGWR analysis
also indicated that the NLT and PD had obvious positive effects on LCE, especially for
urban agglomeration areas, such as Xi’an and Baoji, while GPP has obvious negative effects
on carbon emissions in most areas, mainly due to the carbon sink effect of ecosystems, such
as forests and grasslands. The results of this study have an important reference value for
the formulation of carbon emission reduction policies and the development of a low-carbon
social economy in the GZA and even the whole Shaanxi province.
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Appendix A

Figure A1. Land-use types of the study area from 2000 to 2019.
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Figure A2. The spatial patterns of the carbon emission data obtained from the ODIAC between 2000
and 2019.

Figure A3. Spatial patterns of nighttime light from 2000 to 2019.
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Figure A4. Spatial patterns of population density from 2000 to 2019.

Figure A5. Spatial patterns of GPP from 2000 to 2019.
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