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Abstract: Illegal dumping is one of the major issues to be addressed by public managers in both
developed and developing countries. The adequate tackling and enforcement of such unlawful
activities require continuous territory monitoring, the lack of which is the principal cause of the
failure of traditional systems based on patrolling, eventually triggered by sparse crowdsourced data.
This work proposes the digitalization of the entire illegal waste management monitoring process
through an innovative decision support system based on multiscale remote sensing data. These data
enable the assessment of the risk level of specific areas, thus determining inspection priorities in
line with the available patrolling resources. The proposed methodology provides a tool to assess the
impact of diverse monitoring system parameters on overall the performance in light of the expected
operating costs and to understand whether remote sensing can help a better management of illegal
waste in a specific operational scenario, thus helping in the determination of the best cost-benefit
trade-off. Simulation results over a demonstration scenario, based on realistic dumping/restoration
dynamics and the typical performance of satellite detection systems, show that the adoption of remote
sensing technologies in the monitoring process can increase the restoration capacity by about 10%
compared to traditional patrolling.

Keywords: illegal dumping; progressive monitoring; satellite remote sensing; GIS; decision sup-
port systems

1. Introduction

During recent decades, increasing populations and industrial growth have led to a
significant rise in solid waste production in a landscape characterized by a progressive
reduction in areas that are suitable for proper waste disposal [1]. According to [2], in
2016, about 2 billion tons of waste was generated worldwide. This number is predicted to
increase to 3.5 billion tons by 2050 [3]. The topic represents a crucial socioeconomic issue,
as unmanaged waste contributes to environmental pollution, furthers the transmission
of diseases, and negatively affects the economy [3]. These considerations hold for both
developed and developing countries, though with different facets and implications for
public managers, who are requested to deliver rapid and effective services, often lacking ad-
equate resources. Moreover, they are also responsible for monitoring and countering illegal
dumping activities, which are favored by corrupted industries and criminal organizations
with converging interests [4].

lllegal dumping is an issue affecting many countries all around the world. It is
characterized by both opportunistic behaviors and criminal ones. In the first case, the
offense is committed by individuals disposing of waste in violation of their current, local
regulations. In the second, dumping is conducted by criminal organizations with the
complicity of entrepreneurs, mainly to reduce the cost of the disposal of hazardous waste [4].
This phenomenon is widely documented [5-7] and requires appropriate integrated solid
waste management systems (ISWMSs) to be designed with the aim of both managing illicit
waste cycles and preventing and/or mitigating the impact of illicit activities [3,5,8].
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In this regard, monitoring activities are usually implemented using crowdsourced
data, i.e., warnings raised by private citizens, and/or reports produced by dedicated field
campaigns [8]. The latter practice is only moderately effective, as it does not allow for
continuous and synoptic territory monitoring and it is highly demanding in terms of human
resources and associated costs.

In recent years, aerial remote sensing technologies have emerged as strategic tools
for managing both legal and illegal waste cycles [9,10]. Close-range platforms have been
increasingly exploited for the high-resolution mapping of sites classified as environmentally
sensitive [3], like landfills [11-13]. However, these are useful only in cases where the
position of the dumps is known and there is a need to characterize the site in terms of
extension, volume, composition, etc.

In dealing with illegal dumping, the major issue is the detection of potentially affected
areas, as they are usually scattered around large urban agglomerates. This activity, usually
involving object detection algorithms, can also be automatically or semi-automatically
addressed through satellite remote sensing [5,14,15] when very high resolution (VHR)
images are available.

These considerations bring us to the concept of progressive monitoring, i.e., the
joint exploitation of different sensing technologies for gradual and multiscale detection,
confirmation and characterization of targets of environmental interest, like illegal dumps.
In other words, the monitoring activity is seen as an information process composed of three
phases with different purposes, fed by different typologies of remote sensing data.

In the first phase, i.e., the detection phase, the objective is to discover areas potentially
affected by illegal dumping at a regional scale using satellite data. The second phase, devoted
to the confirmation of satellite detections, can be implemented with the aid of expert operators,
who visually inspect the detected areas, employing higher-resolution images, like aerial
images, to verify the presence of micro-dumps and define their extent. Alternatively, ground
patrols can be used for field investigations. Finally, confirmed targets are investigated locally
using close-range platforms to generate extension and composition attributes useful for
successive restoration. This phase can also be simultaneous with confirmation.

However, territory monitoring is only one of the aspects contributing to ISWMSs, as
the full exploitation of sensory data requires decision making about how the information
they contain can be applied to the waste management problem. Therefore, the availability
of decision support systems (DSSs) is crucial for the effectiveness of ISWMSs [16]. They can
be categorized as strategic decision support systems (SDSSs) or tactical decision support
systems (TDSSs) [17].

In the first case, the focus is on solutions for one-off spatial planning events, aiming
to prepare monitoring campaigns, resource planning, environmental impact modeling, and
risk assessment, as well as the evaluation of restoration results. Strategic decision-making
goals for illegal waste monitoring include the definition of monitoring tools and processes.
They should (i) be compliant with national and international directives, (ii) incorporate the
best practices suggested by environmental agencies, and (iii) be supported by studies
demonstrating their effectiveness against alternative approaches that can be adopted with
the same budget [18,19]. This is possible using stochastic models [20] and numerical
simulations, as proposed in this paper.

TDSSs are used for the systematic and periodic planning of monitoring and restoration
activities after defining the relevant constraints in terms of resources. They include districting,
i.e., the partitioning of the territory for waste collection purposes, as well as fleet sizing and its
management [21]. All this should be arranged to reduce the environmental risk due to the
presence of abandoned illegal waste through waste collection and/or site restoration.

Therefore, it is crucial for the DSS to incorporate an environmental risk model [22-24].
Moreover, the system should be able to provide information about inspection priority
changes following site confirmation through appropriate modeling, considering the follow-
ing factors: (i) the probability of the existence of the hazards depending on the reliability of
the information source [14,25-27]; (ii) the impact of the hazards on the surrounding areas;
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(iii) the already-implemented mitigation actions. Finally, it should support the manage-
ment of the available resources (people, ground vehicles, field instrumentation, drones [28])
under given constraints through an optimization model [29].

In operational scenarios, the systematic use of satellite data for monitoring micro-
dumps is not state-of-the-art, as dumping is usually tackled using patrolling, eventually
triggered by crowdsourced data (as also discussed in [30]). Recently, the remote sensing
community contributed to the topic by presenting some solutions addressing single blocks
of the whole chain, like the identification of sites that have potentially been affected
by illegal dumps [14] and their characterization [31,32]. This paper introduces a novel
functional architecture for DSSs that can manage the whole information process, from
the mapping of sites that have potentially been affected by the phenomenon up to the
design of the patrolling routes necessary for the implementation of restoration actions. The
system is fed by progressive monitoring data and can integrate traditional crowdsourcing
to build risk and priority maps constituting the input for routing. It aims to support public
decision makers in (i) discovering and characterizing illegal dumps, (ii) prioritizing field
operations based on the available resources, and (iii) understanding the cost-benefit of
the diverse waste monitoring approaches. The underlying models have been validated on
historical remote sensing and on-the-ground data collected over a densely populated area
in Southern Italy, between the cities of Naples and Caserta [4].

The work is organized as follows: The remote sensing products, their performances,
and the case study considered for their performance assessment are presented in Section 2.
The progressive monitoring approach and the DSS architecture are described in Section 3.
A novel methodology to estimate system performance using simulations is discussed in
Section 4. Section 5 discusses the obtained results from the perspective of previous studies
and working hypotheses. Conclusions are drawn at the end of the work.

2. Case Study and Remote Sensing Products
2.1. Geographical Area of Interest and End Users” Needs

The “Land of Fires” is an environmentally critical area of Southern Italy between the
cities of Naples and Caserta. This denomination refers to the high occurrence of fires in
some rural areas of this territory triggered by micro-dumps that accumulate along roads
or the countryside. Due to some political and environmental crises that compromised the
waste collection cycle for a long time (from 1994 to 2012), the area is under the attention
of regional and national authorities for the phenomenon of illegal waste dumping and
burning and is currently the object of European sanctions due to insufficient restoration
activities. Although the acute phase of the environmental crisis has been solved [32,33], the
attention of the authorities is still high, and several prevention, monitoring, and repression
activities are deployed on the territory [18,19].

The study area (depicted in Figure 1) has been partitioned into elementary geographi-
cal units, hereafter referred to as inspection cells, forming a hexagonal grid. The diameter
of the circle that circumscribes the hexagonal cells is 110 m.

The reference end-users for the proposed system are the environmental monitoring
agencies committed to discover, identify, and characterize illegal dumping sites to activate
the subsequent restoration in charge of public authorities. Their goal is to optimize the
resources to be employed for such activities to obtain the best performance at the minimum
cost, especially in rural and industrial areas, where the absence of population makes citizens’
spontaneous reporting less effective.
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Figure 1. Map of the “Land of Fires” provided by the Environmental Protection Agency of the
Campania Region (ARPAC). The areas identified by the diverse colors were monitored by the public
administration starting from different dates.

2.2. The Monitoring Approach

With the phrase “progressive monitoring”, we mean the exploitation of different
remote sensing technologies and methodologies to acquire increasingly detailed and com-
plete information. In such a way, technologies with high temporal frequency and spatial
coverage but with lower spatial resolution are gradually complemented by those with en-
hanced spatial resolution and information completeness, typically usable on smaller areas
and with higher activation costs. Thus, the most complete information will be collected
only where more clues of interest are gradually evidenced.

Specifically, the study area has been investigated utilizing very high resolution (VHR)
satellite data and ultra high resolution (UHR) aerial imagery acquired during dedicated
campaigns. Close-range remote sensing has been implemented to characterize small micro-
dumps. Ground surveys performed by the regional public agency for environmental
monitoring (SMA Campania) using mobile phone cameras and dedicated apps were used
to validate such remote sensing data.

As for satellite data, four-band VHR images acquired by Pleiades and GeoEye-1
constellations have been considered in this research. Panchromatic data have a spatial
resolution of about 50 cm. Multispectral ones have 2 m and 1.64 m spatial resolutions,
respectively. These data are used for dump detection (as proposed in [15]) to determine
which sites should be potentially inspected via aerial surveys or ground patrolling (see
Figure 2). The products obtained without the photo-interpretation of satellite detections
will be referred to as unvalidated satellite detection maps in the following; otherwise, they
are referred to as validated satellite detection maps.
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Figure 2. Example of detection data retrieved via automatic detection in satellite images. Green
frames indicate sites potentially affected by micro-dumps.

Aerial remote sensing images are used to produce reliable ground truth for training
detection models and to validate the output of the automatic satellite detections. In
this research, annotated RGB aerial orthophotos with 5 cm spatial resolution have been
considered for ground truth production.

The adopted photo-interpretation process can start from scratch or be initialized with
a recent satellite unvalidated detection map, in which case it consists of eliminating false
alarms and/or adding some omitted targets. Photo-interpreted data are validated and can
be used directly in the final application or to validate the performance of the unvalidated
satellite products.

After target confirmation, the performance of satellite detection can be evaluated
according to standard precision and recall parameters calculated over the inspection cells.
Recall is essentially the true positive rate (P4.) defined by relation

Rt &

Recall = Py = N
C

where precision is the complement to 1 of the false discovery rate (Pg,), i.e.,

Precision =1 —Pg, = 1 — Nige )
Nqg

where N, is the overall number of micro-dumps confirmed by photo-interpreters, Nyt is

the number of satellite detections, and Ngg_, is the cardinality of the intersection between

the detected and the confirmed micro-dumps.

According to [10], the expected precision and recall values of micro-dump detection
algorithms on UHR aerial images square sections of variable dimension from 120 x 120 m
to 200 x 200 m are in the order of 80% for both precision and recall.

Using VHR satellite images, the best performance is achieved with techniques based
on convolutional neural networks (CNNs) like InceptionV3 [34] and RetinaNet [35]. As
reported in [30], the expected values for precision and recall are, respectively, 75% and 48%
at the hazard scale, and 59% and 91% at the cell scale.

The DSS is associated with an unnecessary inspection cost (commission cost), with
ground surveys made in the absence of dumping sites. This aspect is related to vehicle
routing optimization, which will be discussed in Section 3. Similarly, a missed intervention
cost (omission cost) is associated with dumps within the cells that are not inspected. The
commission cost depends on the location of the erroneously inspected site (in the case of
ground patrolling) or the visual photo-interpretation cost (in the case of validated map
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production). It deteriorates the probability of discovering new targets. The value of
omission cost (evaluated ex-ante) depends on the environmental risk of the cell and is
expressed by the inspection priority model that will be introduced in Section 3.

The last typology of remote sensing data exploited in this research is represented by
close-range remote sensing images acquired with drones (GSD < 2 cm). Specifically, they
have been exploited for real-time volumetric characterization of confirmed micro-dumps
using simultaneous localization and mapping (SLAM) techniques fed by data acquired by
optical payloads [8]. However, this solution can be also exploited to retrieve information
about the composition of the dump using multispectral and/or hyperspectral sensors [36].

The data used for feeding the DSS are summarized in Table 1 with the adopted
technologies and their expected performances.

Table 1. Summary of data and techniques used in the proposed progressive monitoring approach
and expected performance as declared by the literature.

Data GSD Revisit Time Usage Performance Reference
. 75% precision
Detection at hazard scale 48% recall [30]
Satellite VHR MS Imagery 50 cm 12 months
Detection at 59% precision 130]
inspection cell scale 91% recall
Drone RGB and Depth Imagery <2cm Ground patrolling Volume estimation Estimation [8]

error <10%

3. Architecture of the Decision Support System

The following paragraphs illustrate how the different remote sensing technologies,
individually exploited to solve specific tasks of the whole framework [8,30], can be inte-
grated into a single monitoring process that can be digitalized into a DSS, whose engine is
constituted by the statistical models for environmental risk [22], sites prioritization [37],
and resource allocation [38].

3.1. Overview

The architecture of the proposed DSS, depicted in Figure 3, is composed of five main
processing blocks: data gathering, data fusion, risk analysis, priority analysis, and on-
the-ground resource allocation and vehicle routing. In the diagram, ellipses stand for
exchanged data, rectangles stand for DSS processing blocks, and irregular frames stand for
processes that are external to the DSS. Its final output is the daily route to be followed by
operators for field inspections and/or restoration actions implementation. Each step will
be discussed in detail in the following sections.

optional photointerpretation

Detection :
Maps \

notification to the public authority Disposal and

Validated
Detection
Maps

remediation

Photointerpretation

¢ disposal & remediation status

STEP1: Data STEP2: Data
. Ri . DFiAr STEP5: On Ground
Gathering _‘—. Fusion I STAEPBE. R.ISk — STE:4‘|PH.OHW | Resource Allocation
(Satellite) & Confirmation nalysis natysis and Vehicle Routing
STEP1: Data
Vl.Jlum.e Gathe.rlng On Field
Estimation (On Field) S
Operations resource allocation

Figure 3. Proposed decision support system architecture.
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3.2. Step 1: Data Gathering

The system is designed with the adaptability to handle diverse information about the
presence of micro-dumps. This includes datasets from various sources, each with its own
level of confidence and descriptive completeness. As previously mentioned, the progressive
approach offers three distinct possibilities; these are represented by the following data types:

- VHR satellite data: These are acquired on a bi-monthly or quarterly basis and auto-
matically processed to extract unvalidated detection products that can be occasionally
or periodically validated through photo-interpretation or ground patrolling.

- UHR airborne data: These are occasionally acquired and exploited for ground truth
retrieval via photo-interpretation and for the training of the detection algorithm.

- Field data: These are acquired during patrolling and include data records that are
retrievable through the visual inspection of the site and close-range volumetric charac-
terization data when available.

Each micro-dump can be characterized with information coming from more sources,
stored within a data record with the following attributes: (i) unique identification key
of the dumping site, (ii) reliability, i.e., the probability that it really exists according
to the detection system exploited, (iii) geographic localization, (iv) information source,
(v) estimated extension, (vi) estimated volume, and (vii) estimated composition. Depending
on the data source, some of these attributes could be void. For example, if the dump has
been detected using satellite images, information related to its volume and composition
would be unavailable. When this information is missing, statistical forecasts of missing
data are made based on geo-localization and historical data.

3.3. Step 2: Data Fusion

The information extracted from data may concern the following: (a) not previously
detected micro-dumps; (b) previously detected micro-dumps; (c) micro-dumps that have
been visually confirmed by the photo-interpreter; (d) micro-dumps that have already been
confirmed and characterized through on-the-ground monitoring. Different information
regarding the same location must be consolidated: in particular, its spatial coordinates,
the confidence about the phenomenon’s existence, and its characterization (volume and
composition). Therefore, it is necessary to define a strategy that enables the following:
(a) the association of the various evidence collected with the unique identification key;
(b) the estimation of the probability of the existence of the phenomenon considering all
the available information (see Sections 3 and 4); (c) the consolidation of the micro-dump
description (the most accurate information sources prevail in updating the description, for
example, satellite respect to mobile camera for geo-localization).

The identification of correspondences between satellite data and ground surveys
(see the simulation results in Figure 4) can be implemented either automatically with
a minimum distance approach or manually by the DSS operator, which can choose the
correct association within a group of already detected or confirmed dumping sites through
a graphical user interface. It is assumed that the coordinates of the micro-dumps detected
during the ground surveys have been previously validated and corrected; otherwise,
the data fusion approach should be more complex and include options to correct the
coordinates of the ground surveys.

As previously explained, the confirmation phase (validation of the detected sites
using photo-interpretation) is optionally performed during the data fusion processing step.
“Optionally” means that, if neither human resources nor UHR airborne data are available
for validation, the DSS considers the input as unvalidated, thus having high uncertainty
and low information content.
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Figure 4. New satellite detections (yellow dots) and verification of correspondence with previous
confirmations (green dots).

3.4. Step 3: Risk Analysis

Following the environmental risk analysis literature [33], some definitions tailored to
the specific application at hand are provided.

By hazard probability, we mean the probability of the existence of the hazard source,
i.e., the probability of the presence of a micro-dump. The hazard intensity is the product of
the probability that a harmful event will be triggered (in our case, a fire) and the expected
intensity of the event, depending on the characteristics of the hazard (in our case, the
volume and the composition of the micro-dump).

The territory’s vulnerability is linked to the density of the active population in the
geographical areas surrounding the hazard and its exposure to the phenomenon (the
exposure is different in residential, rural, or industrial areas).

The impact is the expected damage that can be caused to people who live or work in
the surroundings of the micro-dump, normalized against the intensity of the hazard. It is
assumed that there is a proportional relation between the hazard intensity and its impact.

The risk of the specific hazard for the specific geographical area (see Figure 5a) is
the product of hazard probability, potential dangerousness, vulnerability, and impact for
the generic location. Each specific hazard is referred to. The spatial integral of the risk
associated with all the hazards affecting a specific area (see Figure 5b) measures the ex-
pected damage obtained considering all the hazards that can affect the target area. It
represents the risk level for the population. On the other hand, the overall risk induced
by the specific hazard (see Figure 5c) is given by the spatial integral of the hazard risk
extended to all the areas on which it can have an influence. It quantifies the danger-
ousness of the micro-dump in terms of the expected damage to surrounding areas and
enables an understanding of how dangerous the single micro-dump is for the people living
in its neighborhood.

While the hazard intensity is a property of the micro-dump and is independent on the
territorial context (if a micro-dump in a deserted area and one located in a city are equally
hazardous, then their potential dangerousness is exactly the same), the risk associated with
the hazard expresses the hazard contextualized in the geographical context (the expected
damage to the surrounding population). This means that the associated risk is high if the
hazard is located in a populated area while it is negligible otherwise.

A suitable risk model for assessing the fire risk, which is the principal interest of
the reference end-user, is illustrated in [22]. The workflow for its calculation is shown
in Figure 6; here, ellipses correspond to updated data, cylinders to historical data, and
rectangles to statistical models.
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Figure 5. Graphical representations of (a) risk of the specific hazard for the specific geographical area,
(b) cumulative risk of the hazards for the specific geographical area, and (c) overall risk induced by
the specific hazard.
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a; denotes the spatial coordinates of the cell in which the hazard of coordinate h; is
located; aj denotes the coordinates of the inspection cell affected by the hazard. The risk of
the specific hazard for the specific geographical area for fully characterized micro-dumps is
defined here.

r(hi,aj) = D(hi)E(aj,ai)I(aj), (3)

where D(h;) is the dangerousness of the hazard (see [22] for details), E(aj,ai) is the

exposure of the inspection cell, and I(a;) is the impact of the hazard on the cell. The
exposure decreases with the distance from the hazard and, as explained in [22], is weighted
in the range [0, 1] according to the land use. The impact is proportional to the population
density of the affected cell.

For confirmed micro-dumps, the overall risk induced by the specific hazard, graphi-
cally represented in Figure 5a, can be evaluated as follows:

I, = I‘C(hi) = ZD(hi)E(aj,ai)I(aj). (4)
)

The risk analysis involves the evaluation of (i) the composition and volume of micro-
dumps (for hazard evaluation), (ii) the distance from the hazard and land use (for exposure
evaluation), and (iii) the population density (for impact evaluation). Such information can be
retrieved from historical data, which are available from the Italian Institute of Statistics (ISTAT)
and the literature on land use maps [22]. The volume can be estimated as suggested in [8].
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According to the block diagram shown in Figure 6, the calculated risk is weighted
against the probability of the existence of the micro-dump. In the absence of photo-
interpretation, it can be evaluated based on the expected performance of the detection
algorithm. The expression for the risk induced by the detected hazard is as follows:

rq, =r4q(h Zd E(aj,a;)I(a)) = Xj:diE(aj,ai)I(aj) (5)

where the value D(h;) = d;, depending on waste volume and composition, is estimated
statistically from historical data available for the analyzed cell. Only for validated detection
products, the volume can be inferred from the estimated micro-dump area; this can be
made optionally available in the DSS. In general, the dependence of dangerousness from
the specific hazards is therefore considered in the next formulas.

Assuming that a cell has been not inspected by ground patrols, it is possible to estimate
the number of micro-dumps, Nest, within it, as follows:

(1 — Pfa)

1-P
A=Pae) (; _p )Ny 6)
1—Jclet

Nest = Ng = (1 - I)fa)l\ld + (
where Py, is the false discovery rate of the satellite detection system, P4 is its detection

probability (recall), Ng is the number of the total detections in the analyzed inspection cell,

and Ny = w (1 — Pg,)Ng is the estimated number of undetected micro-dumps.
In such cases, the risk induced by the undetected hazard can be formulated as follows:

Iy

. =ru(hy) =) diE(aj,a)I(aj) =1y 7)
j

where D(h;) = d can be estimated only from historical data on the analyzed cell, so that r
represents a standard estimation for all undetected micro-dumps.
The overall risk induced by all the hazards in the inspection cell can be evaluated as

R = chﬁrZP D14, +Zru ®8)

where p(h;) is the probability that the detected hazard is not a false alarm. It can be
rewritten as:

Nc Ng
R = Zrci +(1- Pfa)Zrdi + Nury 9)
i= i=1

where Py, is the false discovery rate of the detection algorithm. Precision and recall scores of
micro-dump detection algorithms in VHR satellite images are given in [15,30] for machine
learning and deep learning detection approaches, respectively. Such scores, defined at the
hazard scale, are used in the risk model adopted within the DSS.

The output of the risk assessment workflow is shown in Figure 7. Specifically, the map
represents the risk induced by the hazard, considering both the confirmed and unconfirmed
dumping sites. The darker the color of the dot, the higher the risk associated with the hazard.

3.5. Step 4: Priority Analysis

The above-introduced risk map is the starting point for defining the inspection priority.
It refers to the need to inspect a detected site to confirm and characterize it. This concept
connects monitoring activities with the final objective of the application, i.e., the restoration,
and includes both the risk induced by the hazards and the risk mitigation effect connected
to site inspection, which is expected to trigger restoration interventions after reporting to
the authorities.
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Figure 7. Map of the risk induced by the specific hazard for each site detected by satellite data
analysis independently from their confirmation. The darker the color, the higher the risk.

The inspection priority associated with each site is quantified as the expected reduction
in the risk induced by the specific hazards in the cell as a result of on-site inspections and
reporting. This makes the concepts of priority and risk different. A cell that is characterized
by high risk but which has been recently inspected has a low priority; the return of the
patrols is not expected to produce any risk mitigation because a report about the area
should have already been produced.

As shown in Figure 8, in which the shapes of the blocks have the same meaning as those
in Figure 6, the evaluation of the inspection priority involves historical data and statistical
considerations about the temporal dynamic of the illegal dumping phenomenon, which are
used to calculate an intervention time since the first reporting and a risk mitigation curve.
Then, the inspection priority, v, is defined by the algebraic difference between the expected
unmitigated risk, r, and the expected mitigated risk, rp, after a predefined time span At
corresponding to the minimum revisit time of ground patrols. Mathematically, it holds

v(t) = r(t+ At) — rm(t + At) (10)
Disposal 8 Disposal & Disposal &
Risk Analysis Remediation Remediation Remediation
Status Model Prediction

Historical
Data

Priority Model

Priority
Analysis

Figure 8. Workflow for the calculation of the inspection priority.

Since on-the-ground patrolling is typically performed for both the characterization
of known sites and the discovery of new ones, relatively large areas are usually explored
in a single mission. Therefore, as discussed in Section 2, the study area is tessellated into
inspection cells. Therefore, beyond the inspection priority of the site, the one for the cell
should be introduced. This is obtained by summing up the inspection priorities of the sites
contained within a cell. This value is weighted for the contribution of undetected micro-
dumps, which can be estimated from micro-dumps generation dynamics (see Section 4
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for details) and the performance of the detection algorithm. If detailed historical data are
available, they can be used to fit the model depending on the location of the cell.

In other words, it is assumed that the inspection priority V of the cell is composed of
three contributions according to the following relation:

V=V.+Vg+Vy, (11)

where V., V4, and V, represent the inspection priorities related, respectively, to confirmed,
detected, and undetected dumps for the whole cell. Assuming, within the cell, N, the
number of confirmed dumping sites, Ny the number of detected ones and Ny, the estimated
number of undetected dumps, the previous equation can be rewritten as follows

N¢ Ny
V=Y ve+(1-Pqp)) vg +Nuvy, (12)
i=1 i=1

1=

where Py, is the false discovery rate of the detection algorithm.

The inspection priority of confirmed micro-dumps vy, is evaluated based on charac-
terization data collected by ground patrols. The priority related to detected micro-dumps
vg, can be estimated from current and historical data concerning the specific geographical
location. The priority associated with the undetected micro-dumps vy, can be estimated
from the averages of the current and historical data over the whole inspection cell. The
obtained priority map for the study area is shown in Figure 9.

Figure 9. Inspection priority map for selected inspection cells. The darker the color, the higher the
inspection priority.

3.6. Step 5: On-the-ground Resource Allocation and Vehicle Routing

Once the highest priority cells have been identified, it is necessary to manage the
available patrolling resources to reach the sites to be confirmed and characterized. The
constraints to be considered are the number of vehicles, their starting points, and the time
required for travel and inspections.

To this end, an algorithm is formulated to determine, for each patrol, the set of cells to
be explored that maximize the overall priority index. Calculations are performed under
some time constraints, like, for example, the work shifts of the operators. This problem
belongs to the class of the so-called vehicle routing problems (VRPs) [28], which are NP-
hard problems. A system of reduced complexity to assign resources based on the inspection
priority is described in [21,34]. Once the algorithm has provided the sets of cells assigned
to each patrol (inspection plan), the traveling salesperson algorithm (TSP) [39] is used to
determine the patrolling order of the cells, which constitutes the final output of the system,
named the routing plan. An example routing plan, corresponding to the inspection priority
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map depicted in Figure 9 and obtained under the hypothesis that three patrols are available,
is shown in Figure 10.

i Nocer ra
Infefiore_superiore

Lettere Cavade S5 sinmango

Figure 10. The routing plan obtained from the inspection priority map depicted in Figure 9. It has
been produced under the hypothesis of the availability of three patrols. Yellow hexagons identify the
sites to be inspected by the patrols. White dots represent their starting points.

4. System Dimensioning through a Simulation Approach

The assessment of the whole system’s performance, which should be evaluated in
terms of the number of restored sites and /or restoration time after the detection, would
require the system to be operative for a significant observation time, allowing for the com-
parison against traditional patrolling. This approach is not feasible because (i) the proposed
approach is not yet fully operational and (ii) the analysis of the collected observations
would not allow for separating the effects of effective monitoring from those connected to
on-the-ground remediation activities.

For these reasons, the performance of progressive monitoring will be evaluated in a
simulation environment against different key parameters of the satellite detection system
like the acquisition period of new products or the performance of automatically generated
detection maps. The purpose is to provide a methodological approach to compare the
proposed progressive monitoring system, digitalized using the DSS, with traditional on-
the-ground monitoring and to evaluate its effects on subsequent restoration activities.

4.1. Statistical Model

As suggested in [20], simulations were implemented considering the micro-dump
generation and the restoration processes as part of a larger first-order Markov random chain
with unobserved states [40,41], whose schema is represented in Figure 11. It is a finite-state
machine with probability associated with state transitions. Reporting activities enabling
restoration actions are included in the model. The system states are represented by the vec-
tor of components “E” (existent = 1, not existent = 0) and “S” (signaled for restoration =1,
not signaled = 0). The transition probabilities of the process are defined by the generation
probability Pg and the restoration probability. The probability of discovery Py is related to
the monitoring system’s performance, whether it is traditional or progressive.
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1-p Fy
, 1-P
E= existent Py
S= signaled
P, 1-P.

Figure 11. Micro-dump generation, discovery, and restoration processes modeled as a Markov
random chain. The associated state can be existing/not existing (E) and signaled /not signaled (S).

The state transition probability matrix of the Markov random chain, denoted with
T, is reported in the following equation, representing a transformation of column vectors
indicating the probability of the three states of the model:

1-P, 0 P,
T= Pg 1—-Py 0 . (13)
0 P, 1-P,

Such transition probability matrix depends only on vector § of independent parame-
ters expressing the conditional probabilities of the model:

8 = [Py, Py, Pyl (14)

In the absence of observations, the probability of discovery P4 can be improved by
introducing a state estimator of the unobserved states (see Figure 12), as suggested in [42].

E= existent @ @
S=signaled
C= confirmed
D= detected
1-P,
ot Paet 1-P,
l —
F
Prq
Py

@

Figure 12. State confirmation by patrolling (C = confirmation) and state observation through the
satellite detection system (D = detection).

fie]

As shown in Figure 12, the drifts in state estimation due to the inaccuracy of the model
can be recovered through direct state observations. They are obtained thanks to ground
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Prodel (t) =

patrolling (traditional monitoring) and/or satellite acquisitions (progressive approach),
each of them having their own scheduling and information confidence level.

When an on-the-ground inspection is performed on a dumping site (see Figure 12), the
existence of micro-dumps E(t) at time t is directly observed and its probability p(x) is up-
dated to 1 or 0, respectively, whether the micro-dump is confirmed or not. Mathematically,
it holds

(E(t) =1|C(t) =1) =1,
{ }f(E(t) =1|C(t) =0) =0. (15)

When observation D from the satellite detection maps is available at the current time t
(see Figure 12) the following relations are applied

= ( - Pfa)/
- Pdet) Pmodel(t)' (16)

where the notation Pp,4e1(t) = p(E(t) = 1) indicates the prediction obtained using the
Markov random chain hypothesis. The second equation simply results from the direct
application of the Bayes theorem and the definition of the recall:

p(E(t) =1|D(t) = 0)p(D(t) = 0) = p(D(t) = 0[E(t) = 1)p(E(t) = 1) (17)

considering that p(D(t) = d) = 1 when the state D(t) is currently observed.

Podel (t) is a prediction obtained using the Markov random chain hypothesis con-
sidering all the available current and previous observations S(t), E(t — kAt), S(t — kAt).
However, since signaling has no instantaneous effect on dump existence, it depends exclu-
sively from S(t — kAt). When S changes, the change is directly observed, so that S(t) can
be omitted in the expression of Ppoder (t)-

When no detections or confirmations are collected at the current time, t, the existence
of micro-dumps is predicted by a state estimator of the Markov random chain, i.e.,

p (E(t) =1 ‘ {E(t—hAt)S(t —hAt)}, {1,‘_”1(71})1)(15@ — KAB)S(t — kAt)), (18)
where the probability Pp,qel (t) of E(t) = 11is calculated as
Pmodel(t) = P(E(t) = 1|E(t - kAt)S(t - kAt))'Pobserved (t - kAt)/ (19)

in which p(E(t) = 1|E(t — At)S(t — At)) can be evaluated based on the transition prob-
ability matrix of the Markov random chain described by Equation (13) and the proba-
bility Popserved (t — kAt) is obtained from the last available observation, as detailed by
Equations (8) and (9).

In particular,

p(E(t) = 1|E(t—kAt) = 0,S(t —kAt) = 0) = 1 — (1—Pg)* -1

p(E(t) = 1|E(t — kAt) = 1,5(t —kAt) = 1) = (1 —P,)*1 (20)
p(E(t) = 1|E(t — kAt) = 1,5(t — kAt) = 0) =1-p(E(t — kAt) = 1|D(t — kAt) = d)

—~ —

where p(E(t) = 1|E(t — kAt) = 0,S(t — kAt) = 0) represents the probability that a confirmed
clean site is currently subject to dumping, p(E(t) = 1|E(t — kAt) = 1,S(t — kAt) = 1) is the prob-
ability that a confirmed dumping site is still unrestored, and p(E(t — kAt) = 1|D(t — kAt) = d)
represents the existence of the dumping phenomenon when satellite data are currently available
as estimated by Equation (16). When ground patrols report direct observations, Equation (15) is
applied instead.

The complementary probability can be easily calculated from the previous expressions.
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4.2. Model Validation on the Case Study

The above discussed model has been fit using real-world data from the “Land of Fires”
case study collected from March 2019 to June 2019. In Figure 13, it is shown the prediction
accuracy of E(ty + At) = 1 from the states E(ty) = 0,S(tg) = 0 (generation prediction)
and E(tp + At) = 0 from E(ty) = 1,S(tg) = 1 (restoration prediction) after a time lapse
At expressed in months. In particular, solid curves express the prediction accuracy of the
proposed Markov chain model validated on ground truth data, while dashed ones indicate
the theoretical expectation obtained using the proposed model with an analytical approach.

state estimator accuracy

GT stats - generation
— — —— modeled stats - generation
GT stats - remediation
0.995 - modeled stats - remediation
=
o T~
|- ™ T~
é 0.99 \\ .
® AN
c AN
g AN
5 0.985F ™
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\\.,
0.98 -
0975 L . L . L . L . :
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time

Figure 13. Accuracy of the proposed state estimator based on the first-order Markov chain model
and ground truth statistics plotted as a function of the prediction time.

The analytical model assumes the following: (1) the data statistics are those calculated
for the case study; (2) the transition dynamics of the states are those of the proposed model;
(3) the maximum likelihood decision rules are employed to estimate future states at time
to + At starting from the directly observed state at time ty.

The purpose of Figure 13 is to show how the non-ideality of the dynamics affects the
prediction performance. In fact, even if the real-world dynamics were perfectly known and
corresponded to a first-order Markov chain, making predictions with fixed decision rules
on random variables would result in decision errors.

The graph compares the errors committed in case the data respected the hypotheses
underlying the proposed model with those made using real data not exactly respecting the
dynamics of this model. In this way, in a real-world case study, we can quantify the loss of
accuracy caused by approximating the dynamics of the model with a first-order Markov
chain. However, the excellent performance of the state estimator under first-order Markov
chain hypothesis against real-world data confirms the reliability of the model.

This consideration leads us to hypothesize that a first-order Markov chain can fit with
other scenarios. However, the following considerations on the monitoring system do not
depend on the complexity of the adopted model and can also be extended to higher-order
Markov chains, if needed by the description of the specific scenario.

4.3. Numerical Simulations

Numerical simulations are exploited to analyze the impact of the DSS parameters
on the performance of the restoration process, quantified by the probability that a certain
inspection cell is affected by dumping, and to compare it with that provided by traditional
on-the-ground monitoring. It is assumed that the dynamics of generation and restoration
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processes (in terms of statistical models) are not influenced by monitoring actions. This
means that possible effects of the adoption of advanced monitoring, like the deterrence
from opportunistic illegal dumping, are not considered. In the same way, it is assumed that
the restoration capacity of the public authority is not impacted by the availability of more
refined risk maps, due to the limited resources allocated for such activities. It is therefore
assumed that an indefinite increase in the reporting of micro-dumps to be removed cannot
lead to saturation of the restoration capacity of the local administrations.

It is important to highlight that simulations are implemented at the inspection cell
scale, thus considering the corresponding micro-dump detection performance [30]. The
details of the simulation parameters are reported in Table 2.

Table 2. Default parameters for monitoring performance simulation.

Parameter Value Unit Model Hypothesis
Simulation Time Step 1 days
Restoration Time (Ry) 28 days Pr=1—exp(— 1%)
Generation Time (G¢) 112 days Py =1—exp(— é%)

P4 only depending on patrolling
Patrolling Coverage Speed 10 %/day speed in case of traditional

monitoring

Image Acquisition Period (Tget) 60 days
Satellite Recall (Pge) 90 %
Satellite Precision (1 — Pg,) 80 %
Init Cells Affected by Dumps 15 %
Risk Probability Stat. Distrib. Uniform in [0, 1]
Inspection Plan no geographical constraints

To make the simulations completely reproducible, some model hypotheses have been
simplified. For example, the risk statistical distribution over the cells has been modeled
with a uniform probability distribution. The vehicle routing system has not been used,
considering valid all the inspection plans that optimize the assignment deriving from the
priority analysis without any geographical constraints due to routing feasibility.

The graphs depicted in Figure 14a report the simulated probability (considering the
simulation ground truth) that an inspection cell is affected by dumping using traditional
monitoring (blue curve) and the progressive approach (red one). To consider a global
performance parameter against the simulated scenario, the graph reports the average
performance across all cells.

The periodicity of the performance of the progressive monitoring is due to the assumed
periodic availability (with period T4et) of satellite detection maps. The better performance
of the proposed satellite aided solution is due to the improvement of the discovery proba-
bility P4, otherwise determined only by the territory coverage speed of the on-the-ground
patrolling. In Figure 14b the overall environmental risk over the monitored area is evaluated

as follows:
Ncells

R= ) Ry (21)
c=k
where Ry is the overall risk induced by the hazards of the k-th inspection cell.

The average reduction in the environmental risk against time represents, from the point
of view of the end user, the requested improvement for the adoption of the proposed remote
sensing technologies in the monitoring process. The probability that cells are affected by
micro-dumping, depicted in Figure 14a, can be considered a related less accurate figure of
merit. As shown in Figure 14b, the reduction in the probability that cells are affected by
dumping results in a lower environmental risk in the case of the adoption of the progressive
approach. It is worthwhile to remark that, as discussed in Section 3, the risk is determined
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by all the dumps affecting the cells within the study area and obtained by averaging the
risks associated with each of them.
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Figure 14. (a) The probability that inspection cells are affected by the micro-dumps using traditional
monitoring (blue curve) and the progressive approach (red curve). (b) Environmental risk level
obtained by using traditional monitoring (blue curve) and the progressive approach (red curve).

As aforementioned, traditional monitoring’s performance depends essentially on the
capability of discovering and signaling a dumping site for restoration during the on-the-
ground patrolling phase. Using the progressive approach, such probability depends on
at least three parameters related to remote sensing products: the time span between the
acquisition of new data and the precision and recall of the automatic detection algorithm.

First, the effects of increasing the frequency of ingesting new satellite detection data
into the DSS are analyzed. The simulation results are reported in Figure 15a. The black
curve, indicating the performance of traditional monitoring, which is independent of this
parameter, is the same as Figure 14a and is reported for the ease of the reader.

As expected, the dumping probability decreases as the frequency of data acquisition
increases, as more sites are discovered by the automatic detection algorithm, whose perfor-
mance is the one indicated in Table 2. It is intended that, with the waste removal rate being
fixed, the potential of the system is not fully exploited, i.e., the accumulation of unremoved
waste prevents the monotonic decrease in the probability which exhibits, in all the cases,
an oscillating trend around a constant average value.
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Figure 15. Simulated performance of the monitoring system varying (a) the ingestion period of

new satellite data, (b) the detection probability, and (c) the false alarm probability of the automatic

detection algorithm.

In Figure 15b,c, the analysis is performed by varying, respectively, the probability of
correct detection Py and the false positive rate Pg, of the micro-dump detection algorithm.
As expected, the probability of the existence of a dump within a cell increases as the recall of
the algorithm increases and as its false positive rate decreases. In fact, the more accurate the
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algorithm, the higher the probability that patrols are directed towards areas really affected
by dumps, that can be suddenly confirmed and reported for successive restoration.

Figure 15b shows that recall moving from 0.50 to 0.80 improves the restoration perfor-
mance appreciably, while it is less effective rising up to 0.95. This is because the estimate
of the presence of micro-dumps is also positively influenced by the confirmations made
during the previous phases of on-the-ground patrolling.

The sensitivity of the restoration performance in the simulated scenario instead seems
more dependent on the false positive rate (see Figure 15c). For example, the performance
improvement is very clear, moving from a false positive rate of 0.9 to a false positive rate of
0.45. In fact, satellite detections tend to overwrite the information of dumps absence coming
from previous field assessments. Therefore, a significant false positive rate significantly
reduces the effectiveness of the discovery.

It is interesting to remark that, as expected, the restoration rate P; and the generation
rate Py are constraints for the overall monitoring and restoration process, which cannot
benefit indefinitely from improving the monitoring system’s performance. The use of
satellite data can improve the probability of discovery, thus triggering faster restoration
actions; obviously, this does not allow for directly mitigating factors, such as the recidivism
of illegal dumping phenomena and the delay in waste removal actions.

5. Discussion

The digital transformation of society and economy is a crucial development of the 21st
century and involves any area of everyday life, including waste management [43]. Digital
technologies, including remote sensing, promise a more effective service delivery and
allow for improved territory monitoring, which is the basis for preventing and enforcing
unlawful conduct [42].

Traditionally, illegal waste monitoring is based on citizens’ voluntary reporting, which
solicits dedicated patrolling toward specific locations. However, this model demonstrated
its weakness, being fed by unstructured, sparse, and untrusted information that currently
cannot be quickly used as a trigger for restoration actions. With the current approach, such
information is unable to impact the reaction times of the public administration, which are
generally very slow [44,45].

As argued in [46], there is a strong need for innovative illegal waste monitoring
and management strategies allowing for the shift from traditional paradigms towards
more effective solutions. In this regard, remote sensing technologies play a central role,
especially in the detection of potentially affected sites [5,15,47-49]; but, as in the case of
citizen voluntary reports, the gathered inaccurate information must be quickly and safely
integrated into the current monitoring processes that need on-the-ground confirmation
and characterization of the dumping sites as the final step before the triggering of the
restoration phase.

The concept of progressive monitoring discussed in Section 3 is not new in the liter-
ature, as it can be seen as a specification of the multiscale remote sensing paradigm [50];
but, to the best of our knowledge, this is the first application to waste monitoring and
management problems. However, this is not the main novelty introduced by our model. In
fact, for the first time, remote sensing technologies constitute a brick of a more complex
system organically tackling illegal dumping phenomena, in which the information flow
is managed and progressively structured from the acquisition of raw data (images) up to
the design of a route for patrols in charge of restoration. The process, in the first phase, is
powered by the more recent advances in artificial intelligence for target recognition [15,49],
but does not exclude the intervention of human operators [5], which are required to inspect
the automatically produced detection maps to generate higher-confidence data representing
the base for the building of the routing plan, which constitutes the innovative output of the
proposed DSS.

The digitalization of the whole information process for illegal waste monitoring, also
related to the subsequent restoration phase, is therefore the principal novelty of the paper
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and it is new in the literature to the best of our knowledge. In such a digitalized monitoring
process, remotely sensed data, intrinsically carrying inaccurate and incomplete informa-
tion, are treated homogeneously to produce confirmed data. Confirmation activities are
considered completely asynchronous against remote sensing inputs. The synergistic use of
information sources of varying completeness and accuracy is made possible by associating
these reliability parameters with all available data. In this regard, the performance simula-
tor introduced in Section 4 is a tool useful for system dimensioning and ex-ante comparison
against traditional monitoring approaches and alternative strategies.

As suggested in the literature [20], the micro-dump generation and the restoration pro-
cesses were modeled as parts of a larger first-order Markov random chain with unobserved
states [41]. The simulation environment is obviously constrained by some simplifying
hypotheses, but it enables an understanding of the bottlenecks of the proposed approach.

In particular, two aspects have been considered, i.e., the time span between the
ingestion of new satellite data and the accuracy of the automatic detection algorithm. As
expected, the probability that an inspection cell is affected by micro-dumping tends to
decrease as the performance of the satellite detection system increases. In fact, a higher
frequency of data ingestion allows for the timely detection of new dumps. In the same way,
a more accurate detection map is beneficial for outlining the routing plan, thus avoiding
the fact that patrols are directed toward areas that are not affected by environmental risks.

In all cases, the average probability of the presence of micro-dumps resulting from the
proposed monitoring approach outperforms the one obtainable by means of traditional
monitoring. All the curves show the same periodicity of the satellite acquisitions because
they help on-the-ground operators in discovering the majority of micro-dumps before the
recurrent phenomenon of dumping takes over.

The benefit provided by satellite monitoring is appreciable if it increases the probability
of discovery. However, this advantage will disappear as the on-the-ground resources
used for patrolling are increasingly used. As shown in Figure 16 progressive monitoring
outperforms traditional monitoring until the rate of territory coverage reaches 40% per day.
This means that, as expected, when the number of patrols is sufficiently high, the use of
remote sensing is no more beneficial. Therefore, the proposed simulation approach helps
to understand which solution allows for higher savings in terms of budget allocation.
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Figure 16. The probability that inspection cells are affected by illegal dumps using progressive
monitoring (blue curve) and the traditional approach (orange curve) varying the percentage of visited
sites per day.

The presented results are useful in building a better understanding of the fact that the
tackling of illegal dumping phenomena is strictly related to economic considerations. In
the case of traditional monitoring, the costs are determined by the number of patrols. Using
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remote sensing, the cost of the data and expert operators shall be considered. Therefore,
the message to be conveyed to public managers is the following. The adoption of an
advanced monitoring system allows for reducing the environmental risk connected to
the presence of illegal dumps for a given number of available patrols. As this number
increases, as well as the budget for patrolling, the usefulness of remote sensing is reduced.
The equilibrium point, i.e., the equivalence between traditional and satellite monitoring,
is, however, typically reached for an unreasonable number of patrols, which makes this
option inviable.

To conclude the discussion, we provide a final comment on the cost of satellite data.
For the case study of the Land of Fires, whose extension is about 1000 km?, the price for
30 cm resolution data covering (in tasking) the whole area would be around EUR 30,000,
without any agreement with data providers. The ingestion of data on a quarterly basis
would result in a yearly expense of less than EUR 100,000. Such an amount is not negligible,
and is all the more related to the relatively small area. On the other hand, Italy is under
European sanctions due to insufficient environmental recovery, costing somewhere in the
region of EUR 120,000/ day:.

6. Conclusions

An integrated solid waste management system aiming at tackling illegal dumping
activities should consider the specificity of the phenomenon, which involves targets whose
quantity, location, and composition are not known a priori. This work proposed a new
decision support system fed by remote sensing data whose objective is to enhance the
discovery of such unknown targets. The monitoring is implemented using a progressive
(e.g., multiscale) approach, in which data, acquired by different platforms with increasing
spatial resolution, contribute to generating the information needed to establish proper
routing for ground patrols and, consequently, the priority for restoration activities.

A simulation approach has been introduced to evaluate the impact of the diverse
process parameters on the restoration performance. This tool is useful for the appropri-
ate design of the monitoring system and enables the in-advance quantification of the
advantages it holds in comparison with traditional on-the-ground methods.
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