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Abstract: A high conversion ratio DC-DC converter is crucial for fuel cell electric vehicles (FCEV). A
fuel cell-based non-isolated high gain integrated DC-DC converter for electric vehicles is proposed in
this paper. The system comprises an interleaved boost converter (IBC) at the source end, a switched
capacitor cell, coupled inductors, a passive clamp circuit, and a voltage multiplier circuit (VMC). Its
significance is to achieve the voltage conversion gain of 12.33 at a conversion ratio of 0.45. The idea is
to use a proton exchange membrane fuel cell to power electric vehicles through a high-gain DC-DC
converter. The use of an ineffective MPPT can result in lower energy conversion efficiency. Thus, this
system incorporates a maximum power point tracking (MPPT) controller based on a neural network,
which relies on the radial basis function network (RBFN) algorithm to track the maximum power
point of the PEMFC accurately. The comparative study of the fuel cell electric vehicle (FCEV) structure
with the RBFN-based MPPT technique was evaluated with that of the fuzzy logic technique using the
MATLAB/Simulink platform (R2021b (MATLAB 9.11)). A 1.5 kW experimental prototype is designed
with a switching frequency of 10 kHz to validate the design analysis, and its pursuance is compared
between RBFN and FLC-based controllers. This manuscript will be a significant contribution towards
evidencing a sustainable environment.

Keywords: environmental sustainability; high gain; interleaved boost converter; voltage multiplier
circuit; clamp circuit; proton exchange membrane fuel cell; maximum power point tracking; fuzzy
logic controller; radial basis function network controller

1. Introduction

As we strive for sustainable development, we face several demanding issues like climate
change, resource depletion, and global warming. These challenges require expeditious
attention and must be familiar to ensure a sustainable future. The rise in global temperatures
is primarily caused by burning fossil fuels for energy production, industry, and transportation.
To create a sustainable environment, we must rely on technological advancements. This
article explores a solution to the use of combustion engine-based vehicles. The automotive
industry’s progress is known to contribute to improving environmental sustainability.

Many auto sectors are keen on developing clean energy technologies for powering
EVs. PEMFC [1] based electric vehicles are considered efficient alternatives to internal
combustion (IC) engines because of their greater current density, clean power generation,
higher efficacy, and naturally amiable features. Thus, fuel cell vehicles are a significant
component of clean energy vehicles and have been used extensively in real-world applica-
tions [2,3]. Promising technological developments such as fuel cell-based electric vehicular
systems play a significant role in developing a green and clean energy environment.

Sustainability 2024, 16, 1335. https://doi.org/10.3390/su16031335 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16031335
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0120-9087
https://orcid.org/0000-0003-3705-4371
https://doi.org/10.3390/su16031335
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16031335?type=check_update&version=2


Sustainability 2024, 16, 1335 2 of 26

A fuel cell can be categorized as a phosphoric acid fuel cell (PAFC), a solid oxide fuel
cell (SOFC), an alkaline fuel cell (AFC), a proton exchange membrane fuel cell (PEMFC),
or a molten carbonate fuel cell (MCFC), depending on the type of electrolyte it uses [4].
PEMFCs are pioneers in the automotive industry because of their low operational tempera-
ture conditions and rapid start-up. Fuel-cell electric vehicles are in demand due to their
durability and reliability, which makes them commercially viable [5,6].

In a fuel cell, the voltage at the output side is determined through electrochemical
reactions and the cell’s temperature. There is no stable nonlinearity between voltage and
current in fuel cells. As a result, fuel cells can only operate at maximum voltage and power.
MPPT is an algorithm that measures maximum power points (MPP) at that operating
point. The tracking of the maximum power point (MPP) is required to extricate the extreme
amount of power from the PEMFC under dissimilar operational circumstances. Numerous
MPPT techniques were documented in the literature, for instance, sliding mode control,
perturb and observe (P&O), incremental conductance (INC), particle swarm optimization
(PSO), fuzzy logic control (FLC), and controllers based on neural networks that can detect
the maximum power point (MPP) in [7,8]. Among these MPPT algorithms, perturb and
observe (P&O) are the most popular and most accessible to implement [9–11]. A steady state
oscillation caused by P&O and incremental conductance methods will degrade the overall
efficiency of the fuel cell [12]. The MPP is tracked more efficiently and accurately with
neural networks and fuzzy logic controller-based algorithms to overcome this problem [13].
This study suggests that an MPPT controller with a radial basis function network (RBFN)
tracks the PEMFC’s MPP. Figure 1 shows the illustration of the FCEV system.
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Figure 1. Illustration of FCEV system.

The output voltage of the fuel cell is unregulated, which is relatively low and ap-
proximately in the range of about 30–45 V. Therefore, the proton exchange membrane
fuel cell (PEMFC) voltage must be boosted and regulated using a DC-DC converter. For
EVs, boost converters are used widely as front-end power conditioners. Conventional
DC converters are utilized for low-power applications as a power electronic interface.
The boost converter’s slow current management and thermal handling capability might
not be appropriate for high-power applications. Isolated DC-DC converters can achieve
better voltage conversion gain using either a one-coupled inductor or high-frequency trans-
formers, as demonstrated in [14]. However, the windings in the transformer reduce the
efficiency of the converter. A SEPIC converter with an isolated transformer is proposed
in [15]. However, isolated DC converters are more expensive than non-isolated-based DC
converters. A single-switch converter with a lower diode voltage stress is implemented
in [16]. The voltage gain obtained is not sufficient to drive EVs. A switched capacitor with
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an active network is proposed in [17]. Although more efficient, they have shortcomings
like circuit complication, augmented volume, and greater costs. Step-up converters with
voltage multiplier units are proposed in [18]. However, a single multiplier cell cannot drive
the FCEV’s power train with enough voltage. Many types of high-gain converters have
been designed in the literature to address these problems, and the recommended converter
is compared with [16–25].

High-gain DC converters are essential to achieve efficient, compact, and high-power
conversion systems in electric vehicles. Such converters offer reduced input currents, which
put less strain on electrical components such as switches, inductors, and capacitors. As a
result, the components last longer and are more reliable. Even with erratic voltage from the
fuel cell, a high-voltage gain maintains stable output. Hence, this manuscript suggests a
non-isolated-based high-gain interleaved DC-DC converter to achieve better voltage gain
and low switching stress in fuel cell applications.

To propel the electric vehicle using the BLDC motor, the DC converter’s voltage is fed
to the voltage source inverter. The BLDC motor has excellent traction properties, including
higher torque and efficiency. Its traction characteristics make BLDC motors ideal for electric
vehicles [26,27]. Figure 2 depicts the suggested converter-fed BLDC motor-driven electric
vehicular system.
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Figure 2. Proposed converter-fed BLDC motor-driven electric vehicle.

The novelty and highlights of the suggested DC converter are given below,

1. A high voltage gain (of about 12.33) is attained by engaging voltage gain extension
methods. The coupled inductor improves the voltage gain by altering the number of
turns of inductor coils, and further additional voltage gain is provided by switched
capacitor cells.

2. In order to achieve a higher voltage gain, the switches are operated at a minimal duty
ratio of 0.45.

3. With a phase shift of 180◦, the two interleaved phases can produce ripple-free input
current. The ripple on the input current is reduced since the entire input current is
split throughout the interleaved segments.
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4. The lossless clamp circuit recirculates the coupled inductors’ leakage inductance to
the output side, effectively suppressing the reverse-recovery concern of diodes.

2. Architecture of the FCEV System

The fuel cell is connected to the BLDC motor through the proposed non-isolated
high gain interleaved DC-DC converter and three-phase inverter. The voltage of the fuel
cell is insufficient to drive a BLDC motor. BLDC motors in electric vehicles require high
acceleration, speed, and torque. Thus, the fuel cell voltage is boosted with the help of
the suggested high-gain DC-DC converter. Then, the output voltage of the proposed DC
converter is inverted using a three-phase voltage source inverter, which will drive the
BLDC motor. A radial bias function network is utilized to determine the maximum power
point of the fuel cell.

Modeling of PEMFC

The proton exchange membrane fuel cell (PEMFC) is an electrochemical device that
alters the chemical energy stored in fuel into electrical energy. Figure 3 shows the schematic
layout of the fuel cell [28]. Air and fuel are the two inputs of the fuel cell. The electrochemi-
cal conversion process produces electricity, and hydrogen is used as a fuel. PEMFC is a
stack of fuel cells, and each cell contains two electrodes and an electrolyte. The cathode and
anode are the two electrodes, and an electrolyte is composed of polymer electrolyte mem-
branes (PEM). An electrolyte separates hydrogen ions into positive and negative charges.
H2 and O2 are fed into the fuel cells, and electricity is produced due to the electrochemical
process. In a fuel cell, heat and water are the only waste products. Figure 4 shows the
general electrical circuit of the PEMFC. The fuel cell voltage is given by [29,30]

VFC = Enerst − Vact − Vohm − Vcon (1)

where Enernst is the open circuit thermodynamic voltage, Vohm is the activation overvoltage,
Vact is the activation overvoltage, and Vcon is the concentration voltage.

Enerst = 1.229 − 8.5 × 10−4 (T − 298.15) + 4.308 × 10−5T[ln(PH2) + 0.5(PO2)] (2)

where T is the absolute temperature in Kelvin, and PO2 and PH2 are the partial pressures
of O2 and H2 in atm. Vact represents the combined activation voltage on the cathode and
anode. It is given by,

Vact = [δ 1 + δ2T + δ3Tln(CO2) + δ4Tln(IFC)] (3)

where δi (i = 1, 2, 3, 4) represents an empirical coefficient for each fuel cell, and CO2 denotes
the oxygen concentration in the liquid or gas.

CO2 =
PO2

(5.08 × 106)× e(−
498
T )

(4)

Vohm is the ohmic overvoltage and is given by

Vohm = IFC (RC + RM) (5)

where RM is the resistance of the electron, and RC is the resistance of the proton. RC is
a constant.

RM =
ρmL

A
(6)

where L is the width of the membrane in cm, A is the membrane’s active area in cm2, and
ρm is the specific resistivity of the membrane in Ω-cm. ρm is given by
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ρm =
181.6

[
1 + 0.03J + 0.062(T/303)2(J)2.5

]
[G − 0.634 − 3J]e[4.18(1− 303

T )]
(7)

where G is the amount of water content in the membrane, and the J-current density is
given by

J =
IFC
A

(8)

where Vcon is the concentration voltage and is given by

Vcon = −RT
nF

ln(1 − J
Jmax

) (9)

where F is Faraday’s constant, R is a universal gas constant, and Jmax is the max current
density. The fuel cell is connected to the proposed DC converter to retain a constant DC
voltage. The design parameters for the simulation of a 1.26 kW PEMFC are presented
in Table 1.
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Table 1. Specifications of a 1.26 kW PEMFC.

Parameters Rating

Maximum power (Pmax) 1.26 kW
Maximum current (Imax) 52 A

Maximum voltage P (max) 34.8 V
No. of cells 42

Temperature (T) 54 ◦C
Fuel cell response time (s) 1 s

Nominal air flow rate 2400 IPM

3. Non-Isolated High Gain Interleaved Converter

The projected high-gain DC-DC converter consists of an interleaved element, a
switched capacitor cell (SC cell), a clamp circuit, and a voltage multiplier module. L1P
and L2P are the primary coupled inductances and are associated in parallel, and the L2S
and L1S are the secondary coupled inductances associated with a series connection. The
interleaved arrangement will exterminate the input current ripple, which is composed
of two semiconductor switches, S1 and S2, and two primary coupled inductors, L1P and
L2P. The SC cell has two diodes, D1 and D2, and capacitors C1 and C2. The switched
capacitor cell progresses the whole voltage gain. Figure 5 shows the proposed interleaved
DC converter.
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Figure 5. Proposed non-isolated high gain interleaved converter.

The clamping circuit has two clamp diodes, D3 and D4, and one clamping capacitor, C3.
It reduces the voltage stress on semiconductor devices by reducing leakage currents in the
coupled inductors. The VMU supplies two secondary coupled inductors; two regenerative
diodes are connected to it, and two regenerative capacitors are supplied by it. The suggested
DC converter functions under a continuous conduction mode (CCM). There are six stages
in the proposed converter from stage I [t0–t1] to stage VI [t5–t6], and each stage is explained
below. The theoretical key waveforms of the suggested DC converter are presented in
Figure 6. The operational stage of the suggested converter is shown in Figure 7.
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Figure 6. Theoretical waveform of the proposed converter.

Stage I [t0–t1]

In stage I, S1 is conducting, and S2 is off-state. The diodes D2 and D5 are in a con-
ducting state, and all other diodes D1, D3, D4, D6, and D0 are in the off condition. The
primary inductance L1P is charged through the fuel cell voltage. The current of the primary
inductances L1P and L2P will start to increase linearly. Stage I is shown in Figure 7a.

Stage II [t1–t2]

S1 is still conducting in this stage, and S2 will start to conduct. The diodes D2 and D5
are still in a forward-biased state. The diodes D1, D3, D4, D6, and D0 are in an off condition.
The current of the primary inductances L1P and L2P will increase linearly. The energy of
the output capacitor C0 supplies the load. Stage II is shown in Figure 7b.

Stage III [t2–t3]

S1 is in an off condition, while S2 is still ON. Through D2, energy is stored in the
primary inductances and charges the capacitor C1. Thus, the current through primary
inductances will start to decrease. The diodes D3, D5, and D0 are in the conducting state.
The secondary inductances L1S and L2S will begin to energize, and capacitor C4 will be
charged. The diodes D1, D4, and D6 are in the off-state. Stage III is depicted in Figure 7c.

Stage IV [t3–t4]

In this stage, S1 and S2 remain as in the previous stage. In this stage, C1 is fully charged,
and the potential difference is developed, which turns off the diodes D2 and D3. The energy
stored in secondary inductors L2S and L1S will forward bias D5. The primary inductors
charge the capacitors C2 and C3. Diodes D1, D4, D5, and D0 are in the conducting state.
Diode D6 is still in the reverse-biased state. Stage IV is shown in Figure 7d.
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Stage V [t4–t5]

In this stage, S2 remains in an off condition, and switch S1 is in an ON state. The
switch S1 energizes capacitor C3. Here, C4 is fully charged, and the potential difference
is developed across C3, which forward biases the diode D5. The diodes D2 and D5 are in
a reverse-biased state, and all other diodes are in a forward-biased state. The secondary
inductors L2S and L1S will charge the capacitor C5. The load R0 is supplied through D0.
Stage IV is shown in Figure 7e.

Stage VI [t5–t6]

In this stage, S2 remains OFF, and S1 remains ON. The diodes D1, D3, D4, D5, and D6
are under a reverse-biased state. The current through capacitors C1 and C3 increases due
to the primary inductor L1P. The diode D2 is in the ON state, and the current pathway
will be L1P-C1-D2-L2P. When S1 is in the OFF condition, stage 1 begins. Stage IV is shown
in Figure 7f.

3.1. Analysis of the Proposed Converter

The voltage gain equation of the suggested converter can be derived using the output
voltage equation of a conventional interleaved boost converter, which is given by

V0 =
1

1 − D
VFC (10)

The capacitor’s C1 and C2 voltages might be considered as the conventional boost
converter’s output voltages.

The capacitor’s voltage C1 and C2 can be written as,

VC1 = VC2 =
1

1 − D
VFC (11)

The capacitor voltage C3 is given by

VC3 = VC1 + VC2 =
2

1 − D
VFC (12)

From stage 3 to stage 4, switch S2 is conducting, and S1 is in the off state. From stage 5
to stage 6, switch S2 is in the OFF state, and S1 is in an ON state. Volt-sec balance is used
with a coupled inductor, and the expression can be given as,∫ DTS

0
V I I I−IV

L2P dt +
∫ TS

DTS

VV−VI
L2S dt = 0 (13)

V I I I−IV
L2P = V I I I−IV

L2S = NBK2VFC (14)

By substituting (7) in (6), the expression for VV−VI
L2S can be derived as,

VV−VI
L2S = −NBK2VFCD

(1 − D)
(15)

Likewise, we can obtain V I I I−IV
L1S ,

V I I I−IV
L1S = −NAK1VFCD

(1 − D)
(16)

where K1 and K2 are coupling coefficients of coupled inductors 1 and 2. Applying KVL to
the voltage multiplier unit for stage 3 and VC4 can be written as,

VC4 = V I I I−IV
L2S − V I I I−IV

L1S (17)
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Substitute (14) and (16) in (17)

VC4 = NBK2VFC +
NAK1VPVD
(1 − D)

(18)

VV−VI
L2S can also be written as,

VV−IV
L1S = NAVL2P = NAK1VFC (19)

Applying KVL to the voltage multiplier unit for stage 5, the equation can be written as

VC5 − VC4 = VV−VI
L1S − VV−VI

L2S (20)

Substituting (15) and (19) in (20),

VC5 − VC4 = NAK1VFC +
NBK2VFCD
(1 − D)

(21)

By substituting (18) in (19),

VC5 =
NAK1VFC + NBK2VFC

(1 − D)
(22)

The output voltage can be determined from the output capacitor C0 as,

V0 = VC1 + VC2 + VC3 + VC4 + VC5 (23)

Voltage gain can be obtained by substituting (11), (12), (18), and (22) in (23) and also
substituted by NA = NB = N,K1 = K2 = K,

M =
V0

VFC
=

4 + 3N
(1 − D)

(24)

The voltage stress of the switches S1 and S2 can be given by

VS1 = VS2 =
1

1 − D
VFC (25)

The voltage across the diodes in terms of V0 can be written as,

VD1 = VD2 =
2V0

4 + 3N
(26)

VD3 = VD4 =
V0

4 + 3N
(27)

VD5 = VD6 =
2V0(1 + N)

(4 + 3N)
(28)

The voltage across the capacitors in terms of V0 can be written as,

VC3 =
2V0

4 + 3N
(29)

VC1 = VC2
V0

4 + 3N
(30)

VC4 = VC5 =
2V0(1 + N)

(4 + 3N)
(31)
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The coupled inductance can be written as,

L1 = L2 =
D(1 − D)VFC
(4 + 3N)fsI0

(32)

Since the clamping circuit in the proposed converter reduces the leakage currents in
the coupled inductors, the leakage inductance is neglected in the voltage gain analysis.

3.2. Comparison of the Proposed Converter

The suggested non-isolated high-gain interleaved DC converter is compared to other
high-gain DC converters offered in [16–25]. Table 2 depicts the comparison of the proposed
converter with [16–25]. The projected converter is compared using the voltage gain and
duty ratio. Figure 8 depicts the voltage gain vs duty ratio of the suggested converter.

Table 2. Performance comparison of the proposed converter with other topologies.

Reference Number of
Switches

Number of
Diodes

Number of
Capacitors

Number of
Cores

Voltage
Gain

Voltage Stress
of Switches

Converter in [16] 1 5 5 1 N(2+D)+3
1−D

V0
N(2+D)+3

Converter in [17] 2 3 3 2 3+D
1−D

V0
3+D

Converter in [18] 2 5 5 2 4
1−D

V0
4

Converter in [19] 1 4 4 1 3−D
1−D

V0
3−D

Converter in [20] 1 3 3 1 2
(1−D)2

V0
2

Converter in [21] 2 2 3 1 2+N
1−D

V0
2+N

Converter in [22] 1 5 5 1 3+2N
1−D

V0
3+2N

Converter in [23] 2 4 2 1 2+ND
1−D

V0
2+ND

Converter in [24] 2 3 8 1 1+D
1−D N V0

N(1+D)

Converter in [25] 2 4 3 4 2
1−D + ND V0

2+ND(1−D)

Proposed Converter 2 4 3 2 4+3N
1−D

V0
4+3N
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Figure 9 shows that the recommended converter is compared with [16–25], which
has a high voltage gain of 12.33 at a duty ratio of 0.45. The suggested converters have a
main advantage over other converters in [16–25], as they can increase the input voltage
to a higher output voltage while maintaining a superior nominal conversion ratio and
voltage gain. These converters are beneficial in EV applications since they can typically
operate over a wide input voltage range. However, they have their own drawbacks, such
as having more components than [16–25]. This could put additional stress on them and
reduce their dependability.
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4. Design of RBFN-Based MPPT Controller

An RBFN controller is built for the proposed setup, and its outcomes are evaluated
against fuzzy logic control. The radial basis function network (RBFN) is a feed-forward
neural network algorithm that includes supervised and unsupervised learning phases. It
has three layers: an input layer, a hidden layer, and an output layer. Figure 10 displays the
structure of the RBFN. The RBFN’s hidden layer utilizes a non-linear activation function,
while its output layer employs a linear activation function [31,32].
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The maximum extent of power that can be drawn from the PEFM by the RBFN-based
MPPT method is explored. The system can track and adjust to the optimal operating point
using an iterative, real-time measurement-based approach called RBFN-based MPPT. In
order to identify the ideal operating point for maximum power generation, the RBFN
needs to be trained. A dataset with a range of input combinations and their corresponding
optimal power points is used during training. Based on this data, the network modifies
its internal variables to discover the mapping between inputs and ideal power outputs.
After analyzing the previously measured fuel cell parameters, the RBFN generates a control
signal that modifies the operating point of the high-gain DC-DC converter. Hidden layer
inputs are transmitted by nodes of the input layer. As a result of the input neuron, the net
output neuron is represented as follows [33–36]:

x 1
i (n) = net(1)i (33)

y (1)
i = f (1)

i

[
net (1)

i (n)
]
= net (1)

i (n), i = 1, 2 (34)

x (1)
i : Input layer

y (1)
i : Hidden layer

net (1)
i : Sum of input layers.
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The nodes in the hidden layer implement the Gaussian function. This function mem-
bership function is given by [37,38]

x(2)j (n) = −
(
X − Mj

)T∑j

(
X − Mj

)
(35)
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y(2)j (n) = f (2)j

[
net(2)k (n)

]
= enet(2)j (n)j = 1, 2 (36)

where Mj and ∑j are the mean and SD of the Gaussian function.
The single node (k) in the output layer produces the duty ratio (D).

net(3)k = ∑
j

wjy
(2)
j (37)

y(3)k (n) = f (3)k

[
net(3)k (n)

]
= net(3)k (n) (38)

Wj is a connective weight matrix between the output and hidden layer.
In this study, the voltage and current of the fuel cell are used as inputs to the radial

bias function network controller, which then outputs the duty ratio (D), as illustrated in
Table 3. Figure 11 shows the MATLAB structure of the RBFN.

Table 3. Parameters for the RBFN.

Parameters Values

Input variables VFC, IFC
Input variables Duty ratio
Spread factor 0.01

Training algorithm Ordinary least squares
Maximum limit of the hidden neurons 529
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5. Electronic Commutation of the BLDC Motor

Because of the BLDC’s compact structure, high power, high power factor, noiseless
operation, and higher efficiency, the use of BLDC motors in variable-speed drives has
become more prevalent. The BLDC is preferred for the proposed work, and switches in the
voltage source inverter (VSI) are operated through the electronic commutation of brushless
DC motors [26,27]. The regulation of the speed of a motor is dependent on the position of
its rotor. Three Hall sensors are mounted 120 degrees apart to sense the rotor’s location.
These sensors generate Hall signals at every 60-degree interval, depending on the position
of the rotor. A decoder circuit converts these Hall signals into gate pulses for the voltage
source inverter. Table 4 displays the electronic commutation sequence of the BLDC motor.
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Table 4. Electronic commutation sequence of the BLDC motor.

θ (Degree)
Hall Signals VSI Switching States

HA HB HC S3 S4 S5 S6 S7 S8

NA 0 0 0 0 0 0 0 0 0
0–60 1 0 1 1 0 0 1 0 0

60–120 1 0 0 1 0 0 0 0 1
120–180 1 1 0 0 0 1 0 0 1
180–240 0 1 0 0 1 1 0 0 0
240–300 0 1 1 0 1 0 0 1 0
300–360 0 0 1 0 0 0 1 1 0

NA 1 1 1 0 0 0 0 0 0

6. Simulation Results and Discussions

The MATLAB/Simulink platform is utilized to simulate MPPT controllers based on the
radial bias function network (RBFN) and fuzzy logic controller (FLC). The recommended
non-isolated high gain interleaved DC converter is simulated by the parameters given
in Table 5. A FCEV system’s dynamic response is studied by considering impulsive
variations in the temperature of the fuel cell, which is shown in Figure 12. Different
physical and electrochemical processes in a fuel cell stack lead to temperature changes
over time. According to Figure 12, the power output of a fuel cell varies with temperature,
reaching its maximum at 378 ◦K.

Table 5. Simulation parameters.

Components Parameters

Input voltage VFC 30–35 V
Output voltage V0 370 V

Switching frequency 10 kHz
Duty cycle 0.6
Turns ratio 1

The capacitors C1, C2 4 µF
The capacitors C3 2.2 µF

The capacitors C4, C5 650 nF
The capacitor C0 470 µF
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for a time interval t = 0 to 0.3 s. T = 308 ◦K for a time interval of t = 0.3 s to 0.5 s. T = 378 ◦K
for a time interval t = 0.5 s to 0.7 s T = 356 ◦K for a period of time t = 0.7 s to 1.0 s. For the
temperature change, the output voltage of the PEMFC (VFC), the output current of the fuel
cell (IFC), and the output power of the fuel cell (PFC) are depicted in Figures 13–15. The
fuel cell current is zoomed, and it is found that the input current ripple is low, and the
fuel cell current is about 18 A. The voltage fluctuation applied to the electric drive system
can affect vehicle performance. This may result in reduced responsiveness to changes
in driving conditions or decreased acceleration and efficiency. However, the employed
ANN-based controller will regulate the output voltage and maintain stability under varying
operating conditions. The maximum power generated by a fuel cell between t = 0 s to
t = 0.3 s is 450 watts, t = 0.3 s to t = 0.5 s is 260 watts, t = 0.5 s to t = 0.7 s is 690 watts,
and t = 0.7 s to t = 1.0 s is 590 watts. The output current of the converter with RBFN
controller is shown in Figure 16, and it is found to be 6.8 A. In addition, Figure 17 displays
the boosted converter output voltage of 370 V achieved by the proposed converter with
an RBFN controller. Finally, Figure 18 illustrates the power generated by the proposed
converter with the RBFN controller.
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The maximum power generated by the proposed converter using the RBFN technique
is 1197 W, 900 W, 2503 W, and 2155 W for temperatures 340 ◦K, 320 ◦K 360 ◦K, and
350 ◦K, respectively. Figures 19–21 show the DC output power (PDC), DC output voltage
(VDC), and DC output current (IDC) of the suggested converter with the fuzzy-based
MPPT technique. Fuzzy logic controllers are capable of efficiently managing non-linear
systems. DC converters may behave nonlinearly, particularly when they are running under
fluctuating load conditions. With the use of FLCs, control performance may be enhanced,
and output voltage changes can be reduced by designing control rules that adjust to the
non-linear features of the system. It is also noticed that though the ripple is less in the FLC,
the output power of the converter is reduced compared to the RBFN controller.
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The maximum power generated by the suggested converter with a fuzzy-based MPPT
technique is 868 W, 645 W, 1788 W, and 1536 W for temperatures 340 ◦K, 320 ◦K, 360 ◦K, and
350 ◦K, respectively. Figure 22 displays the contrast of the output power of the proposed
DC converter with the RBFN and FLC-based MPPT techniques. Figure 22 shows that the
suggested RBFN controller produces a higher power than the fuzzy-based controller. MPPT
techniques based on FLC and RBFN are compared and given in Table 6.

The characteristics of a motor at different temperatures of PEFM cells are depicted in
Figures 23–28. At various temperature conditions of the PEFM cell, stator currents (Isa), (Isb),
and (Isc), back EMF (E), torque (Te), and speed (N) of the BLDC motor are given. Table 6
shows the comparison of the output voltage Vdc (V), output current Idc (A), and output
power Pdc (W) of the proposed converter for PEMFC with RBFN and FLC-based MPPT.
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Time Period (S) 0 to 0.3 0.3 to 0.5 0.5 to 0.7 0.7 to 0.9 0 to 0.3 0.3 to 0.5 0.5 to 0.7 0.7 to 0.9

Fuel Cell
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Output current IDC (A) 4.6 4.1 6.7 6.1 3.3 2.8 4.7 4.3

Output power PDC (W) 1197 900 2503 2155 868 645 1788 1536
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7. Hardware Results and Discussions

Table 7 displays the hardware components utilized for developing a prototype of the
recommended non-isolated high gain interleaved DC converter, which is based on fuel cell
technology and capable of producing 1.5 KW of power. Figure 29 shows the experimental
prototype for the proposed DC converter. A 30 V DC supply is chosen as input for the
recommended DC converter for the hardware implementation. An RBFN and FLC-based
controller was implemented to produce gate pulses to the switches S1 and S2, and their
corresponding voltage and current were measured. The proposed control technique is
implemented with a switching frequency of 10 kHz using an FPGA-SPARTAN 6 processor.
The RBFN and FLC-based model is developed in MATLAB and converted to VHDL using
Xilinx-ISE. Thus, the FPGA-SPARTAN 6 generates the gate pulses and is given to S1 and S2.
A 30 V DC is boosted to 370 V by the proposed converter. Three-phase VSI changes the DC
voltage into AC voltage and then distributes it to the BLDC motor. The hardware results of
the suggested high gain converter’s DC voltage (V0) and DC (I0) are compared for both the
RBFN and FLC-based MPPT techniques. The stator currents (Isa, Isb, Isc), EMF (E), speed
(N), and torque (Te) of the BLDC motor were also measured.

Table 7. Components used in the hardware.

Components Parameters

The power MOSFET’s S1, S2 IXTK 62N 25

The diodes D1, D2, D3, D4 RF1001

The diodes D5, D6, D0 MUR1560

The capacitors C0 470 µF

The capacitors C1, C2 4 µF

The capacitors C3 2.2 µF

The capacitors C4, C5 650 nF

Coupled inductors EPCOS B66344

Motor BLDC
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Figure 30 shows the stator current of the BLDC motor for three phases, ISA, ISB, and
ISC, which is about 15 A. Figure 31 shows the position of the rotor signal, which varies
from −25 V to +25 V. Figure 32 depicts the experimental waveforms of the suggested DC
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converter for the RBFN controller. VGS1 and VGS2 are gate pulse voltage for switches S1
and S2, which is 10 V. V0RBFN are output voltages of the recommended high gain converter
where RBFN controller is found to be 380 V. I0RBFN are output currents of the suggested high
gain DC converter where the RBFN controllers are 7 A. Figure 33 depicts the performance
of the BLDC motor for the RBFN controller. The speed, torque, and back EMF of the BLDC
motor for the RBFN controller are 2300 RPM, 30 Nm, and 200 V.
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verter with an FLC controller, is 300 V. I0FLC, the output current of a proposed converter 
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Figure 34 shows the hardware waveforms of the recommended high-gain DC converter
for the FLC controller. V0FLC, the output voltage of the proposed high gain DC converter
with an FLC controller, is 300 V. I0FLC, the output current of a proposed converter with
an FLC controller, is 4.2 A. VGS1 and VGS2 are gate pulse voltages for switches S1 and S2,
which is 10 V for the FLC controller. Figure 35 depicts the performance of the BLDC motor
for the FLC controller. The torque, back EMF, and speed of the BLDC motor for the FLC
controller are 42 Nm, 250 V, and 2000 RPM, respectively. The hardware results depict that
the performance of the recommended converter with RBFN controller is superior to the
FLC controller.
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8. Conclusions

This manuscript suggests a non-isolated high-gain interleaved DC converter for fuel
cell electric vehicular systems. The recommended high-gain DC converter is highly suit-
able for electric vehicular systems. The highlights of the recommended system can be
narrated as,

1. The suggested converter has a conversion ratio of 12.33
2. The duty ratio of the MOSFETs is 0.45
3. The arrangement of switches is an interleaved structure that will provide a smooth,

ripple-free input current.

A radial function network (RBFN) MPPT technique is used to extract the maximum
power from the fuel cell. Also, a comparison is made between the proposed RBFN MPPT
technique and the FLC-based MPPT controller. According to the simulation and hard-
ware results, the RBFN-based MPPT controller tracked the maximum amount of power
quicker than the fuzzy logic-based controller. The dynamic characteristics of BLDC motors
show that the proposed controller is best suited to electric vehicular systems. A future
version of the proposed converter could utilize gallium nitride (GaN) switches, known
for their improved reliability and ruggedness compared to traditional semiconductor
switches. Also, this proposed structure facilitates and contributes to sustainable approaches
in electric transportation.
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