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Abstract: The analysis and modeling of parameters influencing parents’ decisions regarding school
travel mode choice have perennially been a subject of interest. Concurrently, the evolution of artificial
intelligence (AI) can effectively contribute to generating reliable predictions across various topics.
This paper begins with a comprehensive literature review on classical models for predicting school
travel mode choice, as well as the diverse applications of AI methods, with a particular focus on
transportation. Building upon a published questionnaire survey in the city of Thessaloniki (Greece)
and the conducted analysis and exploration of factors shaping the parental framework for school
travel mode choice, this study takes a step further: the authors evaluate and propose a machine
learning (ML) classification model, utilizing the pre-recorded parental perceptions, beliefs, and
attitudes as inputs to predict the choice between motorized or non-motorized school travel. The
impact of potential changes in the input values of the ML classification model is also assessed.
Therefore, the enhancement of the sense of safety and security in the school route, the adoption
of a more active lifestyle by parents, the widening of acceptance of public transportation, etc., are
simulated and the impact on the parental choice ratio between non-motorized and motorized school
commuting is quantified.

Keywords: machine learning; artificial intelligence; mode choice forecast; school transportation;
sustainable mobility; school travel mode choice modeling

1. Introduction
1.1. Rationale

School travel mode choice modeling plays a pivotal role in a city’s transportation
planning procedure, as students’ travel activities are a significant and crucial part of
everyday life. Its main objective focuses on forecasting transport mode preferences for
students of various characteristics and also parents, who in most cases are responsible for
the student’s transport mode choice [1]. In general, an accurate travel mode prediction
benefits the traffic demand prediction and the market share ratio prediction, as well as the
associated traffic congestion alleviation [2]. This undoubtedly applies to the school trips
completion forecasting process as well.

Additionally, school travel mode choice modeling is an imperative need for shaping
the appropriate strategic directions towards an overall improvement of a school trans-
portation system. It can be a useful decision support tool in the hands of policy and
decisionmakers aiming to propose and implement solutions and measures capable of
promoting an equitable, safer, and more sustainable school mobility system. Examples of
such policies are reflected in measures enhancing public transport access, redesigning and
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redeveloping school unit surrounding environments, promoting active transport modes
through infrastructure improvements, raising awareness through campaigns and incen-
tives provision, etc. Specifically, the promotion, encouragement, and facilitation, through
appropriate interventions, of active (non-motorized) school transport are important for
the holistic development of students, fostering physical and mental health, promoting
environmental sustainability, and shaping community connections [3,4].

Setting up the appropriate methodology for predicting the transport mode to be used
for the completion of everyday school trips demands specific prerequisites to be taken
into consideration, including the identification of specific parameters that affect the school
travel mode choice. These characteristics encompass individual and socio-demographic
features and the specification of attributes relevant to transport modes available, such as
travel time, cost, etc.

Taking into consideration the above-mentioned issues, this paper aims to develop
a decision support tool for policy making and urban planners, engaging state-of-the-art
AI classifiers that assess and quantify the impact of factors affecting the school travel
mode choice process. It is structured under four sections. The current introductory section
explains the rationale behind the research’s general concept and its main objectives and pro-
vides a detailed two-fold dimension literature review for uncovering (i) parameters found
to affect the school travel mode choice process and (ii) AI classification applications that
have demonstrated their ability in predicting attributes associated with human behavioral
patterns. Section 2 unfolds the methodology followed. Initially, the data collection and
data preparation procedures are described. Following the exploratory and confirmatory
factor analysis (EFA and CFA) results, the implementation of the initial ML classification
model is presented. Moving on to the deployment and simulation of the ML model, the
contribution of each factor on the school travel mode choice is defined and further used in
the improvement of a sustainable model choice process. In the next section, three pivotal
research questions laying at the heart of the study and already stated clearly in the previous
section are investigated and discussed in detail. Lastly, the conclusions section summarizes
the outcomes of our work, identifies limitations, deliberately acknowledges challenges, and
proposes future work.

1.2. Research Objectives

The main objectives of the present paper are as follows:

(a) Development of a solid literature review that: (i) identifies various parameters (ob-
served variables) related to parental behavior characteristics affecting the school travel
mode choice process and (ii) presents and describes AI classification applications that
have proved their ability in forecasting human behavior characteristics.

(b) Capitalization of research findings from EFA and CFA outcomes from previous re-
search works (by some of the authors of the present paper), with a specific focus
on the derived grouped parameters (labeled factors) that exhibiting homogeneous
characteristics and interpretive properties in the school travel mode choice process,
and aligning these findings with the research scope outlined in (c) to employ ML
classification techniques.

(c) Investigation, using ML classification techniques, into the contribution of each labeled
factor to the parental school travel mode choice process and identification of factors
with the greatest influence on the decision between motorized and non-motorized
school travel mode choices.

The current research signifies a groundbreaking and innovative contribution as it
marks the inaugural application of ML classification techniques to a questionnaire dataset
within the realm of school travel mode choice. To the best of our knowledge, this study
stands as the first of its kind to leverage advanced ML methodologies in examining and
categorizing qualitative data (parental attitudes, perception, and beliefs) related to the
selection of school travel modes. This pioneering approach not only extends the boundaries
of current research practices but elicits novel viewpoints for understanding the intricate
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dynamics influencing the decision-making process in the context of school transportation
choices. The utilization of ML in this domain introduces a novel perspective, shedding
light on patterns and insights that were previously unexplored and thereby enriching the
discourse on school travel behavior.

1.3. Literature Review

The literature review followed a two-fold dimension. At first, it examined and iden-
tified the most significant factors that influence the school travel mode choice process.
This was fundamental, as most of factors identified were considered for structuring the
questionnaire survey used as the main tool for data collection. It also allowed the primary
research analysis, where several statistical methods and techniques were adopted leading
to the conceptual model and the researchers’ hypothesis statement. In parallel, a literature
review took place, focusing on AI classification applications that have already proved their
ability to forecast human behavior characteristics. Under this scope, the research focused
on data collection and the deployment of AI methods, focusing on topics relevant to the
transportation and traffic forecasting modeling field. This revealed the limited research
on questionnaire-survey-based AI applications in the transportation field generally and in
school mobility forecasting more specifically, triggering the authors’ interest to implement
a state-of-the-art innovative approach for predicting the school travel mode choice.

In relation to the initial segment of the literature review, concise summaries of key
findings are delineated below and depicted in Table 1. Notably, the age and gender of
students exhibit a direct influence on their choice of school travel mode. Parents of older
students state a preference for active transport modes [4–12]. Gender disparities are evident
when selecting school travel modes, with girls exhibiting a lower propensity to be engaged
in active mobility patterns compared with boys. Pertaining to parental employment,
maternal work commitment is associated with an amplifying effect on students being
chauffeured to school, while paternal working hours demonstrate no discernible correlation
with the decision-making process regarding the school travel mode choice [9,13].

Furthermore, a discernible interconnection is observed between family income and
the index of car ownership. Students from affluent households are less inclined to opt
for alternative transport modes [14,15], whereas an escalation in the number of vehicles
within a household augments the likelihood of students being driven to school [16,17]. The
distance between a student’s residence and the school unit is identified as a pivotal deter-
minant, whereby an increase in distance diminishes the probability of students utilizing
alternative transport modes [14,18]. Concurrently, extended distances are associated with
reduced independent school mobility [19–21].

The built environment and parental perceptions of safety within the vicinity of stu-
dents play pivotal roles in the decision-making process. Factors such as high traffic volumes,
elevated speeds, congested road networks with wide axes, and the necessity to navigate
overloaded intersections exert a negative influence on parents’ decisions to opt for alterna-
tive transport modes for their children’s school trips [4,7,15]. Interventions such as sidewalk
reconstruction and the installation of traffic control devices are identified as facilitators of
alternative mobility in areas where such measures are implemented [22]. Similarly, the
presence of organized bicycle paths contributes to the preference for bicycles as a mode of
school transportation [4].
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Table 1. Literature findings regarding parents’ school travel mode choices.

Research Work Title Author(s) and Year Key Findings

Active commuting to school: Associations with environment and parental concerns Kerr et al., 2006 [4] - School mode choice is directly affected by students’ age
- Older students are more likely to walk to school than younger

students
- Older students usually do not travel by car
- High school students use the public transport system more often

than primary school students
- Gender affects parents’ decisions in school mobility
- Boys are more likely to use alternative transport modes (walking

and bicycling)
- Girls are more often driven to school than boys

School trips in Germany: Gendered escorting practice Sheiner, 2016 [5]
A mode choice analysis of School trips in New Jersey Noland et al., 2010 [6]
Parental attitudes towards children walking and bicycling to school: a multivariate
ordered response analysis

Seraj et al., 2012, [7]

Integrating parental attitudes in research on children’s active school commuting:
evidence from a community school travel survey

Yang and Markowitz, 2012 [8]

Children’s travel: patterns and influences Donald, 2005 [9]
Children’s travel behavior a world of difference Zwerts and Wets, 2006 [10]
Children’s independent spatial mobility in the urban public realm O’ Brien et al., 2000 [11]
Statewide prevalence and correlates of walking and bicycling to school Evenson et al., 2003 [12]

Determinants of car travel on daily journeys to school: cross sectional survey of
primary school children

DiGuiseppi et al., 1998 [13] - Parents professional status influences the school mode choice
- Maternal employment was found to increase the number of

students driven to school
- Fathers’ working hours are not related to the school mode choice

Active transportation mode choice behavior across genders in school trips Ermagun and Samimi, 2012 [14] - Students from families with high incomes are less likely to use
alternative transport modes

- An increase in the number of vehicles available in a household
increases the number of students driven to school

Intra-household travel interactions, the built environment and school travel mode
choice: an exploration using spatial models

Mitra and Buliung, 2012 [15]

An analysis of the determinants of children’s weekend physical activity participation Copperman and Bhat, 2007 [16]
Letting children be free to walk Mackett, 2011 [17]

Children’s travel behavior and its health implications Mackett, 2013 [18] - Long distances between students’ residences and school units
reduce the possibility for students to walk to school

- Long distances are associated with less independent mobility
- Built environment plays a critical role in school mode choice
- High traffic loads, high speeds, congested road networks, and

overloaded intersections negatively affect parents in choosing
alternative transport modes

- Reconstruction of sidewalks and installation of traffic control
devices enhance alternative mobility

Children’s independent mobility to school, friends and leisure activities Fyhri and Hjorthol, 2009 [19]
Parental chauffeurs: what drives their transport choice Carver et al., 2013 [20]
Built environment and children’s travel to school Curtis et al., 2015 [21]
Evaluation of the California safe routes to school legislation: urban form change and
children’s active transportation to school

Boarnet et al., 2005 [22]
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Table 1. Cont.

Research Work Title Author(s) and Year Key Findings

Barriers to children walking to or from school Martin and Carlson, 2005 [23] - Criminality greatly influences parents school mode choice
- Bullying, gang activity, and the chance of abduction are

parents’ main fears and concerns for not letting their children
walk or bike to school

- Girls are less likely to walk to school in a neighborhood where
the levels of safety are low

Why parents drive children to school: implications for safe routes to school programs McDonald and Aalborg, 2009 [24]



Sustainability 2024, 16, 588 6 of 31

Safety emerges as a paramount factor in the decision-making process for school
travel modes. Concerns and anxieties regarding the perceived safety levels in school
transportation are recurrent themes in numerous studies [23,24]. However, it is noteworthy
that fatal pedestrian and cyclist accidents during school hours exhibited a marked decline
from 1987 to 2009 [25]. Conversely, parental apprehensions about criminality are grounded
more in societal norms than actual risks. Kidnapping incidents account for only 2% of
violent crimes involving young people and 4% of all kidnappings in school districts [26].

Regarding the use of AI approaches, a remarkable interest has been noticed within
recent years in a number of different research fields; medicine, healthcare, phycology,
transportation, etc., are strong examples of the fields where these approaches mostly
apply [27]. Within the domain of transportation, the utilization of artificial intelligence (AI)
applications for traffic forecasting models represents a cutting-edge and technologically
advanced approach [28–35]. This innovative approach has the potential to alleviate uncer-
tainties during the planning and design phases of future transportation infrastructure and
investments [36,37]. By doing so, it addresses challenges associated with traffic congestion
and issues within transportation networks [38,39]. Furthermore, it contributes to mitigating
the environmental footprint of transportation [40].

The methods employed for data collection and research analysis needs vary, encom-
passing popular approaches such as crowdsourcing platforms, private collection by AI
developers, pre-cleaned and pre-packaged data, automated data collection, and generative
AI [41–43].

The contribution of AI approaches has also become particularly significant in the
processing of data originating from survey research. In these surveys, the recorded opinions
of users regarding transportation infrastructures or services constitute the input data for AI
approaches, while preferences towards or satisfaction with the transportation infrastructure
or service represent the output data.

In a more detailed examination, an exploration into the feasibility of predicting the
perceived quality of public transport services, as perceived by users, has been undertaken.
This investigation relies on artificial intelligence (AI) models trained with data derived from
a questionnaire survey gauging 655 users’ perceptions of urban bus services in Dhaka, the
capital and largest city of Bangladesh [44]. Out of twenty-two selected service quality fea-
tures, the most pivotal characteristics were systematically ranked based on their influence
on user decision-making procedures regarding public transport utilization. The AI mod-
els, subsequent to training, forecasted that punctuality, reliability, service frequency, seat
availability, and travel experience were the most critical determinants. Additionally, an AI
model specifically designed for forecasting the quality of public transport services in rural
areas was developed, leveraging 401 users’ perceptions obtained through a questionnaire
survey. Thirteen indicators were considered, yielding satisfactory predictive capabilities
for user dissatisfaction levels related to the reliability of the public transport system and
the availability of seats within the buses [45].

Deb et al. [46] validated artificial neural networks (ANN) for modeling public transporta-
tion service quality. Focused on Granada’s metropolitan bus service, the study analyzed data
from a survey conducted with 858 passengers. The results highlighted significant differences
in attribute categories, showing frequency as the most influential factor in service quality
determination. Other attributes, including speed, information, and proximity, were also
identified as impactful contributors. The findings contribute valuable insights into enhancing
public transportation planning and service design for improved passenger satisfaction.

Further application of AI was observed in the investigation of modal shifts from
private vehicles to public transport following the introduction of smart transport services
for commuters in Mersin city, located in southern Turkey [47]. Utilizing data obtained from
two questionnaire surveys (comprising a total sample of 606 participants) and employing
algorithmic procedures to calculate the shortest route, the researchers identified trip char-
acteristics that facilitated the forecasting of the percentage of transport mode shifts after
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the implementation of smart services. The study concluded that artificial neural networks
(ANN) were apt for modeling dynamic transport systems and forecasting modal shifts.

The determination of factors influencing school trip mode choice was the focus of a
study in Kandy, Sri Lanka [48]. Findings from a questionnaire survey to 1983 students (aged
6–13 years) revealed that gender, age, household income, school type, and distance played
significant roles in shaping school mobility patterns. However, the study acknowledged
limitations in generalizability to other case studies due to varying socio-economic and
weather conditions.

Trying to explain and predict the school-goers mode choice behavior, the data col-
lected through a questionnaire survey (sample of 2747 students) was analyzed (1484 valid
responses) under the employment of three different machine learning tools (MLT). The
data concerned public schools in the Al-Khobar and Dhahran cities in the Kingdom of
Saudi Arabia. This research work concluded that travel time, family income, and parental
education level were the prime variables to dictate the travel mode choice behavior [49].

Table 2 summarizes research works undertaken regarding application of AI in the
transportation field. The literature review highlighted a scarcity of research on school
travel mode choice models, particularly in the realm of AI applications. Consequently, the
primary research objectives were formulated to establish a logical framework for a more
comprehensive understanding of human behavior pattern recognition in school travel
mode choices, incorporating AI applications. This framework emphasized the initiation of
a scientific tool to design and implement sustainable urban policies. Within this context, the
prediction of school travel mode choices, based on both quantitative and qualitative data
obtained through a dedicated questionnaire survey targeting students’ parents, serves as a
pathway to explore new computational intelligence capabilities and chart new directions
for the overall optimization of the future school transportation system.
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Table 2. Literature findings regarding the deployment of AI applications in the transport sector.

Research Work Title Author/Year Research Topic Method(s) Used

Traffic flow analysis based on the real data using neural networks Pamula, 2012 [28] Traffic flow forecast ANN models

Forecasting demand for low-cost carriers in Australia using an
artificial neural network approach

Srisaeng and Baxter, 2015 [29] Air transport demand forecast Econometric and ANN models

Comparative analysis for traffic flow forecasting models with
real-life data in Beijing

Rong et al., 2015 [30] Traffic flow forecast Autoregressive integrated moving average (ARIMA) and
ANN models

Deep trend: A deep hierarchical neural network for traffic
flow prediction

Dai et al., 2017 [31] Traffic flow time series DeepTrend ANN models

Predicting the daily traffic volume from hourly traffic data using
artificial neural network

Siddiquee and Hoque, 2017 [32] Traffic flow forecast ANN models

A deep learning approach for short-term airport traffic
flow prediction

Yan et al. [33] Air transport demand forecast Machine learning techniques (gated recurrent units,
graph convolutional networks, ANN)

Real-time intraday traffic volume forecasting—A hybrid application
using singular spectrum analysis and artificial neural networks

Kolidakis et al., 2019 [35] Traffic flow forecast Hybrid singular spectrum analysis (SSA)—ANN models

Short-term traffic forecasting: Where we are and where we are going Vlahogianni et al., 2014 [36] Traffic flow forecast Review on short-term traffic forecasting models

Evaluating toll revenue uncertainty using neural network models Zhao and Zhao, 2017 [37] Traffic demand forecast Big data-based models

A prediction model based on time series data in Intelligent
Transportation System

Wu et al., 2013 [38] Massive traffic transportation network problems ARIMA and generalized regression neural network
(GRNN) models

Comparative Traffic Flow Prediction of a Heuristic ANN Model and
a Hybrid ANN-PSO Model in the Traffic Flow Modelling of Vehicles
at a Four-Way Signalized Road Intersection

Olayode et al., 2021 [39] Short-term urban traffic flow forecast Heuristic ANN and hybrid ANN–particle swarm
optimization models

Modeling of CO emissions from traffic vehicles using artificial
neural networks

Azeez et al., 2019 [40] Vehicular carbon monoxide emissions Hybrid geographic information system and ANN model

Identifying and describing streets of interest Skoutas et al., 2016 [42] Streets of interest identification Multiclass support vector machines (SVMs) classification

Bus service quality prediction and attribute ranking: a neural
network approach

Islam et al., 2016 [44] Evaluation of public transport service quality GRNN, probabilistic neural network, pattern recognition
neural network models

Neural networks approach for evaluating quality of service in public
transportation in rural areas

Wagale et al., 2014 [45] Evaluation of public transport service quality ANN models

Service quality estimation and improvement plan of bus Service: A
perception and expectation based analysis

Deb et al. (2022) [46] Evaluation of public transport service quality ANN models

Prediction of modal shift using Artificial Neural Networks Akgol et al. (2014) [47] Shift from private vehicles to public transport ANN models

Exploring home-to-school trip mode choices in Kandy, Sri Lanka Dias et al., 2022 [48] School travel mode prediction ANN models

Travel-to-school mode choice modelling employing Artificial
Intelligence techniques: a comparative study

Assi et al., 2019 [49] School travel mode prediction Machine learning tools (extreme learning machine, SVM,
ANN)
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2. Methodology and Experimentation

The methodology of the proposed paper includes 6 steps, which are described in the
following sections (Figure 1).

Sustainability 2024, 16, x FOR PEER REVIEW 7 of 29 
 

 

A prediction model based on time series data in In-
telligent Transportation System 

Wu et al., 2013 [38] Massive traffic transpor-
tation network problems  

ARIMA and generalized re-
gression neural network 
(GRNN) models 

Comparative Traffic Flow Prediction of a Heuristic 
ANN Model and a Hybrid ANN-PSO Model in the 
Traffic Flow Modelling of Vehicles at a Four-Way 
Signalized Road Intersection 

Olayode et al., 2021 
[39] 

Short-term urban traffic 
flow forecast 

Heuristic ANN and hybrid 
ANN–particle swarm optimiza-
tion models 

Modeling of CO emissions from traffic vehicles us-
ing artificial neural networks 

Azeez et al., 2019 
[40] 

Vehicular carbon monox-
ide emissions  

Hybrid geographic information 
system and ANN model 

Identifying and describing streets of interest Skoutas et al., 2016 
[42] 

Streets of interest identifi-
cation  

Multiclass support vector ma-
chines (SVMs) classification 

Bus service quality prediction and attribute ranking: 
a neural network approach 

Islam et al., 2016 
[44] 

Evaluation of public 
transport service quality 

GRNN, probabilistic neural net-
work, pattern recognition neural 
network models 

Neural networks approach for evaluating quality of 
service in public transportation in rural areas 

Wagale et al., 2014 
[45] 

Evaluation of public 
transport service quality 

ANN models  

Service quality estimation and improvement plan of 
bus Service: A perception and expectation based 
analysis 

Deb et al. (2022) 
[46] 

Evaluation of public 
transport service quality 

ANN models 

Prediction of modal shift using Artificial Neural 
Networks 

Akgol et al. (2014) 
[47] 

Shift from private vehi-
cles to public transport 

ANN models 

Exploring home-to-school trip mode choices in 
Kandy, Sri Lanka 

Dias et al., 2022 [48] School travel mode pre-
diction 

ANN models 

Travel-to-school mode choice modelling employing 
Artificial Intelligence techniques: a comparative 
study 

Assi et al., 2019 [49] School travel mode pre-
diction 

Machine learning tools (extreme 
learning machine, SVM, ANN) 

2. Methodology and Experimentation 
The methodology of the proposed paper includes 6 steps, which are described in the 

following sections (Figure 1). 

 
Figure 1. Methodology roadmap. Figure 1. Methodology roadmap.

2.1. Questionnaire Survey and Data Collection

For the purpose of primary research and data acquisition, a questionnaire was metic-
ulously formulated following a thorough analysis presented in the preceding literature
review. The questionnaire comprised three distinct sections (Appendix A): the initial sec-
tion encompassed inquiries pertaining to respondents’ socio-economic and demographic
attributes (Q1 to Q9), whereas the second section delved into aspects related to the comple-
tion of school trips (Q10 to Q16). The third section consisted of three parts: the first part
presented eighteen pivotal features influencing parents in the travel mode choice decision-
making process to ascertain their significance level (Q17). Subsequently, the second part
scrutinized the role of the environmental structure within which students undertook their
school travels (Q18). In the specific part, parents were required to express their level of
agreement or disagreement concerning thirteen statements delineating the environment,
including the route from their residence to the school unit. The third part of the question-
naire (Q19) focused on exploring fifteen statements pertaining to parents’ travel patterns,
beliefs, and attitudes to discern the impact of their perceptions regarding various transport
modes on the school travel mode choice process.

The questionnaire survey was conducted in the city of Thessaloniki, located in north-
ern Greece, the second-largest city in the country with an approximate population of one
million residents and 100,000 primary and secondary school students. The data collection
spanned from May to June and from September to November 2019. The determination of
the minimum sample size adhered to the following equation [1]:

n ≥ N ·
[

1 +
N − 1

p · (1 − p)
·
(

d
za/2

)2
]−1

(1)

for N = 100,000 school students, p = 50%, d = ±5%, and zα/2 = 1.96 for a confidence level of
95%. Based on Equation (1) and for the case examined, at least 383 questionnaires were
required to be completed. However, in total 512 questionnaires were collected, with 496 of
them deemed suitable for machine learning (ML) classification training and modeling due
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to their completeness and correctness. The questionnaire completion process involved a
dual approach: in-person interviews were conducted and parents were also encouraged to
complete the questionnaire online through a Google Docs format file distributed to them
via e-mail.

In terms of the respondents’ profile, the analysis of the first part of the questionnaire
revealed the following results [1]: 33.5% were men and 66.5% were women. The prevalence
of women over men in the sample aligns with the relevant literature, as primarily women
(up to 79%) actively participated in organizing their children’s school commute [50]. Nearly
70% of the respondents fell within the age range of 40–49 years old, and 9 out of 10 were
married (91.0% in Greece in 2019). Concerning educational level, 35.2% held a bachelor’s
degree. In terms of employment status, 85.4% were full-time employees (82.7% in Greece
in 2019). Eight out of ten parents possessed a driving license, and the mean value for the
car ownership index was estimated at 1.55 vehicles per household (1.50 in Greece in 2019).
Regarding the students’ gender, 54.1% were girls and 45.9% were boys.

2.2. Data Pre-Process and Cleaning

Data pre-processing refers to the initial stage of data preparation, which involves
transforming and structuring the data to make them suitable for analysis. This can include
tasks such as data integration, data normalization, and data transformation. Data cleaning
involves identifying and correcting errors, inconsistencies, and inaccuracies in the data.
This can include tasks such as removing duplicate records, filling in missing values, and
correcting spelling errors or typos. Overall, data pre-processing and data cleaning are
important steps in preparing data for analysis, as they ensure that the data is accurate,
consistent, and structured in a way that can be easily analyzed [51].

In our specific context, the meticulous process of data pre-processing and cleaning
has resulted in a significant refinement of our dataset. From the initial pool of 512 ques-
tionnaires, our efforts have led to the retention of 496 questionnaires that are now not
only complete but also free from any data inconsistencies or errors. These high-quality,
thoroughly curated questionnaires serve as the foundation for our ML classification train-
ing and modeling endeavors. This precise data preparation ensures that the insights and
patterns extracted from our dataset are accurate and reliable, paving the way for robust
and effective ML models. Our commitment to data quality and integrity is a fundamental
step in the journey of harnessing the power of data science to drive meaningful and precise
outcomes in the specific domain.

2.3. Results of Exploratory and Confirmatory Factor Analysis

The analytical description and evaluation of EFA and CFA processes, along with the
calculation of appropriate metrics, indices, and matrices, were conducted and published by
some of the authors in prior research [1,52,53]. Therefore, these processes are not reiterated
in the paper to avoid gratuitous redundancies. Based on these findings, nine factors
were extracted through the EFA (Appendix B), accounting for 61% of the total variance in
questionnaire parameters (observed variables), as described below:

• Factor MOTMODE (mean value in 5-point Likert scale: 3.84, the qualitative interpre-
tation of factors’ mean values refers to the last column of the Table A2, Appendix B)
covers some objective parameters of parental motivation to choose a transport mode
(student safety and convenience, travel time and distance between residence and
school unit, student age, working hours of parents, and the possibility for someone
else, other than the respondent parent, to assist with school transportation).

• Factor MOTHEALTH (mean value: 3.39) includes the parameters of parental motiva-
tion to choose a transport mode related to the physical and mental health of a student.
A possible increase in the significance that parents attach to the specific parameters
is expected to further increase the use of alternative transport modes such as bicycle
and walking.
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• Factor ATTBUS (mean value: 2.26) involves the parameters related to the parents’ per-
ception regarding the use of public buses. In case of increasing the level of agreement
parents declare in the statements (parameters composing this factor), a reduction in
the use of walking and bicycling in favor of a public bus is expected to be noticed.

• Factor ATTCAR (mean value: 3.06) contains the parameters related to the parents’
perception regarding the use of a private vehicle. The increase in the level of agreement
parents declare for these statements is estimated to reduce the use of walking and
bicycling in favor of motorized transport modes.

• Factor ATTWALKBIKE (mean value: 4.14) includes the parameters related to the
parents’ perception regarding the use of non-motorized transport modes such as
walking and bicycle. In case of increasing the level of agreement in the specific
parameters that compose this factor, it is estimated that parents will prefer their
children to walk or bike to school, in a larger degree, since they have already shaped a
positive attitude towards the use of non-motorized transport modes.

• Factor MOTCAR (mean value: 3.07) consists of parameters related to the possibility of
using a private vehicle. An increase in the level of significance that parents attribute
to the specific parameters is expected to cause a negative attitude towards the use of
non-motorized transport modes.

• Factor NEIGBSAF (mean value: 3.29) encompasses parameters associated with the
perceived level of security within the neighborhoods along the route connecting
students’ residences and the school units. Increasing the level of security sense parents
perceive regarding the neighborhood students cross on their trip from the school unit
to their residence and vice versa is expected to act in favor of walking and bicycling in
their final mode choice.

• Factor ROUTESAF (mean value: 2.30) contains the parameters related to safety per-
ception facilitated by the sidewalks and the whole path the student follows. An
increase in the level of agreement parents declare for these statements representing
the specific parameters is expected to also increase the use of non-motorized transport
modes, as these parameters characterize an integrated and well-organized (in terms of
infrastructure) built environment shaped to act in favor of walking and bicycling.

• Finally, factor MODE comprises the actual and preferable parental mode choice re-
garding the school transportation.

We notice that from factor analysis, one factor (MOTMODE) emerged with rather
heterogeneous questionnaire parameters (observed variables). Two factors (NEIGBSAF
and ROUTESAF) were also identified, encompassing observed variables related to the
evaluation of parents regarding the safety and security sense provided by the surrounding
environment of neighborhoods, sidewalks, and the entire path between the residence and
the school unit. Finally, five factors (MOTHEALTH, ATTBUS, ATTCAR, ATTWALKBIKE,
and MOTCAR) are primarily associated with parental perceptions and beliefs regarding
the use and usability of various transport modes (including private vehicles, public buses,
walking, and bicycling).

As stated in the description of each factor, changes in parents’ perceptions or beliefs
regarding the level of significance or the level of agreement they attribute to the various
parameters (that constitute each factor) are expected to affect parental attitudes positively or
negatively towards the use (or non-use) of non-motorized transport modes. We emphasize
and focus on the distinction between motorized and non-motorized school commuting,
considering that, as highlighted in the introductory part of the study (Section 1.1), the
choice of non-motorized transport modes incorporates individual, environmental, and
social benefits [3,4].

In Figure 2, the percentages are provided as derived from the questionnaire survey on
the use of each transport mode during school commuting. It is observed that non-motorized
transportation is preferred by 66.1% of the surveyed parents, compared with a percentage
of 33.9% who preferred a motorized mode for their child’s daily school commuting.
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Therefore, the following research questions arise:

1. Can AI classification techniques, by using parents’ responses to various questions
(composing the observed variables) in the survey, predict the parental choices re-
garding motorized and non-motorized school transportation and to what level of
accuracy?

2. Which of the two factors (NEIGBSAF and ROUTESAF), which can directly (short
and medium term) be influenced by state or/and municipal authorities through
improvement and rehabilitation projects, has the greatest influence on encouraging
non-motorized school transportation?

3. Which of the five factors (MOTHEALTH, ATTBUS, ATTCAR, ATTWALKBIKE, and
MOTCAR) related to parental perceptions and beliefs, which can only indirectly
(along term) be influenced by the state (through information and awareness-raising
campaigns, incentives provision, etc.), has the greatest impact on encouraging non-
motorized school travel?

Answers to the above three questions will be attempted in Section 3 of the paper.

2.4. Implement of the ML Classification Model

The ML part of this work encompasses the development of a ML classification that,
upon training on the questionnaire survey and parents’ responses to various questions
(composing the observed variables) in the survey, can be utilized to make predictions
regarding the parental decision between motorized and non-motorized transport modes
for their child’s daily school commuting (Figure 3).

The Pearson correlation coefficient (PCC) matrix is expressed as a heatmap (Figure 4).
The PCC can describe the linear correlation between two features [54]. We find that
some features have a stronger linear correlation with other features, which empowers the
correlations’ analysis through the application of EFA and CFA that took place, leading to
factor clustering and labeling (Appendix B).



Sustainability 2024, 16, 588 13 of 31
Sustainability 2024, 16, x FOR PEER REVIEW 12 of 29 
 

 

 
Figure 3. The schematic presentation of the ML classifier. Upon training on the parents’ responses 
to questionnaire survey predicts the related to the school travel mode choice decision. 

The Pearson correlation coefficient (PCC) matrix is expressed as a heatmap (Figure 
4). The PCC can describe the linear correlation between two features [54]. We find that 
some features have a stronger linear correlation with other features, which empowers the 
correlations’ analysis through the application of EFA and CFA that took place, leading to 
factor clustering and labeling (Appendix B). 

Figure 3. The schematic presentation of the ML classifier. Upon training on the parents’ responses to
questionnaire survey predicts the related to the school travel mode choice decision.



Sustainability 2024, 16, 588 14 of 31Sustainability 2024, 16, x FOR PEER REVIEW 13 of 29 
 

 

 
Figure 4. Heatmap of Pearson correlation coefficient matrix. 

2.4.1. Selection of Classification Algorithm 
To this end, a series of seven classifiers employing various methodologies were tested 

(including logistic regression, K-nearest neighbor, decision tree, support vector machines, 
random forest, gradient boosting, and extreme gradient boosting) and trained with de-
fault parameters (i.e., without fine-tuning). More particularly: 
- Logistic Regression (LR) [55]: a classification algorithm that employs a linear function 

that is formulated by aggregating weighted input data features. The main objective 
is to optimize these feature weights, so that a predefined cost function (such as mean 
squared error) is minimized. 

- Support Vector Classifier (SVC) [56]: a model whose primary goal is to find the opti-
mal separating hyperplane to distinguish among different classes, specifically the one 
that maximizes the margin or distance from the hyperplane to the nearest data points 
of each class. 

- Decision Trees (DT) [57]: a tree-based classification method. The DT construction in-
volves two main processes: tree building, which progressively splits records based 
on certain criteria, and tree pruning to control tree complexity by reducing the num-
ber of leaf nodes. 

- K-Nearest Neighbor (KNN) [58]: an approach according to which test instances are 
classified by measuring their similarity/distance to training instances, typically using 
similarity or distance metrics such as Euclidean distance and cosine similarity. The 
KNN is then determined based on their proximity to the test instance and the class 
of the test instance is assigned based on majority voting among these K-neighbors. 

- Random Forest (RF) [59]: an ensemble learning method that fits multiple deep deci-
sion trees to different subsamples of a given dataset. The predictions of these decision 
trees are then combined to improve the overall performance and avoid overfitting. 

Figure 4. Heatmap of Pearson correlation coefficient matrix.

2.4.1. Selection of Classification Algorithm

To this end, a series of seven classifiers employing various methodologies were tested
(including logistic regression, K-nearest neighbor, decision tree, support vector machines,
random forest, gradient boosting, and extreme gradient boosting) and trained with default
parameters (i.e., without fine-tuning). More particularly:

- Logistic Regression (LR) [55]: a classification algorithm that employs a linear function
that is formulated by aggregating weighted input data features. The main objective is
to optimize these feature weights, so that a predefined cost function (such as mean
squared error) is minimized.

- Support Vector Classifier (SVC) [56]: a model whose primary goal is to find the optimal
separating hyperplane to distinguish among different classes, specifically the one that
maximizes the margin or distance from the hyperplane to the nearest data points of
each class.

- Decision Trees (DT) [57]: a tree-based classification method. The DT construction
involves two main processes: tree building, which progressively splits records based
on certain criteria, and tree pruning to control tree complexity by reducing the number
of leaf nodes.

- K-Nearest Neighbor (KNN) [58]: an approach according to which test instances are
classified by measuring their similarity/distance to training instances, typically using
similarity or distance metrics such as Euclidean distance and cosine similarity. The
KNN is then determined based on their proximity to the test instance and the class of
the test instance is assigned based on majority voting among these K-neighbors.

- Random Forest (RF) [59]: an ensemble learning method that fits multiple deep decision
trees to different subsamples of a given dataset. The predictions of these decision trees
are then combined to improve the overall performance and avoid overfitting.
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- Gradient Boosting (GB) [60]: a stagewise additive model where an ensemble of predic-
tion models is built by incrementally adding weak learners. The goal is to minimize
the loss of the ensemble by employing a gradient-descent-like optimization procedure
that adjusts the predictions of each weak learner in the ensemble to reduce loss.

- Extreme Gradient Boosting (XGB) [61]: a classification method that constructs an
ensemble of decision trees, training them sequentially. It calculates the gradient of the
loss function to determine how the model’s parameters should be adjusted to reduce
errors. As a result, each new tree corrects the errors of the previous ones.

2.4.2. ML Classification Model Training and Testing

Initially these classifiers were trained with default parameters (i.e., without fine-
tuning). This involves dividing the dataset into a training set and a validation set and
then using the training set to teach the model how to classify the data. This training was
performed using 10-fold cross-validation and then the performance was assessed to select
the top three performing classifiers based on their performance metrics (Table 3).

Table 3. Classifiers performance.

Classification
Model Accuracy F1–Score Precision TPR

(Recall) AUC–ROC Score FPR MCC CCI ICI

LR 0.71 0.72 0.68 0.76 0.71 0.33 0.43 106 43
SVC 0.89 0.89 0.89 0.87 0.89 0.10 0.77 132 17
DT 0.86 0.86 0.82 0.90 0.86 0.18 0.72 128 21

KNN 0.79 0.77 0.80 0.75 0.79 0.17 0.58 118 31
RF 0.89 0.89 0.89 0.89 0.89 0.10 0.78 133 16
GB 0.90 0.90 0.91 0.87 0.89 0.08 0.79 134 15

XGB 0.87 0.87 0.88 0.83 0.86 0.10 0.73 129 20
Voting 0.90 0.90 0.88 0.92 0.90 0.11 0.80 134 15

Next, the top-performing classifiers underwent hyperparameter fine-tuning to opti-
mize their predictive performance. This fine-tuning process employed a random 30% of
the data for testing and the remaining 70% for training. In addition to the best-performing
fine-tuned classifier, a soft voting ensemble classifier (hereafter voting classifier) was con-
structed by averaging the prediction of the three individual fine-tuned classifiers. The
aim was to leverage their combined predictive capabilities. Subsequently, this ensem-
ble classifier was tested and achieved competitive results, although the three individual
fine-tuned classifiers were slightly inferior to the top-performing classifier (Table 3). It
is important to highlight that, except for the KNN and LR classifiers, all other classifier
models demonstrated consistent and robust performance, surpassing an 80% accuracy
threshold (Table 3). This remarkable level of performance renders them exceptionally well
suited for handling various classification tasks within the scope of our research.

Based on the models’ assessments using a variety of diverse evaluation metrics, it
is evident that the GB and the voting classifier exhibit the best performances among the
models tested. Although these performances are competitive, we end up selecting the
voting classifier as the best model for our application due to the higher scores regarding
TPR (true positive rate, also known as recall), AUC–ROC score (area under the curve of
the receiver operating characteristic), and MCC (Matthew’s correlation coefficient) that the
latter demonstrates.

In particular, MCC is a more reliable statistical metric that produces a high score only
if the prediction obtained good results in all of the four confusion matrix categories, namely
true positives, false negatives, true negatives, and false positives, proportionally both to the
size of positive elements and the size of negative elements in the dataset. Moreover, MCC
remains invariant to the selection of the positive class, thereby ensuring the robustness of
the metric in the event of the class imbalance that we encounter in the data used in this
work [62].
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As for the AUC–ROC score, elevated scores indicate higher values for both TPR (recall)
and FPR (false positive rate), resulting in this way a greater degree of balance between
them, which is suitable for quantifying the effectiveness of the selected model in addressing
the issues arising from class imbalance.

Finally, the higher recall scores, which can be considered as the accuracy on the positive
class (i.e., use of a non-motorized transport modes), highlight the efficiency of the voting
classifier in correctly classifying the positive class instances. This is crucial, given that
the cost of false negatives outweighs the cost of false positives, since the ultimate goal
is to capture the majority, if not all, of the instances opting for the use of non-motorized
transportation modes for the school trip instead of motorized ones so that appropriate
policies can be applied by the local authorities.

In terms of the scores of the CCI (correctly classified instances) and ICI (incorrectly
classified instances), both GB and voting classifier present similar performances.

Following the successful completion of the optimization process, we identified the
voting classifier (the hybrid classifier that combined the SVC, RT, and XGB classifiers) as
the top-performing classifier. This classifier, coupled with its finely tuned hyperparameter
configuration, emerged as the standout choice. A confusion matrix of the chosen model
summarizes the classifier performance (Table 4), with insights into its error types.

Table 4. Confusion matrix for the selected classification model.

Mode for school commuting predicted by the classifier

Motorized
transport mode

Non-motorized
transport mode

Mode for school commuting
preferred by the parents

Motorized
transport mode

47
75.8%

15
24.2%

Non-motorized
transport mode

6
6.9%

81
93.1%

2.5. Deployment and Simulation of Modified ML Classification Models

As mentioned in Section 2.4.2, the selected voting classifier was successfully utilized
upon training on the questionnaire survey and parents’ responses to various questions to
make predictions on parental school travel mode choice and especially their decision between
motorized and non-motorized transport modes for their child’s daily school commuting.

However, as mentioned in the research questions at the end of Section 2.3, it would
be particularly interesting and useful to evaluate the impact of changes in each of the
seven labeled factors (MOTHEALTH, ATTBUS, ATTCAR, ATTWALKBIKE, MOTCAR,
NEIGBSAF, and ROUTESAF) related to parental perceptions and beliefs (as recorded
through the relevant questions in Appendix A) on shaping the parental preference ratio
between non-motorized (66.1%) and motorized (33.9%) school transport modes. The
process followed is described below:

i. The factor under assessment was selected, e.g., factor ROUTESAF.
ii. The questionnaire parameters (observed variables) that compose the ROUTESAF

factor were isolated. In this case, questions Q18-1, Q18-2, Q18-3, Q18-4, Q18-6, Q18-7,
Q18-8, Q18-9, and Q18-12 (see Appendix A).

iii. A process of increasing (and also decreasing on a next step) the initial degrees of
agreement/disagreement of the participants in the questionnaire survey regarding
statements Q18-1, Q18-2, Q18-3, Q18-4, Q18-6, Q18-7, Q18-8, Q18-9, and Q18-12 was
initiated. During the increase in the degree of agreement, respondents with the lowest
degree of agreement in each statement were identified and the increase process started
from there. Thus, responses such as “Strongly disagree” were initially transformed
into “Disagree”, and when these were completed, “Disagree” was then transformed
into “Undecided” and so on. Similarly, during the decrease in the degree of agreement,
respondents with the highest degrees of agreement (“Strongly agree” and “Agree”) in
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each statement were identified and the process of decreasing degrees of agreement
started also from there.

iv. For the new mean value corresponding to the factor ROUTESAF, after the modification
of the previous step, the top-performing classification model was applied to predict
the new percentage of non-motorized school transport modes based on the modified
mean value of the factor.

v. This process identified several pairs of values (mean value of the ROUTESAF factor,
percentage of non-motorized school transport modes). Figure 5 illustrates the change
in the percentage of non-motorized school transport modes based on the change
in the initial degrees of agreement/disagreement of the parents participating in the
questionnaire survey regarding statements of this specific factor.

vi. All responses were then reset to the initial values, as recorded in the questionnaire
survey, another factor was selected, and the process repeated from the beginning.

Figure 6 illustrates the impact of changes in mean values of each one of the other
six other factors (MOTHEALTH, ATTBUS, ATTCAR, ATTWALKBIKE, MOTCAR, and
NEIGBSAF) on the parental preference ratio between non-motorized and motorized school
transport modes. Non-linearities between the percentage of choice for non-motorized
school commuting are evident from Figures 5 and 6, while the changes in the quality of
pedestrian and cyclist infrastructure as well as the changes in parental perceptions and
beliefs (regarding environmental and economic benefits, children’s health and socialization,
urban environmental sustainability, etc., resulting from non-motorized commuting) are
noticeable. However, these non-linearities enhance the advantage of using ML classification
models that are not only suitable but also suggested for the analysis and interpretation of
non-linear phenomena [45].

2.6. Factor Contribution Assessment for School Travel Mode Choice

Table 5 quantifies what was graphically depicted in Figures 5 and 6, that is the impact
of changes in mean values of each factor on the parental preference ratio between non-
motorized and motorized school transport modes.

As already noted, non-linear correlations are observed between the percentage of
non-motorized school commuting and the changes in the values of the factors influencing
it. However, an approach can be attempted regarding the number of parents opting for
non-motorized commuting (or the opposite) depending on the changes in the mean values
of the factors.
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Table 5. Impact of changes in mean values of each factor on the parental preference for non-motorized school transport modes.

Labeled Factors
(Latent Variables)

Change (%) and Modified Values of Factors’ Means in the
5-Point Likert Scale

Percentage (%) of Non-Motorized
School Transport Modes for Specific

Changes of Factors’ Mean Values

−40% −20% 0% +20% +40% +50% −40% −20% 0% +20% +40% +50%

MOTHEALTH: Parameters of parental motivation to choose
a transport mode related to the physical and mental health
of a student

2.04 1 2.72 3.39 3.90 4.41 >5.00 63.8% 64.6% 66.1% 72.7% 79.7% n.a.

ATTBUS: Parents perception regarding the use of
public buses 1.36 2 1.81 2.26 2.60 2.94 3.39 74.9% 70.6% 66.1% 64.0% 61.0% 59.6%

ATTCAR: Parents perception regarding the use of
private vehicles 1.84 2 2.45 3.06 3.52 3.98 4.59 71.9% 69.0% 66.1% 63.3% 61.5% 61.3%

ATTWALKBIK: Parents perception regarding the use of
non-motorized transport modes (walking, bicycle) 2.48 2 3.31 4.14 4.76 >5.00 >5.00 63.2% 65.7% 66.1% 69.4% n.a. n.a.

MOTCAR: Parameters related to the usability of
private vehicles 1.84 1 2.46 3.07 3.53 3.99 4.61 68.3% 67.9% 66.1% 64.4% 61.7% 60.9%

NEIGBSAF: Parameters related to the sense of security
provided by the neighborhood 1.97 2 2.63 3.29 3.78 4.28 4.94 62.9% 65.1% 66.1% 66.2% 67.0% 67.8%

ROUTESAF: Parameters related to the sense of safety
provided by the sidewalks and the whole path the
student follows

1.38 2 1.84 2.30 2.65 2.99 3.45 52.8% 58.8% 66.1% 71.1% 76.0% 77.9%

1 1: Not important at all, 5: Absolutely important. 2 1: Strongly disagree, 5: Strongly agree. n.a.: not applicable.
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In an attempt to further explain Table 5, with a focus on the MOTHEALTH factor and
considering a positive change in the mean value of the specific factor (due to an increase in
the importance attributed by parents to the physical and mental health of their students)
within the range of up to +20%, it is evident that for any 1% increase in the attributed
importance to the questionnaire parameters comprising the factor MOTHEALTH, the
corresponding increase in the percentage of parents choosing a non-motorized travel mode
will be 0.48% (Table 6). This is equivalent to an additional 4.8 out of 1000 parents opting
for non-motorized school commuting. Conversely, for any 1% decrease in the attributed
importance to the questionnaire parameters of the same factor, the percentage of parents
choosing non-motorized travel modes will decrease by 0.11% (or 1.1 out of 1000 parents
will shift from non-motorized to motorized commuting). Similar variations, in the range
of −20% to +20%, in the values of the questionnaire parameters comprising the other
factors lead to changes in the percentages of choosing non-motorized school commuting,
as depicted in Table 6.

In fact, Table 6 represents one of the key scientific findings of this research, document-
ing the impact of changes in the beliefs, perceptions, and established habits of parents
in urban commuting, as well as the perceived safety of the route and neighborhood be-
tween home and school, on the variation in the percentage of non-motorized transport
mode usage. More specifically, from Table 6 it is evident that each 1% increase in the
importance parents attribute to the questionnaire parameters of the MOTHEALTH factor
(for the questionnaire parameters of each factor, see Table A2), which summarizes the
parameters relevant to the physical and mental health of children that parents consider
when choosing the transport mode of school commuting, leads to a 0.48% enhancement in
the percentage of non-motorized mode usage. Similarly, every 1% increase in the parents’
perceived sense of safety provided by sidewalks and the entire path the student follows
between their residence and the school unit (factor ROUTESAF) augments the percentage
of non-motorized travel mode usage by 0.37%. Conversely, a potential decrease of 1% in the
parents’ perceived safety of the route between their residence and the school unit would
result in a reduction in children’s non-motorized travel by −0.58%. A similar rationale can
be followed for estimating the impacts of changes in the mean values of the other factors
on the choice of the school travel mode choice and the differentiation between motorized
and non-motorized modes.

Table 6. Impact of a 1% adjustment (decrease or increase) in the mean values of each factor on
parental preference for non-motorized school transport modes.

Labeled Factors
(Latent Variables)

Change in the Percentage of
Non-Motorized School Commuting
Resulting from a 1% Decrease in the
Mean Values of the Specific Factor

Change in the Percentage of
Non-Motorized School Commuting
Resulting from a 1% Increase in the
Mean Values of the Specific Factor

MOTHEALTH: Parameters of parental
motivation to choose a transport mode
related to the physical and mental health
of a student

–0.11% 1

or 1.1 out of 1000 parents will shift from
non-motorized to motorized modes

+0.48%
or an additional 4.8 out of 1000 parents

will opt for non-motorized modes

ATTBUS: Parents perception regarding
the use of public buses

+0.33%
or an additional 3.3 out of 1000 parents

will opt for non-motorized modes

–0.16%
or 1.6 out of 1000 parents will shift from

non-motorized to motorized modes

ATTCAR: Parents perception regarding
the use of private vehicles

+0.21%
or an additional 2.1 out of 1000 parents

will opt for non-motorized modes

–0.22%
or 2.1 out of 1000 parents will shift from

non-motorized to motorized modes
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Table 6. Cont.

Labeled Factors
(Latent Variables)

Change in the Percentage of
Non-Motorized School Commuting
Resulting from a 1% Decrease in the
Mean Values of the Specific Factor

Change in the Percentage of
Non-Motorized School Commuting
Resulting from a 1% Increase in the
Mean Values of the Specific Factor

ATTWALKBIK: Parents perception
regarding the use of non-motorized
transport modes (walking, bicycle)

–0.03%
Marginal change not worthy of comment

+0.24%
or an additional 2.4 out of 1000 parents

will opt for non-motorized modes

MOTCAR: Parameters related to the
usability of private vehicles

+0.13%
or an additional 1.3 out of 1000 parents

will opt for non-motorized modes

–0.13%
or 1.3 out of 1000 parents will shift from

non-motorized to motorized modes

NEIGBSAF: Parameters related to the
sense of security provided by
the neighborhood

–0.08%
Marginal change not worthy of comment

+0.01%
Marginal change not worthy of comment

ROUTESAF: Parameters related to the
sense of safety provided by the sidewalks
and the whole path the student follows

–0.58%
or 5.8 out of 1000 parents will shift from

non-motorized to motorized modes

+0.37%
or an additional 3.7 out of 1000 parents

will opt for non-motorized modes
1 All values apply to changes of factors’ mean values within the range −20% to +20%. Outside of this range, the
values differ due to non-linearities.

3. Discussion

In the forthcoming discussion section, we delve into three pivotal research questions
that lie at the heart of our study, as stated clearly in Section 2.3.

The first research inquiry revolves around the capabilities of ML classification tech-
niques, specifically their aptitude to leverage parental responses to diverse survey questions,
which collectively form the observed variables. We aim to ascertain whether these tech-
niques can effectively predict parental choices concerning school transportation modes,
encompassing both motorized and non-motorized options. Furthermore, we seek to quan-
tify the extent of accuracy achievable through these predictive models.

ML classification techniques offer powerful and highly effective means to predict
parental choices when it comes to selecting between motorized and non-motorized school
transportation, and this prediction is achieved with a remarkable level of precision, exem-
plified by impressive classifying performance scores such as an F1-score at 89% and an
MCC at 80% (Table 3). The remarkable success of the classification model in this context
can be primarily attributed to a confluence of critical factors.

First and foremost, the richness of the data source plays a pivotal role. By harnessing
the information encapsulated in parents’ responses to a diverse set of survey questions,
the model can tap into a comprehensive array of factors that inherently influence parental
decisions regarding school transportation. Furthermore, the art of feature engineering takes
center stage. The meticulous selection and transformation of relevant features derived from
the survey data are instrumental in unraveling intricate patterns and relationships within
the dataset, enabling the model to make highly accurate predictions that align with the
intricacies of real-world parental decision-making processes.

The complexity of the employed AI techniques is yet another contributing factor.
These techniques can model complex interactions and non-linear relationships among the
variables, resulting in a representation of decision-making processes that closely mirrors
reality. In addition, the quality of the data is of paramount importance. Rigorous data
preprocessing and cleaning measures ensure that the dataset is devoid of inconsistencies or
errors, laying a solid foundation for the model’s performance.

Lastly, the model’s ability to generalize from the training data to make accurate pre-
dictions on new, unseen data is a testament to its robustness. With impressive classifying
performance scores such as an F1-score at 89% and an MCC at 80% (Table 3), the model
is clearly not overfitting to the training data but rather demonstrates a high level of pro-



Sustainability 2024, 16, 588 22 of 31

ficiency in capturing the complexities of parental decision making in the realm of school
transportation.

In conclusion, the application of AI classification techniques to predict parental choices
in the context of school transportation is underpinned by meticulous data handling, strate-
gic feature selection, model sophistication, and thorough evaluation. With impressive
classifying performance scores such as an F1-score at 89% and an MCC at 80% (Table 3),
the model exemplifies a remarkable accuracy in understanding the intricate dynamics of
parental decision making.

The second research question delves into the influence wielded by two critical factors,
NEIGBSAF and ROUTESAF, that lie within the purview (jurisdiction) of the state and
municipal authorities. These entities have the power to effect change in the short and
medium term through decision making for improvement and rehabilitation initiatives.

As proved in the previous section, an improvement across the route a student follows
from their residence to the school unit and vice versa plays a crucial role in parents’ decisions
regarding the use of non-motorized transport modes. This also reflects the case where
improvements in the environment surrounding the school unit are attempted; however, to
a lesser degree. The design and implementation of infrastructure measures by the local
authorities in full cooperation with the relevant stakeholders (school administrations, school
committees, transport operators, micro-mobility providers, police, mobility planners, etc.) is
essentially critical for a successful school mobility management, thus should not be ignored.
The creation of infrastructure improvements along streets and within neighborhoods that
ensure safer and more comfortable walking and bicycling and reduce injury risks should be at
the top of local authorities’ agendas. Examples of infrastructure improvements may include
the rearrangement, extension, repair, or even reconstruction of sidewalks and cycling lanes;
the introduction of speed reduction measures (traffic lights, zone 30 km/h, etc.); redesigning
safer and more comfortable intersections near the school units with the use of specific elements
(construction of safety islands, roundabouts, etc.); improvement of lighting along the streets;
and the recreation/redevelopment of abandoned areas.

The last research question focuses on the examination of five factors, MOTHEALTH,
ATTBUS, ATTCAR, ATTWALKBIKE, and MOTCAR, that encompass parental perceptions
and beliefs. These factors are indirectly influenced by the state through long-term strategies
such as targeted information provision, awareness-raising and marketing campaigns,
organization of school travel plans, technological advancements such as gamification, etc.

School plays a strategic role in promoting the culture of sustainable mobility. Thus,
school administrations should act as the driving force behind these initiatives, taking
overactive roles in their planning and strongly supporting their contribution to behavioral
change towards sustainable mobility. It is necessary, though, to provide teachers and other
educators opportunities and incentives for acquiring new competencies related to school
mobility needs and requirements, while it is an imperative need to share the acquired
knowledge with students and parents by involving them in public presentations, events,
and discussions relevant to school mobility.

4. Conclusions

This research endeavors to provide a valuable decision support tool for urban planners
and policymakers, harnessing the power of state-of-the-art AI classifiers. Through this
approach, we aim to facilitate the development of strategic initiatives and measures that
promote equitable, safe, and sustainable school mobility systems.

The current work stands at the forefront of innovation, marking a pioneering explo-
ration in the application of ML classification techniques to questionnaire datasets within
the realm of school travel mode choice. To the best of our knowledge, this marks the
inaugural instance of engaging such advanced methodologies in this specific domain. This
groundbreaking research not only extends the boundaries of existing knowledge but also
establishes a new paradigm for understanding and analyzing the factors influencing school
travel mode decisions, thereby contributing significantly to the advancement of research in
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this field. The utilization of ML in conjunction with questionnaire data lays the groundwork
for novel insights and holds promise for enhancing the effectiveness of decision-making
processes related to school commuting.

By delving into a comprehensive literature review, we have identified a multitude
of factors influencing the school travel mode choice process, while also highlighting AI
classification applications’ effectiveness in forecasting human behavior traits.

After gaining a deeper understanding of the dynamics behind parental transportation
choices, we can inform policies that enhance public transport access, optimize school
environments, encourage active transport modes, raise awareness, and provide incentives,
ultimately contributing to a more efficient and effective school transportation system. The
synergy of AI classification techniques and a thorough exploration of these factors positions
this study as a valuable resource for shaping the future of school transportation planning
and urban mobility.

Our proposed implementation has been developed as a proof of concept for a decision
support system for transportation infrastructure planners to enlighten them in under-
standing how they could achieve a desirable non-motorized school mode travel choice,
perturbing mobility factors. In the short term, our approach demonstrated an actionable
suggestion of which mobility factor variation would trigger a greater impact for improv-
ing the non-motorized school travel mode choice against the motorized school travel
mode choice.

One of the limitations of the current work was identified as being the relatively small
but still statistically acceptable sample of questionaries and the fact that they were gathered
only from the city of Thessaloniki. In future work, our vision is targeted to selecting more
data from more cities around the world, which will help us establish a robust framework
able to generalize and extend to other case studies.

Moreover, in future work, more sophisticated AI methodologies could be investigated,
such as deep learning techniques to augment classification ability, to help us comprehend
the way parental beliefs influence the school travel mode choice. Thus, we encourage the
community to dedicate more effort to the research and development of such AI synergiz-
ing frameworks and toolboxes, which will promote a more safe and sustainable school
mobility ecosystem.
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Appendix A

Table A1 depicts the survey questionnaire. Further details regarding the structure, the
composition, and the sample of the questionnaire survey are provided in [1,52,53].
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Table A1. The questionnaire of the survey.

Research On School Transport
(The survey is addressed to parents of students aged 6–18 years)

Q1. Gender: 2 Man 2 Woman
Q2. Age category: 2 24–29 2 30–39 2 40–49 2 2 50–59 2 60–64

Q3. Family status: 2 Married/in
cohabitation 2 Divorced

Q4. Educational level: 2 Elementary School 2 High School 2 University
Degree

2 M.Sc./Ph.D.
2

Q5. Work status: 2 Full time 2 Part time 2 Unemployed
2 Unpaid
(household) 2 University Student 2 Retired

Q6. Driver license possession: 2 At least one parent 2 Both parents 2 None
Q7. Number of private vehicles in the
family: 2 0 2 1 2 2 2 3 or more

Q8. Student’s age: ___ years old
Q9. Students’ gender: 2 Boy 2 Girl
Q10. Please write down the student’s
school unit:
____________________________________________

Q11. The school unit is located in: 2 Urban
environment 2 Rural environment

Q12. What is the approximate
distance of your residence to the
school unit?

2 up to 0.5 km 2 1.0–1.5 km 2 1.5–2.0 km 2 2.0–2.5 km 2 2.5–3.0 km
Q13. Has your child ever expressed
the desire to travel to school by
bicycle?

2 Yes 2No

Q14. I would allow my child to walk
or cycle to and from school alone
without any parent accompanying
them:

2 Totally agree 2 Agree 2 Neither agree
or disagree 2 Disagree 2 Totally

disagree
Q15. What transport mode does your
child uses from residence to school
unit and from school unit to residence.
If there is a difference in the transport
modes due to summer or winter,
please note the predominant one:

Q15-1. Residence →
School unit

Q15-2. School unit →
Residence

Walking alone 2 2

Walking, with friends 2 2

Walking, accompanied by the
respondent 2 2

Walking, accompanied by an adult 2 2

Urban public bus 2 2

School bus, paid by school 2 2

I drive him/her to school 2 2

A friend of mine drives him/her to
school 2 2

Taxi 2 2

Bicycle 2 2

Q16. What transport mode would you prefer for your child to use from residence to school unit and from school unit to residence:
Walking alone 2

Walking, with friends 2

Walking, accompanied by the
respondent 2

Walking, accompanied by an adult 2

Urban public bus 2

School bus, paid by school 2

I drive him/her to school 2

A friend of mine drives him/her
to school 2
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Table A1. Cont.

Research On School Transport
(The survey is addressed to parents of students aged 6–18 years)

Taxi 2

Bicycle 2

Q17. According to your opinion which is the level of importance for each of the following factors that prompt you to select the specific
transport mode?

Not important at all Absolutely
important

[1] [2] [3] [4] [5]
Q17-1. Student gender 2 2 2 2 2

Q17-2. Student age 2 2 2 2 2

Q17-3. There is someone to assist me
with school transportation 2 2 2 2 2

Q17-4. Working hours 2 2 2 2 2

Q17-5. Personal/family income 2 2 2 2 2

Q17-6. Driving license possession 2 2 2 2 2

Q17-7. Car ownership 2 2 2 2 2

Q17-8. Limitations on parking 2 2 2 2 2

Q17-9. Distance from school 2 2 2 2 2

Q17-10. Time spent on trip 2 2 2 2 2

Q17-11. Trip cost 2 2 2 2 2

Q17-12. Student’s comfort 2 2 2 2 2

Q17-13. Student’s safety 2 2 2 2 2

Q17-14. Environmental sensitivities 2 2 2 2 2

Q17-15. Student’s health 2 2 2 2 2

Q17-16. School luggage weight 2 2 2 2 2

Q17-17. Socializing with friends 2 2 2 2 2

Q17-18. Spend quality time with child 2 2 2 2 2

Q18. In what degree to you agree or disagree with the below statements regarding the student’s school trip?
Strongly disagree Strongly agree
[1] [2] [3] [4] [5]

Q18-1. Traffic conditions are
not dangerous 2 2 2 2 2

Q18-2. I believe there are
safe intersections 2 2 2 2 2

Q18-3. I find it unlikely my child to be
abducted or injured by a stranger 2 2 2 2 2

Q18-4. I find it unlikely my child to be
harassed by others 2 2 2 2 2

Q18-5. The route from residence to
school is safe 2 2 2 2 2

Q18-6. There are sidewalks of
adequate width 2 2 2 2 2

Q18-7. Sidewalks are clean 2 2 2 2 2

Q18-8. Sidewalks are separated by
traffic with trees 2 2 2 2 2

Q18-9. There are no obstacles on
sidewalks (rubbish bins, parked
cars, etc.)

2 2 2 2 2

Q18-10. Residents in the
neighborhood are in good condition 2 2 2 2 2

Q18-11. There are no vandalism traces
in our neighborhood 2 2 2 2 2

Q18-12. There is adequate lighting on
the route from residence to school unit 2 2 2 2 2

Q18-13. The existing infrastructures
cannot protect a cyclist 2 2 2 2 2

Q19. In what degree to you agree or disagree with the below statements regarding the student’s school trip?
Strongly disagree Strongly agree
[1] [2] [3] [4] [5]

Q19-1. Travelling to school on
foot/bike is a good way my child to
become familiar with the
neighborhood

2 2 2 2 2

Q19-2. I would like my child to travel
to school on foot or by bike under the
appropriate circumstances

2 2 2 2 2
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Table A1. Cont.

Research On School Transport
(The survey is addressed to parents of students aged 6–18 years)

Q19-3. Travelling to school on foot or
by bike is a way to increase my child’s
physical activity

2 2 2 2 2

Q19-4. Driving my child to school
may lead to car use addiction 2 2 2 2 2

Q19-5. Driving to school contributes
to driving congestion 2 2 2 2 2

Q19-6. Driving is more comfortable
than walking/cycling 2 2 2 2 2

Q19-7. I like driving within the city 2 2 2 2 2

Q19-8. Owning a car makes my life
more comfortable 2 2 2 2 2

Q19-9. I use my car even for short
distances 2 2 2 2 2

Q19-10. Car ownership is a prestige
symbol 2 2 2 2 2

Q19-11. Traffic congestion doesn’t
bother me 2 2 2 2 2

Q19-12. I like to use the urban bus for
travelling within the city 2 2 2 2 2

Q19-13. The urban bus is a very
reliable transport mode 2 2 2 2 2

Q19-14. I am satisfied with the
comfort of the urban bus 2 2 2 2 2

Q19-15. I am satisfied with the time
consistency of the urban bus services 2 2 2 2 2

Appendix B

Table A2 presents grouped parameters (observed variables) derived from both ex-
ploratory (EFA) and confirmatory factor analysis (CFA), constituting labeled factors (latent
variables). EFA identified underlying factors by exploring the data structure, while CFA
validated factor structures predetermined by EFA. EFA explored and CFA confirmed
predefined relationships between the observed and latent variables in the survey data,
contributing to a nuanced understanding of latent constructs.

The labeling of the extracted factors was conducted with meticulous consideration
of the semantic content inherent in the questionnaire parameters (observed variables,
Appendix B, 2nd column of Table A2) encapsulated within each respective factor. In
the formulation of the acronyms for the extracted factors, the prefix “MOT” (motivation)
was selected for factors incorporating parameters related to motivations regarding the
utilization of a transport mode. Additionally, the prefix “ATT” (attitudes) was chosen for
factors comprising questionnaire parameters associated with behavioral aspects and shaped
perceptions. Notably, the suffix “SAF” (safety) was employed for factors encompassing
variables pertaining to safety within the school and residence neighborhoods (NEIGB) or
along the school route (ROUTE).

Detailed analysis of the EFA and CFA can be found in [1,52,53].
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Table A2. Labelling of the factors derived from the exploratory and confirmatory factor analysis.

Questionnaire Parameters
(Observed Variables) Labeled Factors (Latent Variables)

No Description

Mean
Value (Standard Deviation) in

5-Point
Likert Scale

Acronym and Description (in
Parenthesis the Reliability Coefficient

Cronbach’s Alpha)

Mean Value
in 5-Point

Likert Scale

Q17-2 Importance of student age 4.06 (1.13)

MOTMODE (0.88):
Objective parameters of parental

motivation to choose a transport mode

3.84
(1: Not important at all,

5: Absolutely
important)

Q17-3 There is someone to help 3.45 (1.31)

Q17-4 Working hours 3.74 (1.26)

Q17-9 Distance residence → school 3.96 (1.14)

Q17-10 Travel time residence → school 3.75 (1.16)

Q17-12 Convenience 3.69 (1.17)

Q17-13 Student’s safety 4.21 (1.18)

Q17-14 Environmental sensitivities 3.12 (1.18)

MOTHEALTH (0.88):
Parameters of parental motivation to

choose a transport mode related to the
physical and mental health of a student

3.39
(1: Not important at all,

5: Absolutely
important)

Q17-15 Student’s health 3.57 (1.23)

Q17-16 School luggage weight 3.62 (1.24)

Q17-17 Socialization with friends 3.54 (1.20)

Q17-18 Quality time between parent and child 3.09 (1.20)

Q19-12 I like travelling by urban bus within the city 2.64 (1.16)
ATTBUS (0.82):

Parents perception regarding the use of
public buses

2.26
(1: Strongly

disagree,
5: Strongly agree)

Q19-13 Urban bus is a reliable transport mode 2.37 (1.11)

Q19-14 Satisfied with the comfort of urban bus services 2.01 (1.08)

Q19-15 Satisfied with time reliability with urban bus services 2.00 (1.12)

Q15-1, 2 Transport mode, residence → school and vice-versa Not
applicable

MODE (0.86): Selected and preferred
school travel mode choice

Not
applicableQ16 Preferable transport mode

Q19-6 Driving is more comfortable than walking or bicycling 2.81 (1.12)
ATTCAR (0.87):

Parents perception regarding the use of
private vehicles

3.06
(1: Strongly

disagree,
5: Strongly agree)

Q19-7 I like driving within the city 2.83 (1.16)

Q19-8 Owing a car makes my life comfortable 3.76 (0.93)

Q19-9 I use my car for all trips within the city 2.85 (1.18)
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Table A2. Cont.

Questionnaire Parameters
(Observed Variables) Labeled Factors (Latent Variables)

No Description

Mean
Value (Standard Deviation) in

5-Point
Likert Scale

Acronym and Description (in
Parenthesis the Reliability Coefficient

Cronbach’s Alpha)

Mean Value
in 5-Point

Likert Scale

Q19-1 Walking or bicycling to school is a good way my child
be familiar with environment 3.89 (0.79)

ATTWALKBIK (0.72):
Parents perception regarding the use of

non-motorized transport modes
(walking, bicycle, etc.)

4.14
(1: Strongly

disagree,
5: Strongly agree)

Q19-2 I would prefer my child walk or drive to school under
different circumstances 4.27 (0.77)

Q19-3 Walking or cycling to school increases students’
physical activity 4.25 (0.70)

Q17-6 Driving license possession 3.04 (1.33) MOTCAR (0.95):
Parameters related
to the usability of
private vehicles

3.07
(1: Not important at all,
5: Absolutely important)

Q17-7 Car ownership 3.12 (1.34)

Q17-8 There are no parking limitations outside my residence
or the school unit 3.06 (1.30)

Q18-5 The neighborhood the student travels is safe 2.88 (1.08)
NEIGBSAF (0.76): Parameters related to

the sense of security provided by the
neighborhood

3.29 (1: Strongly
disagree,

5: Strongly agree)
Q18-10 Residences of neighborhood are in good conditions 3.35 (1.12)

Q18-11 There are no vandalism traces in the neighborhood 3.23 (1.05)

Q18-1 Traffic conditions are not dangerous for the students 2.18 (1.10)

ROUTESAF (0.91):
Parameters related to the sense of safety

provided by the sidewalks and the
whole path the student follows

2.30
(1: Strongly

disagree,
5: Strongly agree)

Q18-2 Crossings are safe 2.27 (1.15)

Q18-3 It’s unlikely for my child to be injured or abducted by 2.27(1.11)

Q18-4 It’s unlikely for my child to be harassed by others 2.23 (1.07)

Q18-6 Sidewalks have sufficient width 2.25 (1.17)

Q18-7 Sidewalks are clean 2.32 (1.15)

Q18-8 Sidewalks are separated from traffic with trees 2.07 (1.10)

Q18-9 There are no obstacles in the sidewalks 2.15 (1.14)

Q18-12 There is adequate lighting in the school trip route 2.95 (1.17)
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