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Abstract: Road maintenance is essential for supporting road safety and user comfort. Developing
predictive models for road surface conditions enables highway agencies to optimize maintenance
planning and strategies. The international roughness index (IRI) is widely used as a standard for
evaluating road surface quality. This study compares the performance of deep neural networks
(DNNSs) and graph convolutional networks (GCNs) in predicting IRI values. A unique aspect of
this research is the inclusion of additional predictor features, such as the type and timing of recent
roadwork, hypothesized to affect IRI values. Findings indicate that, overall, the DNN model performs
similarly to the GCN model across the entire highway network. Given the predominantly linear
structure of national highways and their limited connectivity, the dataset exhibits a low beta index,
ranging from 0.5 to 0.75. Additionally, gaps in IRI data collection and discontinuities in certain
highway segments present challenges for modeling spatial dependencies. The performance of DNN
and GCN models was assessed across the network, with results indicating that DNN outperforms
GCN when highway networks are sparsely connected. This research underscores the suitability of
DNN for low-connectivity networks like highways, while also highlighting the potential of GCNs in
more densely connected settings.

Keywords: international roughness index (IRI); graph convolutional network (GCN); deep neural
network (DNN); machine learning

1. Introduction

Typically, ride quality is linked to how comfortable road users feel while driving,
which is influenced by the level of roughness of the pavement surface. Pavement roughness
refers to the surface irregularities of the pavement; it impacts both the condition of the
road and the comfort experienced by users. An escalation in pavement roughness results
in higher fuel consumption, increased vehicle maintenance and repair expenses, elevated
greenhouse gas emissions, and potentially increased traffic safety; overall, these factors can
result in substantial financial losses annually [1].

The international roughness index (IRI) was developed by the World Bank during the
1980s. It is defined as the cumulative vertical motion of the suspension system divided by
the distance traveled, derived from a mathematical model simulating a quarter-car (con-
sisting of a wheel, one-quarter of the vehicle’s body mass, and the associated suspension)
moving along a measured road surface at a speed of 80 km/h [2]. Numerous highway
agencies worldwide use an initial measurement of the IRI following construction as a
quality assurance benchmark, while the terminal IRI serves as an indicator for necessary

Sustainability 2024, 16, 9805. https:/ /doi.org/10.3390/5u16229805

https:/ /www.mdpi.com/journal/sustainability


https://doi.org/10.3390/su16229805
https://doi.org/10.3390/su16229805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2529-7237
https://orcid.org/0000-0002-2459-868X
https://doi.org/10.3390/su16229805
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16229805?type=check_update&version=1

Sustainability 2024, 16, 9805

20f 18

pavement maintenance measures or potential reconstruction requirements. Some highway
agencies have embraced the use of the present serviceability rating or present serviceability
index for assessing pavement conditions. Therefore, several agencies have considered
roughness as a serviceability measurement over time. Due to the crucial role the IRI plays
as an indicator of pavement performance, considerable research has been directed toward
modeling and forecasting IRI [1,3].

The majority of the previous IRI models were based on linear or nonlinear regression
techniques. Some recent models have utilized the deep neural network (DNN) method,
which is one of the machine learning algorithms [4—6]. DNNs are one type of machine
learning technique, with their concept being biologically inspired by the human brain;
thus, they mimic brain behavior [7]. DNNs offer highly precise solutions for constructing
empirical models having complex datasets that exhibit nonlinear behavior and do not
conform to known mathematical functions [8].

In general, DNNs comprise an input layer, an output layer, and multiple hidden
layers, where intricate nonlinear operations are performed. Every layer comprises a group
of neurons, interconnected through synapses, with initial weights that evolve during
the network’s iterative process. Given that DNNs handle data that does not adhere to a
straightforward mathematical relationship, the ultimate solution is often regarded as a black
box [4]. Abd El-Hakim and El-Badawy [5] applied DNNSs to create a neural network model
for predicting IRI in rigid pavements. Sollazzo et al. [6] established a correlation between
pavement roughness and structural performance through the application of DNNS.

Recently, advanced deep neural network methods have been widely used in traffic
prediction and have achieved good performance. Lv et al. [9] used stacked autoencoders
to extract spatial-temporal traffic flow features and make traffic flow predictions. Fu
et al. [10] applied the LSTM model and its variant GRU model to predict short-term traffic
flow [11]. Chen et al. used convolutional neural networks (CNNs) to predict traffic flow
based on time series folding and multi-grained learning techniques [12]. Yu et al. proposed
a graph convolutional network (GCN) model to tackle the traffic prediction problem [13]. Li
etal. [14] also used a GCN to extract spatial relationships of traffic flow between observation
locations. Bai et al. [15] and Sharma et al. [16] utilized GCNs for traffic data forecasting
and estimation.

Traffic forecasting for a complete network has always been a challenge due to the com-
plex spatial and temporal correlations. With spatial correlation, variations in traffic volume
are primarily influenced by the topological layout of the urban road network, with the
traffic conditions on upstream roads affecting those downstream through a transfer effect,
while the conditions downstream impact those upstream through a feedback effect [17].
With temporal correlation, the traffic volume fluctuates dynamically over time, primarily
manifesting as periodic patterns and trends [11]. Despite numerous studies addressing
spatial and temporal dependencies in traffic data, such as speed, flow, and density, there
has been relatively little research on incorporating spatial and temporal dependencies into
modeling using the IRL

Therefore, this study aims to develop an IRI prediction model using the graph convo-
lutional network (GCN) algorithm, which considers the spatial and temporal correlations
of asphalt pavement conditions. Additionally, the performance of the GCN model was
compared with that of a deep neural network (DNN). This comparative analysis will help
determine the effectiveness of GCN in modeling spatial relationships within road networks
compared to DNN.

2. Literature Review
2.1. IRI Model Features

The selection of features used in modeling is crucial. Several studies have been con-
ducted to predict the IRI index using pavement distress, the structural number of the
pavement, moisture content, climate data, and traffic data [18,19]. However, when data
have occasionally not been collected immediately after roadwork maintenance, the inspec-
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tion date and duration time since the last maintenance might affect the IRI index. Other
studies have reported less research considering the inspection date in their IRI modeling,
although they did include the age of the pavement since its construction occurred [20,21].
Therefore, the current study assigned the inspection date and duration since the last main-
tenance as inputs in developing the IRI model (given that the age of the pavement in
the current was not available) and compared the influence of these attributes on the IRI
Furthermore, some of the road sections were subjected to different roadworks at various
stages of pavement aging, with each type of roadwork having a different influence on
the reduction of the IRI [22]. Hence, it was crucial to assess the individual effect of each
roadwork type on the IRI.

2.2. IRI Prediction Models

Over the years, numerous researchers have proposed several roughness prediction
models, in terms of the IRL. These models can be categorized into three groups: determinis-
tic, probabilistic, and machine learning-based (such as deep learning and artificial neural
networks) [21].

The recent developments are more inclined toward machine learning models, while
the deterministic and probabilistic models are referred to as basic models that have gath-
ered much attention [23,24]. Paterson [25] developed a linear regression model to estimate
the IRI based on factors such as cracking, rutting, pavement age, structure number, equiv-
alent single axle loads (ESAL), thickness of cracked layers, and the number of potholes.
Meanwhile, Chandra et al. [26] utilized linear regression, nonlinear regression, and neural
networks (NN) to predict IRI using measurements of rutting, cracking, potholes, patches,
and raveling. Tamagusko and Ferreira [27] explore how machine learning (ML) is applied to
predict the IRL Sigdel et al. [28] develop models to predict the IRI for Nepal’s national high-
ways, essential for effective road maintenance. El-Hakim et al. [29] and Alnagb et al. [30]
highlight the potential of ML models to enhance IRI predictions and support sustainable
and efficient pavement management.

Alternatively, cutting-edge machine learning models can be deployed that may include
the dependence of pavement evaluation metrics on other parameters. This information can
be utilized to predict the IRI of roads in the future by analyzing the data gathered from
the road. The implementation of the “You Only Look Once (YOLO)” approach on Indian
roads has demonstrated promising outcomes in identifying potholes using deep learning
methods [31].

Another compelling type of prediction model is those based on GCNs. A GCN is a
category of neural network designed to work with graph-structured data. It is particularly
effective for analyzing data represented as graphs, where nodes denote entities and edges
signify relationships between them. However, this model has not been utilized widely
for the prediction of road pavement performance [32]. Therefore, the current aimed to
enhance the traditional IRI prediction model by utilizing a GCN that incorporates spatial
relations from neighboring sections. Additionally, several factors impacted the IRI model.
The following paragraphs will describe the importance of each of these parts and how they
have influenced published research.

3. Data Collection
3.1. Data Description

The current study utilized data from the Department of Highways, Thailand, repre-
senting the overall pavement conditions of the national highways. The data were organized
into 3023 highway sections, covering approximately 104,606 km in both directions. On
average, the length of each section was 34.6 km. There were 2650 sections with asphalt
pavement, with their associated IRI values and covering approximately 49,275 km, as
shown in Figure 1.
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Figure 1. Geolocations of all asphaltic surface highway sections considered in this study in Thailand,
indicated by orange lines.

These data were collected annually using pavement inspection equipment called a
transverse profile logger and the laser crack measurement system, accounting for approx-
imately 30% of the total extent of the national highways. The average IRI value in the
entire network was approximately 2.45 m/km with a range of 0.25-9.50. The box plots
in Figure 2 illustrate the IRI values for six road hierarchies: national highways, regional
highways, provincial highways, district highways, motorways, and connectivity links.
The values shown in Figure 3 are the maximum, minimum, and median for each road
hierarchy, respectively.
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Figure 2. IRI data are grouped by road hierarchy.
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The dataset included information on surveyed pavement data that had been inspected,
as well as road geometries, such as IRI, pavement distress, surface type, and road hierar-
chy. Additionally, supplementary data were obtained: minimum temperature, maximum
temperature, and precipitation from the Thai Meteorological Department; annual average
daily traffic (AADT) from the Department of Highways; and the roadwork maintenance
schedule log.

3.2. Road Maintenance Data

The IRI values were examined that had been obtained from the regular pavement
performance surveys conducted on the road network in Thailand. These surveys were
carried out at specific times following road maintenance activities. However, the data
collection in this research spanned only four years (2019-2022, inclusive), resulting in a low
number of road maintenance activities and the distributed road work data in each type
and region, as shown in Figure 3. There are five types of road maintenance that are located
on asphalt pavement: asphalt seal coating (22100), asphalt overlay (22200), major repair
of asphalt pavement (23200), which involves addressing damage to the base, subbase, or
subgrade layers by removing the deteriorated material and replacing it with new material,
followed by resurfacing, asphalt hot mix recycling (23300), and rehabilitation of asphalt
pavement (24100). The total number of road maintenance records amounts to 10,859 records
over the four years, which is shown in Figure 4.
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Figure 4. The number of road maintenance records each year.
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4. Data Preparation

This section explains how the traffic data and other parameters were handled prior to
their use in the model development. There were four steps in processing these data, with
the details of each step described in the following sections.

4.1. Road Segmentation

The sections were divided into 100 m segments, resulting in 1,087,989 segments with
IRI values for the asphalt pavement, spanning the period of 2019-2022.

4.2. Data Cleaning

Before using the data to develop the IRI model, it was important to properly handle
anomalous data. Specifically, unreasonable cases were identified, such as instances where
the IRI increased in sections undergoing road maintenance or decreased in sections without
road maintenance. These issues arose because certain maintenance activities were not
recorded in the database; thus, these records were removed before utilizing the data in
model development. Additionally, sections that lacked IRI data for 2022 (the year used
as the target value) or had data only for 2022 but not for other years were also removed.
Approximately 30% of these data were removed during the data cleaning phase.

4.3. Attribute Coding

The dataset used in this study included various numerical, binary, and categorical
attributes relevant to predicting the international roughness index (IRI). The IRI_[year]
attribute served as both a feature and target variable, with values from 2019 to 2021
used as features and 2022 as the target. The data were split into training (80%) and
test (20%) sets, ensuring equal representation by beta index, region, and an 80/20 split
based on total distance. Table 1 provides a summary of key data attributes, including
indicators of road distress and climate variables like monthly temperature (m[01]temp_min
to m[12]temp_max) and monthly precipitation (m[01]rain_total to m[12]rain_total) to
capture weather effects. Categorical variables were converted into dummy variables, such
as PLAN_CODEJID], to indicate maintenance activities and road hierarchy, while binary
variables like IND_IRI[year] and IND_AC][distress type][year] flagged missing IRI or road
distress data for each year. RW_INSP_[year] indicates whether maintenance occurred
before the IRI inspection.

Table 1. Data attributes.

Feature Description Unit Feature Type
IRI_[year] IRI m/km Numeric
m[Ol]_temp_m}n Minimum temperature in each month °C Numeric
m[12]_temp_min
m[01]_temp_max Maximum temperature in each month °C Numeric
m[12]_temp_max
m[01]_rain_total ey .
m[12]_rain_total Total precipitation in each month mm Numeric
PLAN_CODE_J[ID] Road maintenance ID - Categorical
IND_IRI_[year] Missing data indicator for IRI - Binary
IND_AC_[distress type]_[year] Missing data indicator for road distress - Binary
HIER_[number] Road hierarchy - Categorical
RW_INSP_[year] Ind%cator fgr road maintenance occurring before ) Binary
IRI inspection
AADT_J[year] Annual average daily traffic veh/day Numeric
TRUCK _[year] Proportion of trucks % Numeric
I[\}I,galﬁ—INSP—END_ Number of days from inspection date to end of year day Numeric
NUM_INSP_RW_ Number of days from latest day of inspection to .
day Numeric

[year]

earliest road maintenance




Sustainability 2024, 16, 9805

7 of 18

Additional features included HIER_[number] for road hierarchy, AADT_|[year] for
annual traffic volume, and TRUCK_[year] for the proportion of trucks, which are crucial for
understanding pavement wear. Maintenance-related features, such as RW_INSP_[year] and
NUM_INSP_END_[year], captured the timing of maintenance and inspections, enabling
an in-depth analysis of spatial, temporal, and maintenance influences on IRI.

4.4. Data Normalization

Data normalization is required because various types of data used for model predic-
tions have differing magnitudes and units. This process transforms the data into a more
consistent and standardized range. To achieve this, the means and standard deviations
were computed from the training dataset and applied to Equations (1) and (2) for both the
training and test datasets, resulting in a normalized dataset.

Xtrain — Wtrain
Ztrain = o 1)
train
Xtest — Htrai
Zhost = —test — Htrain 2)
Otrain

where z represents the standardized value, x represents the observed value of the feature,
such as IRI or road distress, y represents the mean value for the feature, and ¢ represents
the standard deviation of the feature.

4.5. Input Data Transformation

In various models, there might be different input formats, thus transforming the data
into the correct format for each model is necessary. DNNs are particularly effective for
handling organized tabular data arranged in rows and columns. On the other hand, GCNs
are specifically designed to process data organized in the form of graphs. In a graph,
nodes symbolize entities, edges denote relationships, and both nodes and edges can have
associated features. The details of input data for each model are described below:

DNN input data are arranged in a tabular format, where each row corresponds to one
road segment and each column corresponds to a feature. Therefore, these data for DNN
models can be used in the existing tabular format after creating a format with three-year
rolling window formats.

In graph theory, nodes typically represent target objects, while edges indicate the
relationships between them. For road network selection, where the target object is a road,
using a dual representation that treats roads as nodes is likely to give better results. In
addition, GCNs primarily aggregate node features rather than edge features. Therefore, in
the current study, the road network was simplified into a dual graph, as shown in Figure 5,
while the features of road network selection were reframed as node features in the GCN
model [33].

Road network Road section Dual graph
Road section 0 e e

\ 1 3 8
Link between
s road sections

9 4 10 7- e | e

Figure 5. Input data for GCN model.
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5. Model Development

In this section, the DNN was developed to predict the IRI in the highway sections. The
contents of this section cover the DNN model used in this research, model performance
measurement, and hyperparameter optimization.

Deep learning was applied to predict the IRI values using DNN and GCN models,
utilizing the data related to the surface conditions of the national highways in Thailand
from 2019 to 2021. As the model was based on supervised learning, the IRI values from
2022 were used as labels. All input data were processed into a format suitable for training
the DNN and GCN models. Finally, the prediction performance of the IRI values obtained
from both deep learning models was compared across the entire network and in selected
provinces. The detailed steps of the procedure are as follows.

5.1. Deep Neural Network

The DNN was fully connected and feedforward in type. Models of the DNN were
developed as basic mathematical models defining a function 6 : Z — Y, or a distribution
over Z, or even both Z and Y. Here, Z represents the set of contextual factors and Y
represents the future IRI value to be predicted. Assuming z is the daily vector of contextual
factors, z € Z, the neuron network function f(z) can be described as a combination of
function g(z), while the function of each layer can be broken down into other functions.
According to the definition of the neural network function, it is simple to design a network
structure with arrows showing the connections between functions. The nonlinear weighted
sum is a function that is often used, as shown in Equation (3):

f(z) = K(Zwigi(z)) 3)

where w; represents the weight parameter of g;, g; denotes a specific function within the
set ¢ = 9(91,82,---,8i), and K is a predetermined function, commonly known as the
activation function, such as sigmoid, softmax, or rectifier (ReLU). An essential characteristic
of the activation function is its ability to provide a smooth transition, as input values vary.
The current study used the ReLU function K(z) = max(0, z) for K, which was capable of
generating nonlinear values and maintaining non-negativity. The architecture of the DNN
models in this research is shown in Figure 6.

INPUT

IRI
(2019-2021) R

HIDDEN LAYER

RD_AC Y
(2018-2021) X . . . . OUTPUT
AADT AR
(2019-2021) O A ) O
XX IRI
%TRUCK ' (2022)
(2019-2021) 2 = =
9290080

XX J
(2019-2021)

Figure 6. Architecture of DNN model.

Given input nodes (z; € Z) and only one output node, the predictor, which can be
defined as § € Y, is shown in Equation (4):

j=zW+b (4)
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where z represents the contextual input factor, z € RY = Z, W denotes the weight parame-
ter, and b signifies the bias term. If w and b are assigned distinct interpretations and ranges,
the formula can be extended to represent the entire neural network, individual layers,
or even each neuron within the network. In this approach, a group of units computes a
weighted sum based on inputs from the previous layer, which is then passed through a
nonlinear function. Upon feeding the contextual factor vector into the network, the internal
state (activation) of neurons and layers adjusts in response to the input, ultimately resulting
in predictions based on these factors and activation functions. The network is structured
by linking the output of specific neurons to the input of others, thereby forming a directed,
weighted graph. Both the weights and the activation-computing functions can be adjusted
through a process called learning, governed by a learning rule [34].

At each node of a neural network, multiple nonlinear regressions were applied. Within
a single layer, the inputs for each node are formed through the combination of nodes from
the preceding layer. Similarly, for nodes in subsequent layers, inputs are composed of nodes
in varying proportions dictated by their respective coefficients. The amalgamation of inputs
across different layers is seen as playing a pivotal role in DNNs, with errors substantially
mitigated. A clear definition is required of the loss function L before commencing training
of the forecasting model and determining the values for W and b. The loss function is
crucial in machine learning because it informs how much the solution differs from the best
possible solution for the problem to be considered. This function can be written as shown
in Equation (5):

Lw.9) = gly =3I = 5 Iy~ )P ®)
where y represents the actual value, § stands for the predicted value, and z denotes
a vector of contextual factors across a given input training set. Backpropagation is a
technique used to compute the gradient of the loss function (which signifies the associated
cost of a particular state) concerning the weights of DNN. The computational expenses
incurred during the backward pass (BP) are essentially the same as those of the forward
pass (FP). The process involves iteratively conducting both forward and backward passes
until an acceptable level of performance is achieved [35]. The weight updates through
backpropagation can be accomplished using stochastic gradient descent, as shown in
Equation (6):

wi(t41) = wyt) + 3 +20) ©

where 77 represents the learning rate, and ¢(t) stands for a stochastic term. The selec-
tion of the loss function is influenced by various factors, such as the learning approach
and activation function. Simultaneously, this process can also be utilized to update the
parameter b.

5.2. Graph Convolutional Network

GCNss are semi-supervised models that can process graph structures. They represent a
development from CNNSs in the field of graphs. GCNs have achieved major advancements
in various applications, including image classification [36], document classification [37],
and unsupervised learning [38]. The convolutional methods in GCNs involve spectrum and
spatial domain convolution [36]. The current study applied the former method. Spectral
convolution is defined as the outcome of the product between the signal x on the graph and
the filter go(L), which is constructed within the Fourier domain of gg(L) * x = Ugg (UTx),
where 0 represents a model parameter, L stands for the graph Laplacian matrix, U denotes

the eigenvector of the normalized Laplacian matrix L = Iy — D~2AD~: = UAUT, and
UTx signifies the graph Fourier transformation of x. Additionally, x can be elevated as
X € RN*C where C denotes the number of features.

With the characteristic matrix X and adjacent matrix A, GCNs can substitute the
convolutional operation found in previous CNNs by executing the spectrum convolutional
operation. This operation considers the graph node and the adjacent domains of nodes
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to grasp the spatial traits of the graph. Furthermore, a hierarchical propagation rule is
employed to overlay multiple networks. A multilayer GCN model as described in [38] can
be represented as shown in Equation (7):

-

2

_1
H*) =D "AD "HDoD) )

where A = A + Iy represents an ad]acency matrix with self-connection structures, Iy is

an identity matrix, Disa degree matrix, D = Y A,], H" e RN*! denotes the output of
layer [, 6() stands for the parameter of layer [, and o (-) represents an activation function
used for nonlinear modeling. Typically, a two-layer GCN model, as outlined in [38], can be

presented as shown in Equation (8):
f(X,A) = o(AReLU (AXWy) W) (8)

where X serves as a feature matrix; A represents the adjacency matrix; and A = D "AD °
constitutes a preprocessing step, where A=A + Iy stands as the adjacency matrix of
graph G with a self-connection structure. Wy € R’*H stands for the weight matrix from
the input layer to the hidden unit layer, where P denotes the time length and H indicates
the number of hidden units. W; € RF*T denotes the weight matrix from the hidden layer
to the output layer. f(X, A) € RN*T indicates the output with a forecasting length of T,
and ReLU() stands as a common nonlinear activation function.

GCNs can be used to encode both the topological structures of road networks and
the attributes of road sections concurrently. This is achieved by discerning the topological
relationship between the central road section and its surrounding road sections, thereby
capturing spatial dependence. In summary, this study acquired an understanding of spatial
dependence through the implementation of the GCN model [38]. The architecture of GCN
in this study is shown in Figure 7.

HIDDEN LAYER HIDDEN LAYER

i seseatr Aot ]
| » > . » 0
i ; 1
\ J . {—/'

Node Features Node Predictions

{IRI2019-2021++XX2010-2021 | I - (IRI_2022)
Yl Yl

Figure 7. Architecture of GCN model.

ga

5.3. Importance of Features

Shapley Additive Explanation (SHAP), introduced by Lundberg and Lee [39], has
gained popularity as a method for interpreting machine learning model predictions. SHAP
is grounded in cooperative game theory [40], where the contributions of individual players
(features) to the overall outcome (predictions) are evaluated. The method assigns each
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feature a Shapley value, which represents the average marginal contribution of that feature
across all possible combinations of features.

The underlying principle of SHAP feature importance is straightforward: features with
larger absolute Shapley values are considered more important for the model’s predictions.
To determine global feature importance, the average absolute Shapley values for each
feature across the dataset are calculated using the formula as shown in Equation (9) [41].

10
=

)| ©)

where I; is the average of SHAP values j, 7 is the total number of samples, and ¢(i) j represents
the SHAP value for feature j in sample i.

After these importance scores are computed, the features are sorted in descending
order of importance, and the results are visualized.

5.4. K-Fold Cross-Validation

K-fold cross-validation is a widely adopted technique for evaluating the performance
of predictive models. In this method, the dataset is partitioned into k equal subsets or folds.
The model is trained on k-1 folds and validated on the remaining fold. This process repeats
k times, with each fold serving as the validation set once, while the other k-1 folds are
used for training. The final model performance is then computed as the average across
all k iterations, yielding a robust estimate of the model’s accuracy and generalizability. In
this study, 5-fold cross-validation was chosen to balance bias and variance, as empirical
research has shown that 5-fold cross-validation often yields stable performance estimates
with moderate computational cost [42,43].

5.5. Model Performance Measurement

The performance evaluation of each prediction method was based on the following
common indicators: the mean absolute percentage error (MAPE), the mean absolute error
(MAE), and the coefficient of determination (R?). MAPE indicates the relative accuracy
and percentage deviation of estimations, whereas MAE provides the average magnitude of
errors, regardless of their directions. R? represents the proportion of the variance in the
target that is explained by the features in the model, with higher values indicating a better
fit. The three metrics are defined in Equations (10)-(12), respectively, as follows:

n 1
MAPE = 12 Yi=¥ilx100 (10)
izl Yi
MAE = Dyz 7il (11)
Ny — 1.
R2—1_ i (i {1)2 (12)
Y (vi—v)

where 7 is the number of testing samples, y; is an observed IRI value, and §; indicates a
predicted IRI value output by the predicted method.

The standard interpretation of MAPE for IRI prediction models is described in [44]. In
the context of this matter, MAPE values of less than 10 percent are categorized as “highly
accurate”, while MAPE values ranging between 10 and 20 percent are characterized as

“good”. Additionally, if the MAPE values fall within the range of 20-50 percent, they are

classified as “reasonable”, and any value below 50 percent is designated as “inaccurate”.

5.6. Hyperparameter Calibration and Optimization

This section describes hyperparameter tuning and optimization. Five parameters
required optimization in the DNN and GCN models: number of hidden layers, number



Sustainability 2024, 16, 9805

12 of 18

of hidden nodes, learning rate, epoch, and batch size. The optimal hyperparameters were
determined based on a repeated trial-and-error approach and selecting the hyperparameters
that resulted in the greatest model performance. These chosen hyperparameters were used
in the final DNN and GCN model and are presented in Table 2.

Table 2. Hyperparameter values following tuning and optimization.

Hyperparameter Value
Number of hidden layers 2
Number of hidden nodes 100

Learning rate 0.001
Epoch 30
Batch size 64

6. Results

The feature ranking for the DNN model was analyzed in the model development
section. Figure 8 presents the top 10 most relevant features along with their respective
importance. Notably, IRI values from previous years played a crucial role in IRI prediction,
especially those from the previous two years. The IRI from the previous year was of less
importance than that from two years prior due to a lower data volume in that year, likely
caused by COVID-19, followed by the influence of road hierarchy and temperature.

2

3
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m3_temp_max_2020- -
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IND_UCRACK_2021+ -

o
'S
o
3}
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Average SHAP

o
(=}
o

Figure 8. Most relevant features and their importance for IRI prediction using the SHAP method.

The model results were divided into two types: performance across the entire network,
using data from the full network, and performance within specific areas, selected from
provinces with varying continuous spatial data as identified by the beta index (8).

6.1. Comprehensive Network

Table 3 compares the performance of the DNN, GCN, and multiple linear regression
(MLR) models, using the same features as the DNN and GCN, based on three common
metrics (MAPE, MAE, and R?) for the entire network.

Table 3. Performance of IRI prediction models in entire network.

MAPE MAE 2
Model %) (m/km) R
DNN 15.12 0.414 0.665
GCN 15.23 0.432 0.682

MLR 17.14 0.445 0.641
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Based on the results from all models for the entire network of IRI data, the DNN and
GCN models outperformed the traditional model, MLR. The DNN model had values for
MAPE, MAE, and R? of 15.12%, 0.414 m/km, and 0.665, respectively, while the GCN model
had values of 15.23%, 0.432 m/km, and 0.682, respectively.

The performance levels of both models were similar, with the DNN option producing
slightly better performance for all parameters. This was likely because the IRI data consist-
ing of the entire network, links, and nodes, was not highly continuous. When combined
on a large scale across the entire network, the DNN model produced results that were
comparable to those for the GCN model.

6.2. Specific Areas

From the test dataset, specific areas were selected to assess the model’s performance.
The selection was based on provinces that consist of different connectivity ratios. The
measure of graph connectivity is given by the beta index (f3), which measures the density
of connections and is defined as shown in Equation (13) [45].

p=v (13)

where E is the total number of edges (links between road sections) and V is the total number
of nodes (road sections) in the network. An example of beta index calculation is shown in
Figure 9.

Node
Link @
N
Province A
& @ :-s
V=6

@ B=8/6=13
o<« ©

Figure 9. Example of beta index calculations for each province.

The levels of the beta index are categorized by the 25th percentile and 75th percentile
of all provinces’ beta indexes in the dataset, resulting in the following classifications: low
index (less than 0.64), medium index (between 0.64 and 0.67), and high index (greater than
0.67). The specific areas were shown by the color-filled polygons in Figure 10.

Summarizes the performance of the DNN, GCN, and MLR based on three common
metrics (MAPE, MAE, and R?) in specific areas. It was found that, in certain provinces,
the DNN outperformed the GCN, while in other provinces, the GCN demonstrated su-
perior performance compared to the DNN. Notably, most of the DNN and GCN models
consistently outperformed the MLR model across all provinces and are presented in Table 4.

Figure 11 compares the beta index, representing network connectivity, with the MAPE
difference between DNN and GCN models. Positive values on the y-axis indicate better
performance by GCN, while negative values favor DNN. Contrary to expectations, no
clear trend shows GCN outperforming DNN as the beta index increases from 0.57 to
0.75. Although higher connectivity was expected to enhance GCN'’s ability to capture
spatial dependencies, the MAPE difference fluctuates across beta index values with no
consistent pattern.
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Figure 10. The geographic locations of the selected provinces in the test dataset.
Table 4. Performance of IRI prediction models across provinces in the test dataset.
Provi B DNN GCN MLR
No. ;’;’I‘;‘:e Inilfx MAPE  MAE R MAPE  MAE gz MAPE  MAE R
(%) (m/km) (%) (m/km) (%) (m/km)

1 Bangkok 0.63 12.75 0.449 0.648 13.84 0.493 0.653 13.87 0.493 0.592

2 Chon Buri 0.61 15.15 0.476 0.638 18.25 0.621 0.495 17.67 0.522 0.626

3 Rayong 0.66 17.08 0.398 0.776 16.46 0.409 0.793 24.26 0.492 0.735
4 Trat 0.67 14.34 0.467 0.476 19.41 0.602 0.242 16.61 0.473 0.579

5 Sa Kaeo 0.75 14.32 0.412 0.428 15.48 0.459 0.157 15.64 0.421 0.465

6 Ubon . 0.68 14.74 0.378 0.778 13.04 0.357 0.796 17.68 0.434 0.757

Ratchathani

7 Roi Et 0.69 16.34 0.393 0.765 13.84 0.371 0.739 17.79 0.419 0.733

8 Phrae 0.63 12.84 0.308 0.825 9.34 0.228 0.820 13.43 0.305 0.826

9 Kanchanaburi 0.62 15.14 0.370 0.509 14.15 0.366 0.389 16.65 0.396 0.470
10 Nakhon 0.64 12.50 0.288 0.764 12.20 0.298 0.544 13.59 0.294 0.732

Pathom
11 Nakhon Si 0.68 1762 0465 0599 1658 0449  0.684 1879 0447  0.686
Thammarat

12 Surat Thani 0.69 16.13 0.409 0.589 18.63 0.477 0.533 17.44 0.415 0.632
13 Chumphon 0.67 14.09 0.485 0.504 14.96 0.517 0.454 14.21 0.458 0.587
14 Satun 0.69 12.05 0.357 0.358 13.16 0.411 0.069 14.33 0.377 0.465
15 Phatthalung 0.67 14.51 0.496 0.445 17.17 0.544 0.353 14.59 0.448 0.599

Remark: gray shading represents the models with lowest MAPEs.
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Figure 11. Scatter plot between the beta index and the difference in MAPE between the DNN and
GCN, where one data point represents data from one province.

This variability may stem from the dataset’s limited beta index range (0.57 to 0.75)
and the predominantly linear structure of the national highways. Figure 12 highlights
that intercity highways generally exhibit low connectivity, with beta indices around 0.75.
Additionally, gaps in IRI data due to non-annual data collection further reduce effective
connectivity, limiting GCN’s advantage.

High connectivity

E=6
—) V=4
B=3/3=15
Linear connectivity
1 2 3 4 E=3
e o & -—) @ 2 © O v-:
B=3/4=075
No connectivity
o o o oo O 06 © Vo3
—) Boop=0

Figure 12. Various road network types with different beta indices.

These constraints suggest that DNN performs better for low-connectivity road net-
works, while GCN might be more effective in highly connected networks, such as urban
systems. Thus, for linear or sparsely connected highway networks like those in this study,
DNN remains a suitable choice, with GCN’s potential benefits becoming pronounced only
in denser networks.

7. Discussion and Conclusions

Advanced deep neural networks are increasingly used in traffic prediction, yet few
studies have integrated spatial and temporal dependencies for IRI modeling. This study
addresses this gap by applying deep learning to predict IRI values using DNN and GCN
models, utilizing surface condition data from Thailand’s national highways (2019-2021).
IRI values from 2022 served as labels, with all input data processed for training the models
based on supervised learning.



Sustainability 2024, 16, 9805

16 of 18

The DNN and GCN models were trained using a trial-and-error approach to optimize
their hyperparameters (hidden layers, hidden nodes, learning rate, epochs, and batch
size) for the best performance. Key features influencing the prediction of the IRI included
the previous year’s IRI, highway hierarchy, and climate factors. The previous year’s
IRI was the most significant, highlighting the importance of historical data in modeling.
Highway hierarchy affected roughness due to varying traffic loads, while climate factors
like temperature influenced pavement degradation.

Each model’s performance was evaluated using MAPE, MAE, and R? was compared
with the traditional MLR model. The research results were categorized into two types:
model performance across the entire network and model performance within specific areas.
In analyzing the comprehensive network, both the DNN and GCN models outperformed
the MLR model, likely due to their ability to capture complex, nonlinear patterns in the
data that the linear MLR model could not. The DNN and GCN models showed similar
performance across the entire network, indicating that both can generalize well when
applied to a wide-ranging dataset. DNN and GCN each outperformed the other across
different beta index levels, suggesting that the beta index in this study may not be high
enough to reveal a clear distinction between the two models. This outcome is likely
influenced by the structure of the national highway network. However, the results indicate
that DNN alone was effective for road networks with a beta index below 0.74. Future
research should apply the GCN to road networks with higher connectivity levels, where
the model’s strengths in spatial representation may lead to more pronounced performance
gains over the DNN, thus enabling a clearer distinction between the capabilities of the GCN
and DNN models in road network analysis. Moreover, as previous studies [15,16] have
shown, the GCN generally performs better in predicting traffic data. It is also important to
consider other factors, such as the connectivity index.

Nevertheless, data limitations included the aggregation of data over the entire year,
with some data potentially collected at different times throughout the year. Another
limitation was that certain IRI values in some years decreased despite no road maintenance
occurring, or increased even after maintenance, due to IRI measurements either not being
collected immediately after road maintenance, not being recorded in the database, or being
recorded in a different database that was not used in this study. To improve the accuracy
of IRI predictions, future researchers or agencies should collect data in a more detailed
and systematic way. For example, gathering IRI data immediately after road maintenance
and at regular intervals afterward (e.g., semiannually or quarterly) would help track road
quality changes over time and provide a better understanding of road deterioration. This
approach would make the data easier to analyze and more useful for predicting road
surface conditions effectively.
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