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Abstract: Automated Driving (AD) has been receiving considerable attention from industry, the
public, and researchers for its ability to reduce accidents, emissions, and congestion. The purpose of
this study is to extend the standardized Local Dynamic Map (LDM) by adding two new layers, and
develop efficient and accurate algorithms designed to enhance AD by exploiting the LDM coupled
with Cooperative Perception (CP). The LDM is implemented as a Neo4j graph database and extends
the standard four-layer structure by adding a detection layer and a prediction layer. A custom
Application Programming Interface (API) manages all incoming data, generates the LDM, and runs
the algorithms. Currently, the API can match detected entities coming from different sources, correctly
position them on the map even in the presence of high uncertainties in the data, and predict their
future actions. We tested the developed LDM with real-world data, which we collected using a
prototype vehicle from Centro Ricerche FIAT (CRF) Trento Branch—the supporting research center
for this work—in urban, suburban, and highway areas of Trento, Italy. The results show that the
developed solution is capable of accurately matching and predicting detected entities, is robust to
high uncertainties in the data, and is efficient, achieving real-time performance in all scenarios. From
these results we can conclude that the LDM and CP have the potential to be core parts of AD, bringing
improvements to the development process.

Keywords: Local Dynamic Map; Cooperative Perception; vehicle-to-everything; Automated Driving;
Automated Vehicle; Intelligent Transport System

1. Introduction

Road transport ensures the mobility of people and goods, although it still poses several
challenges. For instance, the European Union’s policies address, amongst other problems,
those of traffic congestion, safety, pollution and carbon footprint. The goal is to foster
sustainability of road transport which is de facto the most common means of displacement
in the EU [1]. One of the main research fields that is focused on these issues is Automated
Driving (AD), the goal of which is to deploy Automated Vehicles (AVs) to decrease accidents,
emissions, and congestion, amongst other things. Examples of AVs exist [2], but they are
still far from a globally adoptable solution mainly due to their limitations in complex
environments (e.g., crowded urban areas, emergency manoeuvres). Coping with the real
world is one of the biggest challenges for an AV, and current research suggests that the
solution could be the Cooperative Intelligent Transport Systems (C-ITSs). These systems are
based on communication between vehicles, other road users, road infrastructure as well as
back-end Information and Communication Technologies (ICT) systems and services, which
cooperate with one another, exchanging information (e.g., positions, detections, warnings,
recommendations). The enabling technology is vehicle-to-everything communication

Sustainability 2024, 16, 1306. https://doi.org/10.3390/su16031306 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16031306
https://doi.org/10.3390/su16031306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3774-4137
https://orcid.org/0000-0001-8098-7965
https://doi.org/10.3390/su16031306
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16031306?type=check_update&version=2


Sustainability 2024, 16, 1306 2 of 26

(V2X) which can be performed by the vehicle either directly with local elements such as
other vehicles (V2V), road side units (V2I), vulnerable users’ devices (V2P), or indirectly
through internet-based services dispatching messages to/from users (V2N). With such
pre-conditions, V2X enhances and extends the AV local sensing with information such as
other vehicles’ and vulnerable road users’ motion; static, temporary, and dynamic signs;
traffic light phases and related timing; local high definition (HD) map elements and map
changes; predicted hazards. Amongst the recently standardized messages to share V2X
data, the Collective Perception Message (CPM) is an outstanding means for AV to share not
only their position but also their sensed objects. Within AVs, one way to ingest and manage
all this data, and in particular Collective Perception (CP) data, is through the use of the
Local Dynamic Map (LDM), which is essentially a database storing information about the
environment of interest.

The concept of the LDM was born from the cooperation between the SAFESPOT [3]
and CVIS projects [4]. In particular, the LDM was a product of the SINTECH project,
a SAFESPOT subproject, and was developed to store static/dynamic sensor and communi-
cation information after an appropriate data fusion process. The LDM was structured as a
geo-referenced local database in which each node contained the aforementioned data to be
served to all the applications that needed it. After these projects ended, the LDM was first
introduced in the Technical Report ETSI TR 102 863 [5] in 2011 and then standardized in
the European Standard ETSI EN 302 895 [6] in 2014 by the European Telecommunications
Standards Institute (ETSI). The technical report defines the LDM as a

“conceptual data store which is embedded in an ITS (Intelligent Transport System)
Station (ITS-S) and which contains topographical, positional and status informa-
tion related to ITS-Ss within a geographic area surrounding the host station”

and was organized in a four-layer structure that stores data with different levels of dynamicity:

• Permanent static data (e.g., road topography);
• Transient static data (e.g., position of traffic signs);
• Transient dynamic data (e.g., temporary speed limits due to roadworks);
• Highly dynamic data (e.g., other ITS-Ss information).

Research on the LDM can be divided into two main branches: research that built
on top of the existing standardized structure, and research that did not. Regarding the
former, the most notable works are from Hideki Shimada et al. [7], who followed ETSI
guidelines to implement the LDM; Nicole El Zoghby et al. [8], who increased the Field of
View (FoV) of communicating vehicles by fusing the fourth layer of shared LDMs; Fatima
Almheiri et al. [9], who paved the way to higher levels of AD by extending the LDM with
additional layers for information gathered externally; Carlos Mateo Risma Carletti et al. [10],
who extended the standard LDM with their Platoon LDM, a shared database system that
efficiently manages data within autonomous vehicle platoons, reducing redundancy and
computational demands. A greater amount of research has instead focused on modifying
and redefining the standardized LDM. The main works include Bart Netten et al. [11], who
saw ETSI LDM as primarily meant for in-vehicle applications and proposed DynaMap,
a LDM specialised for roadside applications; Mikel García et al. [12], who presented a
data model for the LDM which is both scalable and flexible using a Neo4j graph database
and OpenLABEL as a common data format; Maike Scholtes et al. [13], who developed a
six-layer LDM that increases the granularity of the information and enriches its contents;
Kun Jiang et al. [14], who proposed a seven-layer structure that solves the lane-level map
model and route planning problems.

The LDM represents a great tool to efficiently store the data needed and collected by
an AV, but it is limited to remaining local to the ITS it runs on. To overcome this issue, the
idea is to combine it with CP, allowing ITSs to share data and combine their respective local
information. CP is defined by ETSI in [15] as

“the concept of actively exchanging locally perceived objects between different
ITS-Ss by means of V2X communication technology”
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By means of CP, ITS-Ss can share information to be merged in their LDM, resulting
in wider FoVs and more accurate detection, amongst other things, without the need for
prohibitively expensive sensor systems.

Significant contributions to CP research include the following: Seong-Woo Kim et al. [16–18],
who created a framework to extend perception beyond line-of-sight, a cooperative driving system
using CP, and methods for improving AD safety and smoothness; Pierre Merdiganc et al. [19],
who integrated perception and vehicle-to-pedestrian communication to enhance Vulnerable Road
Users’ (VRUs) safety; Aaron Miller et al. [20], who developed a perception and localization
system allowing vehicles with basic sensors to leverage data from those with advanced sensors,
thus elevating AD capabilities; Xiaboo Chen et al. [21,22], who proposed a recursive Bayesian
framework for more reliable cooperative tracking, and a robust framework for multi-vehicle
tracking under inaccurate self-localization; Adamey et al. [23], who introduced a method for
collaborative vehicle tracking in mixed-traffic settings; Francesco Biral et al. [24], who demonstrated
how the SAFE STRIP EU project technology aids in deploying the LDM for Cooperative ITS
safety applications; and Stefano Masi et al. [25], who developed a cooperative roadside vision
system to enhance the perception capabilities of an AV; Sumbal Malik et al. [26], who highlight the
need for advanced CP to overcome challenges in achieving level 5 AD; Tania Cerquitelli et al. [27],
who discussed in a special issue the integration of machine learning and artificial intelligence
technologies to empower network communication, analysing how computer networks can become
smarter; Andrea Piazzoni et al. [28], who discuss how to model CP errors in AD, focusing on the
impact of occlusion on safety and how CP may address it; Zhiying Song et al. [29], who presented
a framework for evaluating CP in connected AVs, emphasizing the importance of CP in increasing
vehicle awareness beyond sensor FoV; Mao Shan et al. [30], who introduced a novel framework
for enhancing CP in Connected AVs by probabilistically fusing V2X data, improving perception
range and decision-making in complex environments.

The VeDi 2025 project (Mise—Ministero dello Svilippo Economico, actually Ministero
delle imprese e del, made in Italy) used V2X communication for manoeuvre negotiation
between connected and Automated Vehicles. Amongst the enabling technologies, VeDi
2025 studied Local Dynamic Maps as a means to efficiently store perception data within the
vehicle and then make those data available to applications. Given the need for Automated
Vehicles to improve their awareness horizon, CPMs were used to enhance vehicle perception
beyond the sensors also considering that not all road users (e.g., vehicles, pedestrians) are
equipped with V2X communication. Using CPM, as demonstrated, e.g., in 5G CARMEN,
the ego vehicle can be aware of the surrounding environment by means of its own sensors
and shared sensors’ data.

The purpose of this study, carried out within the VeDi 2025 project, is to add two lay-
ers to the standardized LDM, and develop efficient and accurate algorithms designed to
enhance AD by exploiting the LDM coupled with CP. To achieve this, we designed, im-
plemented, and tested a six-layer LDM that extends the standardized four-layer structure.
The fifth layer maps detected non-connected entities (e.g., VRUs), whilst the sixth maps
the predicted future actions of such detected entities. The LDM is implemented as a Neo4j
graph database with a custom Application Programming Interface (API), developed with
the Python language, that manages it and implements the algorithms. Finally, the imple-
mentation is tested on real-world data which we collected with a prototype vehicle from
Centro Ricerche FIAT (CRF) in the urban, suburban, and highway scenarios of the Trento
area, Italy. Aside from this brief introduction, the rest of the article is organized as follows:
Section 2 describes with sufficient detail the design, the implementation, and the testing
framework of the developed multi-layered LDM; Section 3 reports and interprets the results
obtained from the conducted tests; Section 4 discusses the developed solution analysing
the obtained results; Section 5 summarizes the main results, and discusses the possible
future works, concluding the article. The abbreviations used in this paper are listed in the
Abbreviations section at the end of the paper, just above the appendices.
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2. Materials and Methods
2.1. Design

This section describes the design of the developed LDM by discussing: the overall struc-
ture, the digital maps utilized, the collected real-world data, and the developed algorithms.

2.1.1. Structure

The developed LDM has the following six-layer structure (Figure 1).

Figure 1. Developed LDM six-layer structure.

In which each layer holds:

1. Termanent static data typically provided by a map data supplier (e.g., road topography);
2. Transient static data obtained during operation (e.g., position of traffic lights);
3. Transient dynamic data (e.g., traffic light signal phase),
4. Highly dynamic data (e.g., other ITS-Ss information);
5. Detection data (e.g., the position of a detected legacy vehicle);
6. Prediction data (e.g., the predicted future position of a detected legacy vehicle).

2.1.2. Digital Maps

The foundational two layers of the LDM consist of static data sourced from a digital
map provider. OpenStreetMap (OSM) was selected for this purpose because of its robust
community support, high-quality maps, and its compatibility with Python.

As detailed in [31], OSM maps are characterized by three primary elements: nodes,
ways, and relations. Nodes represent specific points of interest (such as traffic lights),
ways are sequences of nodes (like a road), and relations are combinations of nodes, ways,
and other relations (an example being a park). Additionally, each of these elements can be
further defined using tags.

2.1.3. Collected Real-World Data

We collected the real-world data with a prototype AV from CRF Trento Branch in
different scenarios covering the urban, suburban, and highway areas of Trento, depicted
in Figure 2. They were chosen based on features that would test the algorithms and
performance of the LDM on different levels of difficulty.
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(a) Urban scenario. (b) Suburban scenario. (c) Highway scenario.

Figure 2. Three different snapshots taken from OpenStreetMap [32]. (a) Urban scenario covering
part of the Trento urban area. (b) Suburban scenario covering part of the Trento suburban area.
(c) Highway scenario covering part of the Trento highway area. The red line in the images highlights
the path taken by the prototype vehicle.

Urban Scenario

The urban scenario, shown in Figure 2a, has a high number of tightly packed detected
entities, mainly pedestrians, but a road network with only 90° turns. Tracking pedestrians
is harder than tracking vehicles due to their smaller size, the limitations of the camera
to track grouped targets, and the uncertainties associated with the prediction of their
trajectories. Moreover, its OSM map has a high density of nodes and ways. These features
heavily test the capability of the match detection Algorithm 1 and of the entity positioning
Algorithm A5.

Algorithm 1 Match Detection

1: function MATCH_DETECTION(mk, Pk, m_rk−1, P_rk−1, dt) ▷ k omitted for clarity
2: for i = 0..length(m) do
3: for j = 0..length(m_r) do
4: m_rj, P_rj ← predict_state(m_rk−1j

, P_rk−1j
, dt)

5: m_ fij, P_ fij ← update(m_rj, P_rj, mi, Pi)
6: costij ← −log_likelihood(mi, m_ fij, Pi)
7: −log_likelihood(m_rj, m_ fij, P_rj)
8: end for
9: end for

10: best_matches← HungarianAlgorithm(cost)
11: m_out, P_out← unique(m_ f , P_ f , m, P, m_r, P_r, best_matches)
12: return m_out, P_out
13: end function

where m and mr are lists of local (i.e., from the ego vehicle) and received state estimates,
P and Pr are lists of local and received state estimated covariances, and dt is the prediction
time step.

Suburban Scenario

The suburban scenario, shown in Figure 2b, has a road network with some slight turns
to exit the main road, but few sparse detected entities. In addition, its OSM map was the
only one to contain roundabouts. These features heavily test the capability of the action
prediction Algorithm A3 and of the entity positioning Algorithm A5.

Highway Scenario

The highway scenario, shown in Figure 2c, has a high number of sparse detected
entities, mainly vehicles, and the road network only has slight turns to exit the highway. Its
OSM map is relatively simple, but contains roads that overlap at different altitudes. These
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features heavily test the match detection Algorithm 1, the action prediction Algorithm A3,
and the entity positioning Algorithm A5.

The data comprise information about the ego vehicle and the entities it detected,
and comes from sensors such as a Global Navigation Satellite System (GNSS) and cameras.
GNSS is the standard generic term for satellite navigation systems that provide geo-spatial
positioning with global coverage. Examples are Europe’s Galileo, the USA’s GPS, Russia’s
GLONASS, and China’s BeiDou. These data are pre-processed with MATLAB before being
used to make it more usable from Python. Processing includes reordering of the data and
Geodetic coordinates conversion to Earth-Centered Earth-Fixed (ECEF), amongst other
things. A complete description of the collected data can be found in Appendix A.

It is important to specify that some drift in the filtering system, caused by the challeng-
ing environmental conditions (e.g., mountains and tall buildings) in which we collected
the data, resulted in higher uncertainties than expected. Moreover, due to difficulties in
collecting data with more than one vehicle, this dataset does not include proper CP data,
only data coming from the ego vehicle. However, we overcame the absence of proper
CP data using past data present in the database, and the high uncertainties proved to be
useful in developing robust algorithms. Further details on these aspects are provided in
the following sections.

2.1.4. Algorithms

Hereafter, a brief explanation of the five algorithms developed to handle detected
entities is presented. They predict their next state and action, unequivocally match and
position them on the map, and avoid possible collisions.

Predict State

This algorithm predicts the next state of an entity using the prediction step of an
Extended Kalman Filter (EKF) [33] which uses an augmented quasi-constant turn dynamical
model which also estimates the longitudinal acceleration and the yaw rate; the details of
the dynamical model can be found in Appendix B.1.

Match Detection

This algorithm, which has been adapted from the one found in [20], unequivocally
matches detected entities between different time instants and data sources (i.e., AVs sharing
CP data). Hereafter, the steps the algorithm performs to achieve this are presented.

• It takes as input two lists of detected entities (i.e., state estimates and state estimated
covariances); one for the entities detected by the ego vehicle and one for every other
detected entity that needs to be matched (e.g., past data present in the database,
received data from other vehicles).

• Then, it makes sure to predict the received entities at the current time step using the
Predict State Algorithm 2.

• Afterwards, it fuses those estimates in pairs via the update step of a Kalman Filter
(KF) [33] which uses a linear measurement model; the details of the measurement
model can be found in Appendix B.2. The result is a matrix of fused pairs of estimates.

• Then, it computes a cost matrix by calculating the cost of each pair using the logarithmic
likelihood.

• Lastly, it determines the best matches using the Hungarian Algorithm [34] on that cost
matrix. If the cost of the best match is negative, the two estimates are considered to be
from the same entity; otherwise, they are not not.
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Algorithm 2 Predict State

1: function PREDICT_STATE(mk−1, Pk−1, dt)
2: mk, Pk ← EKF_predict(mk−1, Pk−1, dt)
3: return mk, Pk
4: end function

where mk is the state estimate at time step k, Pk is the state estimated covariance at
time step k, and dt is the prediction time step.

Action Prediction

Before explaining this algorithm, we first need to understand the basic concept that
supports it. It is built upon the concept of motion primitives and action selection [35].
Motion primitives are obtained from the solution of an Optimal Control Problem (OCP) that
minimises the longitudinal jerk, which is known to model human-like manoeuvres [35,36]
and also used to predict driver intention [37]. Their solution yields longitudinal trajectories
for space, velocity, acceleration, and jerk. The motion primitives are analytical polynomials
parameterised with initial and final states and few parameters associated with manoeuvre
urgency or completion time. Thus, they represent a family of manoeuvres and in this
work we used stop and pass manoeuvres At each time instant, multiple motion primitives
can be generated. To choose one (i.e., action selection), we used the minimal intervention
principle (i.e., Human-Directed jerk) which prioritises the solution with the lowest initial
jerk. The complete description of the motion primitives and action selection can be found
in Appendix B.3.

Now that the concept of motion primitives and action selection is clear, we can move
on to the Action Prediction algorithm. Due to the size of this algorithm, hereafter, only
a summary of its steps is reported; for the full version of the algorithm, please refer to
Appendix B.4.

• The input is a list of detected entities along with all the possible actions they could
take (e.g., turn left, go straight).

• For each possible action, a good approximation for the final distance s f is the length
of a clothoid that connects the starting point to the point of interest. Combining this
information with the initial conditions taken from the data (i.e., v0 and a0) we can
compute the stop motion.

• The velocity range can be estimated from a0. If it is positive, the entity is likely to
increase its final velocity. If it is negative, the entity is likely to decrease its final velocity.
Lastly, if it is zero, we can not make any assumptions about the final velocity. With the
estimate of the final velocity, we can heuristically assign a velocity interval based on
road regulations and the vehicle’s initial velocity.

• We directly compute the time range from the velocity range and the distance to the
point of interest. We can now compute the pass motion.

• The chosen motion is the one with the minimum initial longitudinal jerk.

Using only information on the longitudinal jerk is not enough to distinguish which
action would be more likely to be taken (e.g., turn right or go straight might have the same
initial longitudinal jerk). Therefore, we need to introduce information on the lateral motion
of the vehicle. Instead of complicating the OCP, we introduce a second weighting term—for
the action selection—based on the maximum lateral acceleration. A reliable estimate of
the lateral acceleration can be achieved by multiplying the longitudinal velocity profile,
squared, by the curvature of the clothoid representing the manoeuvre as mentioned earlier.
This second weighting factor ensures that the action most likely to be selected is the one
that minimizes both the initial longitudinal jerk and the peak lateral acceleration.

Collision Avoidance

Once we obtain the most likely actions the detected entities might take, we can use
them to predict possible future collisions with the ego vehicle. Due to the size of this
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algorithm, hereafter, only a summary of its steps is reported; for a full version of the
algorithm, please refer to Appendix B.5.

• Leveraging the fact that the database is a graph, find all map nodes that are an
intersection between the ego vehicle and the detected entities’ possible paths. The input
to the algorithm is a list composed of these nodes, data on the ego vehicle, and data on
the detected entities (e.g., velocity).

• A good approximation of the path length (i.e., s f ) can be computed by joining each
map node of the path using clothoids. With the path length we can compute the stop
motion for all the detected entities involved in the possible collision.

• The velocity and time ranges are computed in the same way as described in the action
prediction algorithm. We can now compute the pass motion for each detected entity as well.

• If the best motion primitive (i.e., the one with minimum initial jerk) is a stop motion,
then there should be no risk of collision. Instead, if the best motion primitive is a pass
motion, that primitive will be saved as a collision primitive.

• We can use the final time of the collision primitive to compute the velocity and time
ranges for the ego vehicle and evaluate stop and pass motions to avoid that collision.
The choice is once again made using the minimum intervention principle.

Entity Positioning

This algorithm positions an entity in the correct way by using only its absolute position
and its Course Over Ground (COG). It was developed to correctly position an entity even
in the presence of high uncertainties in the absolute position, when the closest way, in a
Euclidean distance sense, may not be the correct one. Due to the size of this algorithm,
hereafter, only a summary of its steps is reported; for a full version of the algorithm, please
refer to Appendix B.6.

Let us look at Figure 3. The black dots are map nodes, the orange dot is an entity,
the dashed green lines represent an imaginary segment between two map nodes (i.e., a
way), the dashed purple lines indicate which segment the entity is considered to be on,
the orange arrow is the direction of the entity (i.e., its COG). Let us now look at the two
nodes of the way the entity is on. The map node the entity is moving towards is considered
the node it is on, whilst the other node (i.e., the node it is moving away from) is the node it
was on. We can now move on to explaining the main steps of this algorithm.

• If the entity has already been positioned before, the perpendicular distance between
the entity and the way it is on is under 8 m, and has not yet crossed the map node it is
on, there is no need to reposition the entity.

• If the entity has already been positioned before, the perpendicular distance between
the entity and the way it is on is under 8 m, and has crossed the map node it is on, the
entity will be re-positioned to an adjacent way which is the one best aligned compared
to the vehicle COG.

• Otherwise, the entity needs to be positioned from scratch. To do so, the algorithm
retrieves the pair of map nodes that creates a way which is the closest and best aligned
to the entity’s movement. To make the two metrics comparable, they have been
normalized using the values of 4 m (i.e., the common width of a street) and 90◦ (i.e.,
the maximum angle between the entity COG and the way).

2.2. Implementation

In this section, we describe the implementation of the developed LDM by discussing:
the database used to implement the LDM and the API created to interface between the
database and the ego vehicle. The code of the developed LDM is available at https://github
.com/SebastianoTaddei/Multi-Layered-Local-Dynamic-Map-for-a-Connected-and-Auto
mated-in-Vehicle-System/tree/main (accessed on 16 January 2024).

https://github.com/SebastianoTaddei/Multi-Layered-Local-Dynamic-Map-for-a-Connected-and-Automated-in-Vehicle-System/tree/main
https://github.com/SebastianoTaddei/Multi-Layered-Local-Dynamic-Map-for-a-Connected-and-Automated-in-Vehicle-System/tree/main
https://github.com/SebastianoTaddei/Multi-Layered-Local-Dynamic-Map-for-a-Connected-and-Automated-in-Vehicle-System/tree/main
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2.2.1. Database

In terms of implementation, the LDM is essentially a database (DB). Amongst the
several types of DBs that exist, the graph DB model was chosen due to its effectiveness in
representing real-world scenarios. Neo4j (version 5.10.0.) (https://neo4j.com (accessed on
16 January 2024)), identified as one of the top software options for constructing a graph
DB, was our preferred choice due to its demonstrated performance, as noted in [12], and its
seamless compatibility with Python.

Figure 3. Schematic of a scenario for the entity positioning algorithm. The black dots are map nodes,
the orange dot is an entity, the dashed green lines represent an imaginary segment between two map
nodes (i.e., a way), the dashed purple lines indicate which segment the entity is considered to be on,
the orange arrow is the direction of the entity (i.e., its COG).

2.2.2. Interface between Database and Ego vehicle

The API has been developed completely in Python with the main tasks of creating
and managing the LDM. It is composed of three main files that handle the requests to the
Neo4jDB, the utility functions that to not query the DB, and the processing of incoming
data. Without entering the details, let us look at the API block diagram in Figure 4 to better
understand how it works.

Figure 4. API block diagram. Functions are reported in green, algorithms in purple, and external
elements, such as the DB, in blue.

https://neo4j.com
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At the top of Figure 4 we have incoming data which contain information on the ego
vehicle (e.g., position and velocity), on the connections (e.g., position of other AVs that share
information with the ego vehicle), and on the detected entities (e.g., any entity detected by
either the ego vehicle or another connected entity). Afterwards, the map information is
loaded (through the osmfunction) based on the ego vehicle position; the map data goes
directly into the DB. Before positioning the entities with the entity positioning algorithm,
the detection data undergo the process of matching through the function match and the
algorithm match detections; after being positioned, these data are saved in the DB as well
as going to other stages. In addition, the future state of each detected entity is predicted
and saved in the DB. The last stages involve the prediction of the actions for each detected
entity using the action prediction algorithm, and the avoidance of collisions by combining
the predicted actions, the ego vehicle data, and the predicted future states of the detected
entities into the collision avoidance algorithm.

2.3. Test and Validation

This section describes the test setup and the metrics utilized to validate the developed
LDM. We tested the LDM in simulation by replaying real-world data logged at a frequency
of 0.1 s by a prototype AV from CRF. As such, each step of our simulation corresponds to
0.1 s of real-world time and assumes that to be the real-time threshold. The simulation is
run completely in Python.

2.3.1. Testing Hardware

Each test has been run on a 16” MacBook Pro with an M2 Max chip (12-core CPU,
30-core GPU, 32 GB RAM, and 1 TB SSD).

2.3.2. Test Setup

Let us first analyse in detail a couple of frames taken from an output video generated
by the simulation to ease the discussion and interpretation of the results that come later on.

Looking at Figure 5, we can see that each frame has the following features:

• A dynamically changing map;
• Each map node is represented as a green dot;
• The ego vehicle is viewed as an orange dot;
• Each detected entity which has been matched is reported as a black dot, which are

usually shadowed by the ground truth blue dot;
• The ground truth (i.e., the received measurements at every time step) for each detected

entity is reported as a blue dot, which usually shadows the detected entity black dot;
• The purple dashed line indicates the node an entity will go to;
• The blue dashed line indicates the node an entity is going away from;
• The grey dot-dashed line pictures the predicted trajectory of a detected entity;
• The name for each entity is reported in black text;
• The type of predicted action (i.e., type of motion primitive) is reported in magenta text.

Moreover, in case any collision might occur, the trajectories for each involved entity
will be drawn in red alongside the type of action (i.e., motion primitive) to prevent it, as can
be seen in Figure 6.

2.3.3. Key Performance Indicators

To evaluate the performance of the LDM, several metrics have been devised that are
described next.

Matching accuracy measures how accurate the match detection algorithm is, and is
computed as

Matching accuracy =
correct matches
total matches

.

Processing time allows us to determine whether the LDM is capable of real-time
operation or not. It is divided into three Key Performance Indicators (KPIs) to better
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understand the behaviour of the LDM. The first KPI is the average time took by the LDM
to process one step of the simulation composed of M steps over N runs

Processing timeone step =
∑N ∑M LDM one step processing time

MN
.

We will report this KPI alongside 3σ (i.e., three times the average standard deviation
over N runs) to cover approximately 99.7% of the step times. The second KPI is the average
time over N runs

Processing timefull sim =
∑N LDM full sim processing time

N
.

The last KPI is the average number of simulation steps that the LDM could not process
in real-time over N runs

Steps not real-time = ∑N steps not real-time
N

.

Data persistence corresponds to the maximum number of prediction steps the LDM
can take when predicting the future state of a detected entity without receiving any new
measurement. We computed it as the maximum number of prediction steps the LDM can
make before degrading the matching performance

Data persistence = prediction steps until match fails.

Knowing the size of the prediction step (i.e., 0.1 s in our case), one can easily convert
this metric to time and understand for how long the LDM accurately predicts the movement
of a detected entity.

Action prediction accuracy measures the accuracy of the action prediction algorithm
and is computed as

Action prediction accuracy =
correct action predictions

total actions
.

Figure 5. An instance of the simulation performed on the urban scenario.
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Figure 6. An instance of the simulation performed on the urban scenario picturing the collision
avoidance algorithm in action (Example of the collision avoidance algorithm in action).

3. Results

The LDM has been tested on the three scenarios described in Section 2.1.3 which cover
an urban, a suburban, and a highway area of Trento. Let us analyse the results obtained for
each of the KPIs.

3.1. Matching Accuracy

Before looking at the results, we need to disclose how the correct matches are defined
and counted. The sensing system of the vehicle is capable of tracking an entity over time.
When it first detects an entity, it assigns it a unique identifier (ID) that will be kept constant
over time. Unfortunately, whenever the system loses sight of that entity, the unique ID
is freed and ready to be used for another entity in a matter of seconds. Even though
this prevents us from using that ID as an absolute ground truth, we can exploit that time
window. To overcome this limitation, we devised the following strategy to identify correct
matches between simulation steps.

• The match is considered correctif the IDs are equal.
• The match is considered wrong if the IDs are different and an entity with the an equal

ID was available to be matched.
• If the IDs are different, but there was no entity with that ID to be matched, the match

is considered correct but is counted separately as maybe since we can not be certain of
its correctness.

• Any entity that was not matched (i.e., identified as new entity) is considered correct
but is reported separately as unmatched.

The results obtained for each scenario are reported in Table 1.

Table 1. Matching accuracy.

Scenario Total Correct Maybe Unmatched Wrong Accuracy

Urban 4010 3159 114 147 590 ≈85%
Suburban 1001 928 13 15 45 ≈96%
Highway 4201 3821 32 56 292 ≈93%

Overall 9212 7908 159 927 218 ≈90%
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The reason the scenarios have different accuracy is twofold. The first reason is the
type of entities and their density. The urban scenario is the most challenging one due to the
presence of many pedestrians which are harder to predict than vehicles and are often found
in tightly packed groups. Instead, the suburban and highway scenarios mostly had sparse
vehicles resulting in a higher matching accuracy. The second reason is the number of times
there were matches to make. Whilst the urban and highway scenarios had to perform 4010
and 4201 matches, respectively, the suburban one only had to perform 1001. Moreover,
these matches where “ideal” in the sense that this scenario mostly saw one entity at a time.
These reasons combined allowed the suburban scenario to obtain the highest matching
accuracy overall.

3.2. Processing Time

To measure the processing time, we ran the simulation N = 100 times for each scenario
with a time step of 0.1 s. In particular, the urban scenario was run for 162.5 s resulting in
M = 1625 time steps; the suburban scenario was run for 200 s resulting in M = 2000 time
steps; the highway scenario was run for 200 s resulting in M = 2000 time steps. The results
can be found in Table 2.

Table 2. Processing time (PT) with a time step of 0.1 s and real-time threshold of 0.1 s.

Scenario PTone step + 3 σ PTfull sim Steps > 0.1 s

Urban 0.011 s + 0.045 s < 0.1 s 18.525 s 8
Suburban 0.005 s + 0.021 s < 0.1 s 10.560 s 2
Highway 0.010 s + 0.036 s < 0.1 s 19.146 s 7

Average 0.008 s + 0.035 s < 0.1 s 15.914 s 6

Let us focus on the second column of Table 2. This column reports the average
processing time for one step of the simulation plus three times the average standard
deviation, covering approximately 99.7% of the simulation steps. Values below 0.1 s
represent real-time capability, whilst values above indicate the opposite. We can clearly
see that the LDM is capable of real-time operation under all the considered scenarios.
The reasons for the different performances in the scenarios are multiple, but the main
two are the density of map nodes and detected entities to match. The urban scenario
has the highest density of both map nodes and detected entities, resulting in a higher
computational cost. The suburban scenario has the lowest density of both, therefore costing
the least computationally speaking. Lastly, the highway scenario has roughly the same
amount of detected entities as the urban scenario but fewer map nodes, and are both
rather sparse, obtaining processing times slightly better than the urban scenario. The third
column of Table 2 emphasizes the real-time capabilities of the LDM by reporting the total
average time the LDM took to process the entire simulation. All scenarios are well below
the respective total real-world time.

Shifting the focus to the fourth column of Table 2, we can see that there are some
instances in which the LDM is not real-time. Whilst these steps could be considered outliers,
we must explain them. The reason we believe they are above the real-time threshold are
many, such as the communication to the Neo4j database and the slow loading of OSM maps.
Whilst using an external DB has its benefits (e.g., modularity, reuse of data from multiple
clients), it comes with inevitable communication delays. This forces us to reduce calls to
the DB to a minimum and maximize the data sent in each call. However, since the amount
of data managed by the local LDM is low, the communication delay ends up dominating
the processing time. In addition, the procedure we implemented to quickly ingest the OSM
maps in the Neo4j DB, is not as optimized as one we could make with an embedded DB.
Therefore, to verify these assumptions we implemented a preliminary version of the LDM
using the NetworkX Python package [38] instead of Neo4j to manage the graph DB directly
in Python, removing calls to the external DB. From the preliminary results shown in Table 3,
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we can see that using an embedded DB, and a better map ingestion procedure, almost
entirely removes the steps that were above the real-time threshold of 0.1 s, indicating that
those two aspects were indeed amongst the main reasons for the rare drop in performance
of the LDM.

Table 3. Preliminary processing time (PT) with a time step of 0.1 s and real-time threshold of 0.1 s.

Scenario PTone step + 3σ PTfull sim Steps > 0.1 s

Urban 0.009 s + 0.033 s < 0.1 s 14.539 s 0
Suburban 0.002 s + 0.006 s < 0.1 s 3.152 s 0
Highway 0.005 s + 0.024 s < 0.1 s 10.381 s 2

Average 0.005 s + 0.024 s < 0.1 s 9.357 s 1

3.3. Data Persistence

By default, the LDM can predict the next state of a detected entity for 2 time steps,
after which it deletes that entry from the LDM. By changing the maximum number of
allowed prediction steps, we can determine for how long the LDM can predict the next state
of an entity by noticing when the matching performance worsens (i.e., when the number of
wrong matches increases).

Let us look at Table 4, which reports the differences between the default performance
(i.e., obtained with maximum 2 prediction steps) and the performance obtained by increas-
ing the number of prediction steps, as well as the persistence metric. Remembering that the
prediction step is fixed at 0.1 s, we can easily convert the persistence metric to time. We can
see that in the urban scenario, the LDM was able to predict the movement of an entity for
6 steps = 0.6 s, improving the number of correct matches whilst reducing the uncertainty
in the maybe and unmatched matches. In the suburban scenario, it was able to predict the
movement for 5 steps = 0.5 s, also improving its performance but only marginally. Instead,
the highway scenario was unable to improve over the default maximum prediction steps
of 2 steps = 0.2 s. The reason the LDM could not increase the persistence over the default
value is due to the difficulty of predicting the movement of an entity at higher speeds.
In fact, the faster a vehicle goes, the more distance it will cover in the same amount of time,
making it harder to predict its next state precisely.

Table 4. Data persistence.

Scenario Persistence Total Correct Maybe Wrong Unmatched

Urban 6 −4 +23 −12 +0 −15
Suburban 5 +2 +1 +0 +0 +1
Highway 2 +0 +0 +0 +0 +0

Average 4 - - - - -

3.4. Action Prediction Accuracy

To compute this metric we selected sub-portions of the three scenarios and manually
counted the times the LDM was able to correctly predict the next action of an entity.
The results for each scenario are reported in Table 5, whilst the selected portion of each
scenario is reported in Figure 7.

Table 5. Action prediction accuracy.

Scenario Total Correct Accuracy

Urban 101 92 ≈91%
Suburban 91 83 ≈91%
Highway 36 27 ≈75%

Overall 228 202 ≈89%
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(a) Urban scenario. (b) Suburban scenario. (c) Highway scenario.

Figure 7. (a) Portion of the urban scenario selected to test the action prediction algorithm. (b) Portion
of the suburban scenario selected to test the action prediction algorithm. (c) Portion of the highway
scenario selected to test the action prediction algorithm.

The findings indicate that the LDM is more effective in predicting actions near
T-junctions as compared to bifurcations. This outcome aligns with expectations, as it
is generally simpler to predict whether an entity will proceed straight or make a 90◦ turn,
rather than determining if it will make a slight right turn to leave a highway.

3.5. Collision Avoidance

Even though we were unable to gather proper CP data to thoroughly test the collision
avoidance algorithm, there was an example in our test data which clearly shows its potential
and is reported in Figure 6. Note that this occurrence was only possible thanks to high
uncertainty in the position of a detected entity which forced the LDM to position it on the
wrong way, while it should have been in front of the ego vehicle instead.

Looking at Figure 6 we can see the ego vehicle and a legacy vehicle approaching
the same junction. The LDM correctly identifies the junction node as a possible collision
point, draws the trajectories of all entities involved and suggests the ego vehicle the motion
primitive to avoid that collision. Whilst this example does not validate the algorithm, it
shows its capabilities and potential.

4. Discussion

In this section, we discuss the the results we reported in Section 3 that show, via the
KPIs, the effectiveness of using the LDM as a DB for both data generated by the AV and
incoming data from other entities.

Regarding the matching accuracy, whose results are reported in Table 1, we obtained
an overall accuracy of≈90% across the scenarios, meaning we could correctly match entities
coming from different (simulated with past DB data) sources. This result is significant
on its own, and is especially so after considering the challenging conditions in which
we collected the data. As it is often the case with GNSS-related data, the uncertainty
in the received measurements is heavily dependent on environmental aspects. Having
conducted the tests in Trento, an Italian city with relatively high buildings and surrounded
by mountains, we knew in advance that the resulting measurements would not have had
the ideal performance of the sensor system. This resulted in position errors of at least 2 m,
which are especially relevant for the tight urban area of Trento. Given that the incoming
data of the sensor system was already filtered, and we were working in post-processing,
we decided to take it “as is”, as this would be the case for incoming measurements received
via CP. However, once we deploy our solution on the prototype vehicle and use it online,
we will consider the use of additional advanced estimation techniques, such as the robust
lateral velocity estimator developed by Mauro Da Lio et al. in [39], to reduce the uncertainty
of the GNSS system.

Moving on to the processing time Table 2, we obtained an average computation time
per step of only 0.008 s + 0.035 s < 0.1 s, less than half of our real-time threshold. However,
we did have six steps which were above the 0.1 s threshold. After developing a prototype
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of our LDM using NetworkX instead of Neo4j, whose results are reported in Table 3, we
were able to say that the communication between the external Neo4j DB and the loading of
OSM maps were key factors in making those steps surpass the real-time threshold. While
developing the prototype with NetworkX, we also identified the main weakness of Neo4j.
Although Neo4j is incredibility fast with large graphs (i.e., millions of nodes and edges),
the delay it takes to send a request to the database is not worth it for smaller graphs like
ours (i.e., tens of thousands of nodes and edges). Therefore, we came to the conclusion
that a graph DB managed directly in Python, such as NetworkX, better suits the needs
of the small graph we keep local to the AV. On the other hand, Neo4j would make more
sense to be deployed on the infrastructure side; if the graph size was likely to be far greater,
the communication delay would be less noticeable, and the scalability of Neo4j would
immediately show its benefits. Lastly, changing to a DB managed directly inside the API
would allow us to convert the codebase to C++ and use the igraph package [40], which
would increase our performance by at least one order of magnitude.

The data persistence KPI, whose results are reported in Table 4, tells us the maximum
number of prediction steps the LDM can take when predicting the future state of a detected
entity without receiving any new measurement. Since the prediction step corresponds
to 0.1 s, we can conclude that on average the LDM was able to predict the movement of
detected entities for 4 steps = 0.4 s across all scenarios. This is crucial as it enables the LDM
to not lose “sight” of an entity even if it momentarily disappears behind a blind corner or a
bus. Although the prediction window is not wide, 0.4 s is enough to fill in the blanks that
may emerge from communication delays/interruptions or temporary occlusions of entities,
just to name a few. Improving the positioning of the ego vehicle and/or of detected entities,
for example, using additional advanced estimation techniques like the one mentioned a
few lines above [39], will undoubtedly improve the data persistence capabilities as well.

Lastly, the action prediction accuracy, whose results are reported in Table 5, shows
us how accurate the LDM is in predicting where a detected entity will go next. With an
overall accuracy of ≈89%, we can confidently say we know where an entity will be most
of the time. This is also an area that would benefit from additional advance estimation
techniques, just like with data persistence. Moreover, at the moment, we are focusing only
on predicting actions at each time step, but we could try to use multiple past predictions to
have a more reliable estimate after some time steps.

All in all, we can confidently say that the ability to easily handle environmental and
detection data, be they from the ego vehicle or through CP, allowed us to quickly develop
algorithms that support the development of AD. We have not talked about the collision
prediction algorithm as we did not have enough data, but that is just one of the many
algorithms we can develop by building on top of the readily available data stored in the
LDM. In fact, thanks to entity positioning, match detection, data persistence, and action
prediction algorithms, we could easily develop the collision avoidance algorithm with
just some additional logic and a few lines of code. That is why we are planning to embed
our LDM in our motion planning framework for at-limit handling of racing vehicles [41],
to have a separate application that can take the burden of analysing the environment
of interest and serve vital information quickly, reliably, and only when needed (e.g., an
incoming collision or the next action of an opponent on the racetrack).

5. Conclusions

In this paper, we developed and tested a multi-layered Local Dynamic Map (LDM)
coupled with Cooperative Perception (CP) with the aim of developing robust and accurate
algorithms suited for Automated Driving (AD). The developed solution is shown to be
capable of matching detected entities with an average accuracy of≈90%, predicting the next
state of an entity for an average time of ≈0.4 s without receiving any new measurement,
and predicting the action of an entity with an average accuracy of ≈89%. Moreover, it is
capable of performing these tasks in real time. The LDM coupled with CP has proven to
be an effective tool to incorporate the incoming data and augment its capabilities beyond
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the single received measurements. The developed solution has the ability to enhance a
state-of-the-art sensor system, facilitating the creation of robust and accurate algorithms
that contribute to the development of AD.

In conclusion, we will focus our future research on the following:

• Enhancing the matching algorithm by varying parameters based on the type of en-
tity detected;

• Converting the LDM to C++ and using the igraph package [40] to manage the graph
database directly in the API;

• Using the LDM to augment the capabilities of our motion planning framework for
at-limit handling of racing vehicles [41];

• Using additional advanced estimation techniques [39] to increase the accuracy of the
GNSS system;

• Deploying the developed solution on the prototype Automated Vehicle from CRF
Trento Branch and testing it online.
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AD Automated Driving
AV Automated Vehicle
LDM Local Dynamic Map
CP Cooperative/Collective Perception
CPM Collective Perception Message
ITS Intelligent Transport System
ITS-S Intelligent Transport System Station
C-ITS Cooperative Intelligent Transport System
ETSI European Telecommunications Standards Institute
FoV Field of View
VRU Vulnerable Road User
V2X Vehicle-to-everything
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
V2P Vehicle-to-Pedestrian
V2N Vehicle-to-Network
OSM OpenStreetMap
EKF Extended Kalman Filter
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KF Kalman Filter
OCP Optimal Control Problem
COG Course Over Ground
API Application Programming Interface
DB Database
GNSS Global Navigation Satellite System
HD High Definition
ICT Information and Communication Technologies
CRF Centro Ricerche FIAT
ECEF Earth-Centered Earth-Fixed
KPI Key Performance Indicator
ID Identifier

Appendix A. Collected Real-World Data

We collected the real-world data using a prototype Automated Vehicle from the CRF
Trento Branch. It is divided into four categories.

VideoObject

It holds raw data on the detected entities and contains:

• The class of the entity;
• The existence probability;
• The relative speed;
• The relative distance;
• The handle ID.

RO

It holds processed data on the detected entities and contains:

• Latitude;
• Longitude;
• Course Over Ground;
• Speed.

HV

It holds data on the ego vehicle and contains:

• Speed;
• Longitudinal acceleration;
• Lateral acceleration;
• Yaw rate.

GNSS

It holds data on the GNSS of the ego vehicle and contains:

• Latitude;
• Longitude;
• Course Over Ground;
• Orientation of the confidence ellipse for the absolute position;
• Axes dimensions of the confidence ellipse;
• Latitude standard deviation;
• Longitude standard deviation;
• Timestamp.

Prior to utilization, the data undergoes processing in MATLAB using the prepare_data.m
script. This script eliminates all entries lacking valid values and arranges the data into three
separate CSV files for use by the LDM. The ego.csv file contains information related to the
ego vehicle, including an added column for Geodetic coordinates converted to ECEF format.
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The detections.csv file includes data about detected entities, supplemented with columns for
Geodetic coordinates (converted to ECEF), detection type (translated into readable text),
reference ID (i.e., the ID of the detecting intelligent entity), and delay (i.e., the time frame
within which the entity’s future position needs prediction). The third file, connections.csv, is
structured similarly to the others but remains unused as proper Cooperative Perception
data was not accessible.

Appendix B. Algorithms

Appendix B.1. Predict State

The Extended Kalman Filter prediction step used in the Predict State 2 algorithm
uses the following dynamical model, which is a quasi-constant turn model that has been
augmented to estimate the longitudinal acceleration as well as the yaw rate.

px
py
vs.
ψ
a
ω


k

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


k



px
py
vs.
ψ
a
ω


k−1

+ dt



vs.cos(ψ)
vs.sin(ψ)

a
ω
0
0


k−1

+ qk

⇒ xk = f (xk−1) + qk, qk ∼ N (0, Qk)

Qk =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 σ2

1 dt 0
0 0 0 0 0 σ2

2 dt


k

where the variances σ1 and σ2 of Qk are obtained heuristically from the test data and are set
to 34.18 and 2.03, respectively. The variances σ1 and σ2 of Qk are determined heuristically
from the test data, with values assigned as 34.18 and 2.03, respectively.

Appendix B.2. Match Detection

The update step of the Kalman Filter used in the match detection Algorithm 1 uses the
following linear measurement model.

px
py
vs.
ψ


k

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


k


px
py
vs.
ψ


k

+ rk

⇒ yk = Gkxk + rk, rk ∼ N (0, Rk)

Rk =


p11 p12 0 0
p12 p22 0 0
0 0 σ2

3 0
0 0 0 σ2

4


k

In this context, pij represents the elements of the covariance matrix associated with
position measurements. This matrix is derived from the 95% confidence ellipse found in
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the test data. The variances σ3 and σ4, pertaining to velocity and yaw rate, respectively, are
also calculated heuristically from the test data, with values set to 0.2 and π

180 .

Appendix B.3. Motion Primitives and Action Selection

We can compute the motion primitives by solving the following Optimal Control
Problem (OCP)

min
j(t)

∫ t f

0
j(t)2 dt

s.t. ṡ(t)− v(t) = 0 s(0) = 0

v̇(t)− a(t) = 0 v(0) = v0

ȧ(t)− j(t) = 0 a(0) = a0

λ̇1(t) = 0 s(t f ) = s f

λ̇2(t) + λ1(t) = 0 v(t f ) = v f

λ̇3(t) + λ2(t) = 0 a(t f ) = a f

where s is the longitudinal space, v the longitudinal velocity, a the longitudinal acceleration,
j the longitudinal jerk, and λi the Lagrange multipliers. The constraints in the third and
fourth columns impose the boundary conditions, whilst the ones in the first and second
columns are derived from the following longitudinal kinematic model ṡ(t)

v̇(t)
ȧ(t)

 =

0 1 0
0 0 1
0 0 0

s(t)
v(t)
a(t)

+

0
0
1

j(t).

by imposing the first and second optimality conditions on the Hamiltonian. This kinematic
model is of particular interest because it allows us to have a closed form solution to the
OCP, which is

sopt(t) = c1t +
1
2

c2t2 +
1
6

c3t3 +
1

24
c4t4 +

1
120

c5t5,

vopt(t) = c1 + c2t +
1
2

c3t2 +
1
6

c4t3 +
1

24
c5t4,

aopt(t) = c2 + c3t +
1
2

c4t2 +
1
6

c5t3,

jopt(t) = c3 + c4t +
1
2

c5t2.

where the coefficients are

c1 = v0,

c2 = a0,

c3 =
3a f − 9a0

t f
+

60s f

t3
f
−

12
(

2v f + 3v0

)
t2

f
,

c4 =
36a0 − 24a f

t2
f

−
360s f

t4
f

+
24

(
7v f + 8v0

)
t3

f
,

c5 =
60

(
a f − a0

)
t3

f
+

720s f

t5
f
−

360
(

v f + v0

)
t4

f
.

With these solutions and by imposing different boundary conditions we implemented
four types of motion primitives: stop, pass, and their counterparts with zero initial jerk.

To obtain a stop motion, the vehicle must come at a full stop, therefore v f = 0 and
a f = 0. As such, we can build the following algorithm
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Algorithm A1 Stop motion primitive

1: function STOP_PRIMITIVE(v0, a0, s f )
2: v f , a f ← 0
3: t f ← optimal_tf (v0, a0, s f )

4: c ← ocp_coeffs(v0, a0, s f , v f , a f , t f )
5: return c
6: end function

where optimal_t f is a function that computes the optimal final time to reach the desired
s f by deriving the total cost of the motion (i.e., the cost obtained by substituting the optimal
jerk in the OCP cost), and ocp_coeffs is a function that computes the coefficients of the
optimal solution defined above.

To obtain a pass motion, the vehicle must complete the manoeuvre with a velocity
contained in a specific range as well as in a specific time range. In addition, once the motion
is completed the acceleration must be zero. Therefore, v f ∈ [vmin, vmax], t f ∈ [tmin, tmax],
and a f = 0. As such, we can build the following algorithm

Algorithm A2 Pass motion primitive

1: function PASS_PRIMITIVE(v0, a0, s f , vmin, vmax, tmin, tmax)
2: a f ← 0
3: tvmin ← optimal_tf _to_vf (s f , v0, vmin, a0)

4: tvmax ← optimal_tf _to_vf (s f , v0, vmax, a0)

5: [t1, t2] ← [tmin, tmax] ∩ [tvmin , tvmax ]
6: vmin ← optimal_vf (t2, s f , v0, a0)

7: vmax ← optimal_vf (t1, s f , v0, a0)

8: c1 ← ocp_coeffs(v0, a0, s f , vmax, a f , t1)
9: c2 ← ocp_coeffs(v0, a0, s f , vmin, a f , t2)

10: return c1, c2
11: end function

where the function optimal_v f computes the optimal final velocity by deriving the total
cost (same cost as per the stop motion, but with different boundary conditions), and the
function optimal_t f _to_v f computes the optimal final time to reach a desired final velocity
by deriving the equation for the optimal final velocity.

The zero initial jerks counterparts of these motions share the same idea but can be
simplified by accounting for j0 = 0 from the beginning of the formulation.

These motions can be computed at each time step, and it is possible that multiple mo-
tions exists at the same time. To choose between them, we used the minimum intervention
principle (i.e., Human-Directed jerk) which prioritizes the action with the minimum initial
jerk. As such, the best motion to perform is the one with the lowest possible jerk.

Appendix B.4. Action Prediction

Hereafter, the action prediction algorithm is presented.

Algorithm A3 Action prediction

1: function PREDICT_ACTION(detections)
2: for detection in detections do
3: for possible_actions in detection do
4: clothoid← G1Hermite(s0, ψ0, target_node, target_angle)
5: s f ← clothoid.length
6: if a0 > 0 then ▷ detection is accelerating
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7: vmin ← 0.95v0
8: vmax ← speed_limit
9: else if a0 < 0 then ▷ detection is decelerating

10: vmin ← 0.05v0
11: vmax ← 1.05v0
12: else if a0 = 0 then
13: vmin ← 0.05v0
14: vmax ← speed_limit
15: end if
16: tmin ←

s f
vmax

17: tmax ←
s f

vmin
18: stop_mp← stop_primitive(v0, a0, s f )
19: pass_mp← pass_primitive(v0, a0, s f , vmin, vmax, tmin, tmax)
20: if stop_mp.jerk < pass_mp.jerk then
21: min_j.append(stop_mp.jerk)
22: max_lat_a.append(max(stop_mp.v2 clothoid.k))
23: else
24: min_j.append(pass_mp.jerk)
25: max_lat_a.append(max(pass_mp.v2 clothoid.k))
26: end if
27: end for
28: index ← argmin(min_j + max_lat_a)
29: likely_actions.append(possible_actionsindex)
30: end for
31: return likely_actions
32: end function

where s0 is the absolute position of the detected entity, ϕ0 is the COG of the detected
entity, target_node contains the absolute position of the target node, target_angle is the target
final angle, and s f is the final distance required by the motion primitives. The function
G1Hermite computes a G1 clothoid given a starting position, a starting tangent, a final
position, and a final tangent. The functions stop_primitive and pass_primitive compute the
stop and pass motion primitives, respectively.

Appendix B.5. Collision Avoidance

Hereafter, the collision avoidance algorithm is presented.

Algorithm A4 Collision avoidance

1: function PREDICT_COLLISION(possible_collisions)
2: for possible_collision in possible_collisions do
3: e_s f , e_path← compute_s f (e_s0, e_ψ0, e_ f uture_nodes)
4: s f , path ← compute_s f (s0, ψ0, f uture_nodes)
5: if a0 > 0 then ▷ detection is accelerating
6: vmin ← 0.95v0
7: vmax ← speed_limit
8: else if a0 < 0 then ▷ detection is decelerating
9: vmin ← 0.05v0

10: vmax ← 1.05v0
11: else if a0 = 0 then
12: vmin ← 0.05v0
13: vmax ← speed_limit
14: end if
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15: tmin ←
s f

vmax

16: tmax ←
s f

vmin
17: stop_mp← stop_primitive(v0, a0, s f )
18: pass_mp← pass_primitive(v0, a0, s f , vmin, vmax, tmin, tmax)
19: if stop_mp.jerk < pass_mp.jerk then
20: pass
21: else
22: coll_mp← pass_mp
23: end if
24: if coll_mp then

25: e_tmin ←
[

e_s f
e_speed_limit , coll_mp.t f

]
26: e_tmax ←

[
coll_mp.t f ,

e_s f
0.05e_v0

]
27: e_vmin ←

[
e_s f

coll_mp.t f
, 0.05e_v0

]
28: e_vmin ←

[
e_speed_limit,

e_s f
coll_mp.t f

]
29: init_conditions.append([e_v0, e_a0, e_s f , e_vmin, e_vmax, e_tmin, e_tmax])
30: coll_paths.append([e_path, path])
31: end if
32: end for
33: return mp_as(init_conditions), coll_paths
34: end function

where e_s0 is the absolute position of the ego vehicle, e_ϕ0 is the COG of the ego
vehicle, e_future_nodes contains the position and angle of all nodes leading to a possible
collision for the ego vehicle path, and e_s f is the final distance required by the motion
primitives for the ego vehicle. The same variables without the e_ prefix share the same
meaning but are referred to a detected entity. The function compute_s f constructs a path
made of G1 clothoids given a starting position, a starting angle, and a list of future nodes in
the path, return the total path length and the clothoid path. The functions stop_primitive and
pass_primitive compute the stop and pass motion primitives, respectively. Lastly, coll_mp
represents a collision primitive, and coll_paths contains the paths to those collisions for
both entities involved.

Appendix B.6. Entity Positioning

Hereafter, the entity positioning algorithm is presented.

Algorithm A5 Entity positioning

1: MATCH (n1:OSMNode)-[:WAS_ON]-(ego:AutonomousVehicle)-[:IS_ON]-
(n2:OSMNode)

2:
3: IF n1 AND n2 ARE NULL OR distance(ego, n1n2) > 8 THEN
4: CALL {
5: MATCH (n1:OSMNode)-[:NEXT_NODE]→(n2:OSMNode)
6: WHERE n1 AND n2 ARE FROM A VALID WAY AND ego IS BETWEEN n1 AND

n2
7: ORDER BY distance(ego, n1n2)/4 + angle(ego, n1n2)/90 ASC
8: LIMIT TO 1 RESULT
9: }

10:
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11: MERGE (ego)-[:IS_ON]-(n2)
12: MERGE (ego)-[:WAS_ON]-(n1)
13:
14: MATCH (w:OSMWay)
15: WHERE w HAS n1 AND n2
16:
17: MERGE (ego)-[:IS_ON]-(w)
18:
19: ELSE IF n1 AND n2 ARE NOT NULL AND distance(ego, n1n2) ≤ 8 AND ego PASSED

n2 THEN
20: MATCH (n1)-[:NEXT_NODE]→(n2)-[:NEXT_NODE]→(n3:OSMNode)
21: WHERE n3 IS FROM A VALID WAY
22: ORDER BY angle(ego, n3n2) ASC
23: LIMIT TO 1 RESULT
24:
25: MERGE (ego)-[:IS_ON]-(n3)
26: MERGE (ego)-[:WAS_ON]-(n2)
27:
28: MATCH (w:OSMWay)
29: WHERE w HAS n2 AND n3
30:
31: MERGE (ego)-[:IS_ON]-(w)
32:
33: ELSE
34: pass

The above algorithm has been willing written without a proper Cypher syntax to be
more readable for the uninitiated. For example, Cypher does not support if else statements,
which have been added here for clarity.
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