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Abstract: The dramatic growth of online shopping worldwide in the last few years generated negative
consequences for local small retailers who do not adopt information technologies. Furthermore, the
e-commerce sector is considered a good opportunity to develop sustainable logistic processes. To
reach this goal, the proposed paper presents a mathematical model and a metaheuristic algorithm to
solve a multi-objective capacitated vehicle routing problem (CVRP) distinguished by economic, green,
and ethical objective functions. The proposed algorithm is a multi-objective simulated annealing
(MOSA) that is implemented in a software architecture and validated with real-world instances
that differ for the product type delivered and the geographic distribution of customers. The main
result of each test is a tri-dimensional Pareto front, i.e., a decision-support system for practitioners
in selecting the best solution according to their needs. From these fronts, it can be observed that if
the economic and environmental performances slightly deteriorate by 1.6% and 4.5%, respectively,
the social one improves by 19.4%. Furthermore, the developed MOSA shows that the environmental
and social objective functions depend on the product dimensions and the geographic distribution of
customers. Regarding the former aspect, this paper reports that, counter-intuitively, the metabolic
energy consumption per driver decreases with bigger products because the number of necessary
vehicles (and drivers) increases, and, thus, the workload is divided among more employees. Regard-
ing the geographic distribution, this manuscript illustrates that, despite similar traveled distances,
highly variable altitudes cause more carbon emissions compared to flat distributions. Finally, this
contribution shows that delivering small goods decreases the distance that vehicles travel empty by
59%, with a consequent cost reduction of 16%.

Keywords: vehicle routing problem; multi-objective optimization; environmental sustainability; fair
conditions; e-commerce logistics

1. Introduction

During the last 20 years, the percentage of internet users has increased worldwide
from 1.32% to 49.72%, with peaks of 90% in North America and Europe [1]. Along with this
phenomenon, e-commerce utilization is widely expanding thanks to innovation in informa-
tion technology. Concerning Europe, 89% of the population uses the internet and 73% buy
online; in addition, the trend has been increasing over the years, with a tremendous acceler-
ation since 2020 due to the COVID-19 pandemic [2]. E-commerce is distinguished by both
positive and negative impacts on the environment. On the one hand, it could reduce the
emissions of product shipment, due to a shared and joint organization of delivery activities
that increase the efficiency of the logistic system. On the other hand, further e-commerce
aspects, such as the change in consumer behaviors and the consumption geography, could
worsen the environmental performance compared to physical shopping [3]. The expansion
of online shopping especially distinguishes the most important online marketplaces and
delivery applications, like Instacart, which benefitted from a 218% growth in the downloads
of its app in 2020 [4]. On the contrary, local small businesses were negatively affected by
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the pandemic since their consumers were reduced by 35% during the spread of the virus
because of lockdown restrictions [5].

Furthermore, another major trend experienced by society in the latest years is the
importance and relevance that sustainability concepts gained among companies, govern-
ments, and citizens [6]. First of all, in 2015, the United Nations defined 17 Sustainable
Development Goals to be reached by 2030. These goals regard different aspects of the
Triple Bottom Line, i.e., planet, profit, and people, with the aim of performing sustainable
development globally [7]. Indeed, green and social sustainability aspects are becoming
more important, even for the general population, and this sustainable consciousness af-
fects the retailer’s behavior [8]. Furthermore, a survey administered in India to report the
aspects that guide consumers’ purchasing choices shows that environmental and social
sustainability highly influences Indian consumers’ preferences [9]. The three sustainability
aspects are also incorporated into the supply chain network to generate a sustainable
supply chain. Indeed, a sustainable supply chain implies the optimization of additional
aspects besides the economic one, like greenhouse gas emissions or social sustainability
themes, and the application of this optimization at all stages of the supply chain, including
distribution and transportation [10]. The problem of goods distribution is widely addressed
by operation research, as a vehicle routing problem (VRP) that is defined as the problem
of distribution of goods between depots and customers to optimize a certain objective
function under a specific set of constraints [11]. In particular, companies often rely on
external actors, called third-party logistics (3PLs), to obtain support for logistic services like
transportation of goods. In recent years, 3PL providers have focused on sustainability for
their routing algorithms and, thus, are requiring innovative models that support them in
evaluating different aspects of the delivery process [12]. Given the increasing importance of
sustainability aspects, VRP models cannot consider just the economic one while optimizing
product delivery. In particular, a more appropriate approach should simultaneously con-
sider multiple goals to reach while defining the transportation routes to ensure the overall
sustainability of these logistic activities from several points of view, e.g., environmental,
social, and economic. This multiplicity of objective functions often generates a tradeoff that
must be managed appropriately through multi-objective optimization methods [13]. One
of the most adopted approaches is the Pareto front, which represents the set of solutions
distinguished by the best tradeoff among all the objective functions considered [14].

This paper aims to fill the gap in the environmental and social sustainability of product
delivery for local e-commerce platforms by developing a multi-objective VRP that takes into
account not only the economic aspect but also the green and ethical ones. A mathematical
formulation of the VRP is provided, and the problem is solved through a multi-objective
metaheuristic algorithm that allows the construction of an efficient tri-dimensional Pareto
front. This metaheuristic leverages different local search (LS) operators that, at each itera-
tion, are selected through an adaptive algorithm with a probability based on their previous
performance. The innovative part is represented by the fact that the adaptive method has
not been widely adopted within the literature for a multi-objective problem. Moreover, the
developed algorithm is tested with different realistic instances that simulate an e-commerce
platform for local small producers and retailers in the region of Trentino (Italy).

The remainder of this paper is structured as follows: Section 2 presents a literature
review on VRPs, focusing on environmental and social aspects and multi-objective opti-
mization algorithms. In Section 3, the methodology is explained in detail. In particular,
in Section 3.1, the problem is accurately described, and the mathematical optimization
model is defined with all its objective functions and constraints, while Section 3.2 proposes
the multi-objective heuristic with adaptive features to obtain an optimal Pareto front for
such a problem together with all the LS operators tested. Section 4 describes the different
instances; Section 5 analyzes the results provided by testing these; and in the last section,
some general conclusions and further research are provided.
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2. Literature Review

VRPs have been studied for several decades. One of the most common problems
is the capacitated VRP (CVRP) in which the only constraint is the capacity, in weight
and/or in volume, of the vehicles [15]. This model designs the routes respecting these
capacity constraints. Dell’Amico et al. [16] solve CVRPs through an adaptive iterated local
search (ILS) whose peculiarity is the dynamic adaptation of the parameters of the algorithm
according to the previous results obtained along with the iterations. The ILS is characterized
by two phases called exploration and exploitation, which are widely used in neighborhood
search heuristics. The former is often performed through inter-route LS operators, which
consist of node movements between different routes, and it helps to explore new areas of the
solution environment. The latter phase is achieved through intra-route LS operators, which
displace nodes inside the same route and help improve the neighborhood solutions of the
current one [17,18]. Several contributions that leverage LS operators are distinguished by a
blind use of them, that is, they do not consider the performance of the different operators
during the algorithm iterations. Ropke and Pisinger [19] propose an adaptive selection of
the LS operator to use at each iteration according to the solutions generated by each LS
operator in the previous iterations. Although adaptive algorithms are widely adopted in
single-objective problems, even when dealing with the latest topics like electric vehicles [20]
and parcel lockers [21], they are still rarely implemented to address multiple goals [22].

One gap related to the aforementioned papers is that they only address an economic
objective function, while in recent years, sustainability gained great importance both in the
scientific community and in public opinion. In detail, a new branch of research defined as
“Green VRP” considers the environmental impact of transportation in the formulation of
mathematical models. Several contributions only analyze the impact of traveled distance
on the environment by applying a constant carbon emission value per kilometer during the
computation of the environmental measure [23,24]. However, different studies on vehicle
emissions proved that environmental performances depend not only on this aspect but also
on vehicle speed and road gradient [25]. Regarding road gradient, Costagliola et al. [26]
demonstrate, through several tests on two different vehicles, that CO2 emissions are linearly
correlated to road gradient, and Hickman et al. [27] provide detailed equations to evaluate
this for different gradient classes. To compute the impact of road gradient on pollutant
emissions, Dhital et al. [28] propose adopting the height profile instead of the elevation
of each single node, since this latter does not account for the height variation during
the path. However, the literature review on routing problems shows that sustainability
is mainly considered from the environmental point of view, with limited focus on its
social aspects [29]. Some researchers deal with social sustainability in terms of route
balancing among drivers [30]. In the literature, this aspect is generally represented by the
distance traveled or the number of customers served by each driver, which affect also the
economic performance of the logistic process [31,32]. Another area of research focuses on
the ergonomic aspects of the VRP, addressing social sustainability as an energy balance
among all the drivers. Indeed, drivers can spend at most a certain portion of their daily
energy capacity for delivery activities. Moreover, during the workday, they are likely to
spend energy by performing two different activities, i.e., goods loading/unloading and
vehicle driving. Therefore, the goal of each problem is the delivery node assignment to
vehicles to balance the routes in terms of the metabolic energy spent by each driver during
a workday [33]. According to the National Institute for Occupational Safety and Health
(NIOSH) [34], people are distinguished by different levels of energy capacity according to
their physiological characteristics, such as gender and age. This statement suggests that
the energy balance of the routes must also take into account the type of driver employed
for each vehicle since the working energy capacity varies according to his/her personal
characteristics [35]. The major limitation of the aforementioned contributions deals with
the fact that they only consider the social dimension of delivery activities, completely
ignoring the economic one, which remains an important aspect of any VRP. Halvorsen-
Weare and Savelsbergh [36] deal with the equity topic in a bi-objective CVRP to optimize
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both economic and social objective functions by testing different equity functions and
finding the one that could minimize and balance the social performance of the drivers.

This paper deals with three goals, economic, green, and social, to fill the gap of the
simultaneous evaluation of multiple aspects. A simplified approach leveraged to manage
multiple objectives is the generation of a single objective function that includes all the
objectives weighted according to their importance in the tackled problem [37,38]. However,
multi-objective optimization is traditionally adopted to solve this kind of problem, and
the solution is usually given by the so-called Pareto front. This is the set of all the non-
dominated solutions to a problem. A non-dominated solution has no solutions superior
to it once all the objective functions are considered. Therefore, with a move along the
front, an objective can be improved only by deteriorating another one [39]. The Pareto
front contains solutions that can be optimal in relation to the others. Indeed, it represents
a tool to detect the possible optimal solution and it does not act as a selector, since the
decision concerning which solution to choose is left to the decision-makers [40]. Different
methods can be implemented to define the Pareto set of optimal solutions. Matl et al. [41]
solve a multi-objective optimization problem by developing heuristics to be embedded
into the ε-constraint method, which is a novelty compared to the exact algorithms adopted
since then. A trend of algorithms widely used in multi-optimization problems is rep-
resented by evolutionary algorithms, like Nondominated Sorting Genetic Algorithm II
(NSGA-II) [42,43] or strength Pareto evolutionary algorithm II (SPEA2) [44,45]. In addi-
tion, path-dependent search algorithms, like multi-objective simulated annealing (MOSA),
are widely adopted in research. For instance, Sekkal and Belkaid [46] propose a MOSA
to simultaneously minimize the makespan and the resources cost in a parallel machine
scheduling problem.

This paper describes the development of a MOSA algorithm to solve a tri-objective
problem that deals with economic, environmental, and social aspects of VRP. The first
objective is composed of the cost of fuel consumption, which is dependent on distance
traveled, and the cost of vehicles and driver employment, which are dependent on time
worked. The second one describes the total quantity of CO2 emitted by the transportation
system, which depends on an emission factor adjusted according to vehicle velocity and
road slope. The latter objective represents the balance in the energy consumption of
operators. Indeed, this objective function tries to minimize the maximum metabolic energy
consumption of order delivery and, by doing so, it also balances the metabolic energy load
among all the drivers. The generation of a neighborhood solution inside the metaheuristic
algorithm is achieved through four different LS operators, which are adaptively chosen
during the MOSA iterations according to their performance. The proposed algorithm
is validated with two groups of different instances of an e-commerce platform based in
the region of Trentino (Italy). The first group contains three instances characterized by a
different kind of product delivered. Indeed, the products delivered in the three instances
are, respectively, small and light-weight products (such as books), medium-sized products
(such as fruit and vegetable boxes), and big and heavy products (such as furniture). On
the other hand, the second group of instances is characterized by different geographical
distributions of customers. In detail, these instances contain customers located respectively
around the city of Trento (Italy), all over the region of Trentino (especially in the most
populated cities), and in Trentino’s most remote areas such as mountains and valleys. This
research provides different Pareto fronts and key performance indicators (KPIs) for the
different instances that support users or practitioners in selecting the solution that most fits
their needs.

3. Methodology

The targeted problem is faced through a quantitative method divided into two steps.
Firstly, the mathematical model of this CVRP is formulated, including parameters, variables,
constraints (especially the capacity one), and the three objective functions that represent
the economic, environmental, and social sustainability aspects. Then, since VRP is an NP-
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hard problem, a multi-objective metaheuristic algorithm is developed and implemented
to efficiently solve it. This metaheuristic is based on simulated annealing acceptance and
stopping criteria and, at the end of its run, it provides a Pareto front that includes all the
non-dominated solutions of the problem since in multi-objective situations there is not a
single optimal one. In particular, a solution is non-dominated if it is better than the others
in at least one objective function. These two steps of the defined methodology are described
more specifically in the next two subsections.

3.1. Problem Definition and Mathematical Model

The problem to address in this research regards the delivery process of a local e-
commerce platform, and it consists of a CVRP since it is distinguished by a fleet of vehicles,
all departing from and returning to a central depot, which delivers goods to a set of
customers in a specific time period without exceeding their weight and volume capacity.
Each vehicle is directed by a driver, each customer must be visited by a single vehicle,
and all the customers must be serviced within the defined time period, e.g., workday. The
peculiarity of the targeted problem is the evaluation of two additional objective functions
besides the economic one, which are the environmental and social sustainability of the
proposed VRP represented, respectively, by the total amount of CO2 emitted in a workday
and the metabolic energy consumption of operators during the activities of driving and
delivering goods. Indeed, this problem defines delivery routes that allow vehicles to emit
as little emissions as possible by also considering collateral aspects like vehicle speed
and height profile of the routes. In addition, the proposed mathematical model suggests
distinguishing the drivers by their personal characteristics because, according to multiple
physical features, people have different daily metabolic energy capacities and, thus, they
can adequately fulfill different energy loads [34]. The specific problem faced is represented
in Figure 1 in which the map presents information about elevation and each route is
distinguished by the drivers’ personal characteristics; thus, the routes cannot be assigned to
any driver indistinctly. This aspect is extremely important to balance the metabolic energy
consumption among drivers since the same quantity of absolute metabolic energy spent
has a different impact on the different drivers according to this description. The goal of
this problem is the optimization of the economic, environmental, and social performances
of the targeted CVRP. The economic key performance indicator (KPI) is an average cost
per order, and it is determined by variable costs that include the hourly cost of drivers and
vehicles, which are dependent on the travel time and the time needed to deliver goods
to the final customer, and a fuel consumption cost, which is dependent on the distance
traveled. The environmental KPI is determined by an emission factor, which is dependent
on the vehicle speed and height profile, multiplied by the distance traveled on each arc
because each one of these arcs (i,j) distinguishes different values for the two aforementioned
characteristics. Finally, the social KPI is defined as the maximum ratio over the different
drivers between the metabolic energy consumption in a time period and his/her available
metabolic working energy capacity and this latter KPI should be minimized in order to
simultaneously reduce the personal metabolic energy spent for delivery activities and
balancing the working energy load among all the drivers of the considered CVRP. An
original mathematical model is developed to represent such green, fair, and profitable
CVRPs and a multi-objective metaheuristic algorithm is defined and implemented with
different LS operators to assign customer orders to vehicles and define their routes to
simultaneously optimize the three afore-described KPIs.
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In this section, the proposed mathematical model is described in all its components as
parameters, variables, objective functions, and constraints. The targeted problem can be
defined as a graph G = (N, A), where N = 0, . . ., n is the set of nodes such that 0 is the depot
and 1, . . ., n are the customers and A = 1, . . ., a is the set of all possible arcs that connect
the nodes such that A = {(i,j): i ̸= j ∀i,j ∈ N}. The arcs are traveled by K light-duty vehicles
(LDVs), which also represent the drivers with their specific personal characteristics, e.g.,
age, gender, and weight. Each arc (i,j) is characterized by a distance dij, a travel time tij,
and, consequently, an average speed vij, which depends on which type of streets the arc
represents, e.g., primary, secondary, and residential. This average speed determines the
reference emission factor εij (gCO2/km) of each arc (i,j) through Equation (1) presented in
Hickman et al. [27]:

εij =
(

0.0617·v2
ij − 7.8227·vij + 429.51

)
·ψ, (1)

where ψ is the parameters that take into account the technological advancement of vehicles
in terms of emission rate reduction. The reference emission factor is adjusted with a factor
dependent on the road gradient of the street, which is based on the elevation of the starting
and ending points. To increase the reliability of this formulation, instead of a constant
average slope from the starting point I to the ending point j, the height profile of each arc is
considered. Each arc is divided into several links s of constant length l (km) by sampling
points of the path at a constant resample distance. Then, the road gradient is computed
between each link by taking adjacent points’ elevations and computing the gradient. In
addition, these sampled points are matched to a digital road network to locate them on the
map [47]. The road gradient rgs in each link s is calculated as follows:

rgs =
elz − elz−1

l
·100 , (2)

where elz and elz−1 are the altitudes above sea level (a.s.l.) of two consecutive points z and z
− 1 of the path (Figure 2). The road gradient rgs is, therefore, used to compute the correction
parameter f ′s due to the road slope of each link s, which are calculated through Equation
(3), where coefficients h2, h1, and h0 depend on rgs according to Hickman et al. [27]:

f ′s = h2·v2
ij + h1·vij + h0 , (3)
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The presented correction factor is leveraged to assess the emission factor εij and,
therefore, calculate the environmental performance of the entire VRP solution. Each
customer i requests a delivery order that is distinguished by a specific demand weight
wi (kg) and demand volume voli (m3), and which contains a certain number of items ni.
These data enable the computation of the average weight of a customer’s single item wsi
(kg/item), which is extremely relevant for computing the social performance of this CVRP,
particularly for evaluating the operators’ lifting activities. Indeed, it is supposed that the
operator lifts each item separately. Furthermore, vehicles are supposed to be identical in
type, weight capacity W, and volume capacity V, which cannot be exceeded during the
routes of the vehicles. Each vehicle is characterized by an hourly rental cost cf (EUR/h),
while the cost of fuel cv (EUR/L) is a variable cost dependent on the distance traveled and
the fuel consumption rate γ (L/km) for the adopted vehicle type. Drivers are characterized
by a total working period T (h), which cannot be exceeded to perform the assigned delivery
activities. Furthermore, an assumption is made that they necessitate a constant amount of
time tser (h) to deliver the order to the customer’s door once their vehicle already reached
the customer’s address. Moreover, they are distinguished by an hourly cost cop (EUR/h),
which also includes their salary. As suggested by Rattanamanee et al. [35], drivers benefit
from a daily working energy capacity ECk (Kcal/day), which depends on their personal
characteristics, like age and gender. This available energy is required to face the metabolic
energy expenditure during his/her activities due to two main components. On one hand,
the energy spent in driving (ed

k), which depends on the unitary value of metabolic energy
consumed to drive (δ), the body weight of the driver k (BWk), and the time spent in driving
activities during the working day [48], as presented in Equation (12). On the other hand,
the second component of the operator k daily energy expenditure derives from lifting the
order of customer i (el

ik), which can be calculated as proposed below [49] in Equation (4):

el
ik = α′·

[
β′

k + α′′ ·BWk·α′′′ + β
′′
k ·wsi·α′′′′

]
, (4)

where β′
k and β′′

k are coefficients related to the personal features of the driver k, such as
age and gender, while α′, . . ., α′ ′ ′ ′ are general coefficients for the computation of the energy
expenditure in lifting goods.

The first variable of the proposed multi-objective optimization problem is xijk, which
is a binary one equal to 1 if arc (i,j) ∈ A is traversed by vehicle k and 0 otherwise. Moreover,
yik is a binary variable that is 1 if node i is visited by vehicle k and 0 otherwise. The last
variable is Ek, which represents the rate of metabolic energy spent by driver k on his/her
total working energy capacity (also called energy consumption rate). The list of parameters
and variables of the mathematical model is reported in Table 1.
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Table 1. List of parameters and variables of the proposed multi-objective CVRP.

Parameter Description Units of Measure

N = 0, . . ., n Set of nodes, including depot {0}
A = 1, . . ., a Set of arcs

s Index for the links that compose an arc
K Fleet size (and n◦ of drivers)
i,j Indices which represent the nodes
z Index which represent the sampled points within an arc
k Index which represents a specific vehicle (and its corresponding driver)

dij Distance of arc (i,j) km
tij Travel time of arc (i,j) h
vij Average speed of arc (i,j) km/h
εij Emission factor of arc (i,j) gCO2/km
ψ Actualization coefficient for the emission factor
l Constant length of each link s km

rgs Road gradient of the link s %
elz Elevation a.s.l. of the point z m
f ′s Road-gradient correction parameter for link s
wi Demand weight of the order placed by customer i kg

voli Demand volume of the order placed by customer i m3

ni Number of items ordered by customer i items
wsi Average weight of the customer i single item kg/item
W Weight capacity of the vehicle kg
V Volume capacity of the vehicle m3

cf Hourly cost for fleet rental EUR/h
cop Hourly cost of the operator EUR/h
cv Cost of fuel EUR/L
γ Fuel consumption rate L/km
T Total working period h

tser Service time to deliver the order to the customer door, once the vehicle already
reached the customer address h

ECk Working energy capacity of driver k Kcal/day
BWk Mass of driver k kg

δ Energy unit expenditure to drive Kcal/kg·h
ed

k Metabolic energy consumed by driver k in driving Kcal/day

el
ik

Metabolic energy consumed by driver k to load/unload the items of the order
placed by customer i Kcal/day

β′k, β”k Coefficients related to the personal features of the driver k, as age and gender
α′, . . ., α′ ′ ′ ′ General coefficients to compute the energy consumption due to lifting activities

Variable Description Units of Measure

xijk 1 if vehicle k travels arc (i,j); 0 otherwise
yik 1 if vehicle k visits node i; 0 otherwise
Ek Energy consumption rate %

Once the variables and parameters of the targeted multi-objective CVRP are defined,
the mathematical optimization model is represented in the following Equations (5)–(18),
with Equations (5)–(7) showing the three objective functions and Equations (8)–(18) show-
ing the problem constraints. Equation (5) defines the economic objective function that
represents the average cost per single order. It includes a variable cost due to the hourly
cost of vehicles and drivers and a variable cost due to the cost of fuel, due, thereby, to
the distance traveled. The former cost depends on the total travel time and tser, which is
multiplied by the total number of customers serviced. Equation (6) describes the environ-
mental objective function in which the emission factor, corrected according to the road
height profile, is multiplied by the distance of each single link. Equation (7) measures the
social objective function that leverages a min–max approach to minimize the maximum
energy consumption rate among the different drivers. This approach simultaneously op-
timizes two aspects because it balances the load assignment to drivers and pushes down
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the maximum energy expenditure. Constraints (8) and (9) assess that each customer node
can be visited by the same vehicle just once since in the same route vehicle delivers all the
customer goods in a single visit. Constraints (10) and (11) represent the capacity constraints
in terms of the weight and volume of the vehicles. Constraint (12) details the computation
of the energy spent in driving activities by each driver k because this value depends on the
body weight of the worker. Constraint (13) evaluates the metabolic energy consumption
rate of each driver k. In this equation, the metabolic energy spent by driver k for lifting
activities (el

ik) is multiplied by four because it is supposed that each driver performs two
lifting activities at the depot (from warehouse to the ground and from the ground to the
vehicle) and two lifting activities at the customer node (from vehicle to the ground and
from the ground to the customer). Moreover, since el

ik is the energy expenditure for a single
item, it is multiplied by the number of items ordered by the customer. Constraints (14) and
(15) ensure that drivers do not exceed their capacity in terms of metabolic energy and time,
respectively. Finally, constraints (16) to (18) limit the feasible values of the three variables
of the targeted VRP.

minFeco =

(
cop + c f

)
·
[
tser·(n − 1) + ∑i,j∈ N tij·

(
∑K

k=1 xijk

)]
+ cv·γ·∑i,j∈N dij·

(
∑K

k=1 xijk

)
n − 1

, (5)

min Fenv = ∑K
k=1 ∑i,j∈N

(
∑s∈(i,j) f ′s ·εij·l

)
·xijk, (6)

minFsoc = max
k=1,...,K

{Ek}, (7)

which are subject to the following:

∑i∈N xijk = 1 ∀j ∈ N\{0}, k = 1, . . . , K, (8)

∑j∈N xijk = 1 ∀i ∈ N\{0}, k = 1, . . . , K, (9)

∑i∈N wi·yik ≤ W k = 1, . . . , K, (10)

∑i∈N voli·yik ≤ V k = 1, . . . , K, (11)

ed
k = δ·BWk·∑i,j∈N

(
tij·xijk

)
k = 1, . . . , K, (12)

Ek =
ed

k + 4·∑i∈N ni·el
ik·yik

ECk
·100 k = 1, . . . , K, (13)

ed
k + 4·∑i∈N ni·el

ik·yik ≤ ECk k = 1, . . . , K, (14)

tser·∑iϵN yik + ∑iϵN ∑jϵN, i ̸=j tij·xijk ≤ T k = 1, . . . , K, (15)

xijk ∈ {0, 1} ∀i, j ∈ N, k = 1, . . . , K, (16)

yik ∈ {0, 1} ∀i ∈ N, k = 1, . . . , K, (17)

Ek ≥ 0 k = 1, . . . , K, (18)

Since classical VRPs are well known for being NP-hard problems, as well as their
further multi-objective evolutions, they cannot be solved optimally in a limited time and
with limited computational capacities. Indeed, heuristic or metaheuristic algorithms are
traditionally implemented to efficiently solve such VRPs. Thus, a customized metaheuristic
multi-objective algorithm is developed to solve the targeted CVRP proposed in this research,
and it is presented in the following section.

3.2. Adaptive Metaheuristic Algorithm

The presented CVRP includes three different objective functions. Therefore, it is
necessary to adopt a multi-objective metaheuristic algorithm to determine not a single
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optimal solution but a set of non-dominated solutions for the tackled problem. This set
represents the Pareto front, which is a useful tool for decision-makers to deal with the
trade-off among different objectives of a specific problem. For example, by analyzing this
front, it is possible to select a solution that significantly improves a specific function with
a limited worsening of another one. The metaheuristic adopted to solve this problem is
MOSA, which adapts the simulated annealing (SA) algorithm to a multi-objective context.
The flowchart in Figure 3 presents the following steps of the proposed MOSA with adaptive
features. In particular, the first step is the initialization of specific parameters and random
generation of a predefined number of initial solutions. From this set, MOSA creates the
first archive of non-dominated solutions checking the non-domination condition of each
of these. In particular, a solution is non-dominated if there are no other solutions that
outperform this for all the considered objective functions. The second step of MOSA
consists of selecting a random non-dominated solution from the archive as the reference
one s* to start the SA loop from a temperature temp equal to Tmax. At each temperature
temp, two coefficients nn1 and nn2 are computed through Equations (19) and (20). These
coefficients represent the regular intervals at which the selection processes of the reference
solution, Process_1 and Process_2, respectively, are executed. In detail, the former process
represents a random choice from the archive of the reference solution, while the latter
represents the choice as the reference solution of the one with the highest distance from the
others. Indeed, Process_2 is adopted to generate solutions around the most uncrowded
points of the Pareto front.

nn1 = int(−a1·temp + b1), (19)

nn2 = int(a2·temp + b2), (20)

where a1, a2, b1, and b2 depend on the number of iterations in the algorithm. Indeed, at
the beginning of the MOSA, Process_1 is more frequently selected than Process_2, and
the frequency of the selection of Process_2 increases with the advancement of the MOSA
number of iterations. For the other iterations, in which neither Process_1 nor Process_2 are
activated, s* results from the previous algorithm iteration.

Once defined, the reference solution s*, an LS operator, is implemented to perturb it
and generate a neighbor solution s′. This new solution is compared to each of the solutions
in the archive to update it. In detail, s′ is added to the archive if it is non-dominated.
Therefore, some of the solutions in the archive could be removed if they are dominated
by s′. If one of the Pareto solutions dominates s′, this latter does not concur to define the
Pareto front but it could be selected as the reference solution s* for the next iteration of the
MOSA with a probability computed in Equation (21). In particular, the probability to select
s′ as the new s* is computed as the product, for each objective o ∈ O, of the exponential
of the difference between the objective function calculated for s′ (fos ′ ) and the objective
function calculated for s* (fos*) divided by the current temperature temp.

prob = ∏O
o=1 exp

−
(

f s′
o − f s∗

o

)
temp

, (21)

Once, for each value of temp, the MOSA reaches N_iter iterations, temp is decreased
by a reduction rate λ, and as soon as temp reaches the boundary value Tend, the MOSA
algorithm stops and it gives, as a result, the final archive of the non-dominated solutions.

In this paper, the generation of a new solution s’ is carried out through four different
LS operators, two inter-routes and two intra-routes (Figure 4):
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• Inter-route operators:

a. Relocation: This operator moves a node of a route to a different one. In detail,
the removed node, the starting route, and the arrival route are chosen randomly
while the position of the node in the arrival route is the one that minimizes the
total distance traveled of that route.

b. Swap: This operator swaps two nodes of two different routes. In particular, the
routes and the swapped nodes are chosen randomly while the new position on
the route is the one that minimizes the total distance traveled of each route.

• Intra-route operators:

a. Replacement: This operator moves a node of a route to another position of the
same route. In particular, it moves the node to a position different from the
starting one, which minimizes the total distance traveled on the route.

b. 2-opt: This operator changes the connection of two non-adjacent arcs of a route.
In particular, it swaps the final node of the first arc with the beginning node of
the second arc and reverses the direction of the arcs between the two selected.
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The choice of which LS operator to implement at every iteration of the MOSA is taken
adaptively according to the past performance obtained by each LS operator. This adaptive
feature proposed is based on the work of Ropke and Pisinger [19] and consists in, firstly,
dividing the MOSA iterations into segments, which are represented by a constant number
of iterations (N_seg) within which the weights of each LS operator do not change. The
score πo of each LS operator o represents its performance in the last N_seg iterations and it
is set to zero at the beginning of each segment. At each iteration of a segment, πo of the
selected LS operator o is increased by a score-adjustment parameter according to the quality
of the new solution obtained by the operator. These score-adjustment parameters have a
constant value during the entire MOSA run in such a way that the higher the parameter
the better the quality of the solution generated by the LS operator. The peculiarity of the
proposed method is the multi-objective nature of the metaheuristic algorithm, which leads
to a novel definition of the score-adjustment parameters compared to the literature. Indeed,
in a multi-objective problem, there is not a global optimum but a set of non-dominated
solutions. Thus, the score-adjustment parameters are set as follows:

• σ1 → if the new solution s′ identified in the paper is non-dominated and has not been
found yet;
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• σ2 → if the new solution s′ identified in the paper is dominated but still accepted as
the new reference solution for the following iteration and has not been found yet.

Therefore, the score πo is computed as the sum of the score-adjustment parameters
obtained by the LS operator o during the last N_seg iterations based on the quality of its
generated solutions. Every N_seg iteration of the segment sg, the weight of each LS operator
o for the following segment sg + 1, i.e., po,sg+1, is updated as follows:

po,sg+1 = po,sg·(1 − r) + r·πo

θo
, (22)

where θo is the number of times the LS operator o is selected during the segment sg while r
is the reaction factor, which controls the relevance of the past performance of a LS operator
compared to the performance during the last segment. The operator selection at each
iteration is performed using a roulette wheel principle. Here, if n LS operators are adopted,
the probability Pw

o to select a specific operator o is computed according to its relative
weight in the current segment:

Pw
o =

po

∑n
i=1 pi

, (23)

4. Case Study and Developed Software Architecture

The proposed MOSA with adaptive features is validated in multiple case studies
distinguished by diverse kinds of products delivered and diverse dimensions of the area
where the customers are located.

Indeed, the first group of instances is distinguished by the same set of customers,
all located around the city of Trento, but different types of ordered products, and it is
defined as Group P (Table 2). The values of the parameters for the three product categories
considered are set according to real values of each product category. The first product
type is characterized by small dimensions and weight, as well as multiple number of
items requested per single order, for example, books and electronic devices (Instance P1).
Therefore, a large number of orders of this product type can be transported in a single
truck. The second type of product is distinguished by bigger dimensions and weights but a
smaller number of items per single order, and typical products that fall into this category
are fruit or vegetable boxes (Instance P2). Finally, the third type of product represents
typical deliveries of furniture, and, thus, it is characterized by significant dimensions and
weight but very small requests per single order (Instance P3). While the first two types of
products are usually distinguished by standard dimensions, the furniture is distinguished
by different dimensions according to the specific product so the average volume varies
within a specific range and it is not a fixed value.

Table 2. Instances of group P and the values of weight, dimensions, and number of items for each
of them.

Instance Product Type Average Single Weight
per Item [kg]

Average Single Volume per
Item [m3] ni [unit]

P1 Books and electronic
devices

Normally distributed
between 0.6 and 1.5 7.06 × 10−4 Normally distributed

between 1 and 10

P2 Fruit and vegetable
boxes

Normally distributed
between 4 and 7 4.80 × 10−2 Normally distributed

between 1 and 4

P3 Furniture Normally distributed
between 18 and 25

Normally distributed between
1.12 × 10−1 and 5.99 × 10−1 1

In the second group of instances, the type of product delivered is equal for all the
instances, that is, the fruit and vegetable boxes, and the difference lies in the geographical
distributions of customers. This group is called Group L and contains three different
instances, as shown in Table 3. The first instance presents customers located around the city
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of Trento, in Italy (Instance L1), the second one is distinguished by customers spread all
over the region of Trentino, especially in the most populated areas (Instance L2), while the
last one contains customers located in Trentino’s most remote areas such as mountains and
valleys (Instance L3). The first instance is distinguished by shorter distances between nodes
than the other two due to customer locations in the main city of the region. Furthermore,
both the second and the third instance are distinguished by orders placed all over the
region of Trentino, while in the third one, customers are located in mountains and valleys
areas. Figure 5 graphically illustrates the customers’ locations in the three instances of
Group L. Appendix A further details the different tested instances. In particular, Table A1
lists additional information about these instances, such as the minimum and maximum
weights or distances among nodes, while Table A2 reports the dataset of the customers’
orders for Instance L1.

Table 3. Instances of Group L, which are characterized by the same type of product ordered but
different customer locations.

Instance Customers Locations

L1 Trento city
L2 Trentino’s most populated cities
L3 Trentino’s most remote areas, like mountains and valleysSustainability 2024, 16, x FOR PEER REVIEW 15 of 36 

 

 
Figure 5. Different customer locations in the instances of Group L: urban distribution on the left and 
regional (up) and mountain (down) distributions on the right. 

To test the proposed metaheuristic algorithm in a realistic environment, all the pa-
rameter values of the mathematical model are set through experimental studies or with 
the support of literature contributions. Appendix B explains in detail the values of the 
parameters adopted and lists them in Table A3.  

The first version of a software program (SWPG) was developed in Python 3.9 lan-
guage to implement the MOSA algorithm. This SWPG used an Intel(R) Core(TM) i7-11700 
@ 2.50 GHz computer to test the different instances with realistic data. For each specific 
instance, the developed SWPG elaborates several pieces of information and provides dif-
ferent results relevant to the considered e-commerce platform. The SWPG is embedded 
into a developed architecture composed of several elements necessary to read the needed 
inputs and print the requested outputs (Figure 6).  

Figure 5. Different customer locations in the instances of Group L: urban distribution on the left and
regional (up) and mountain (down) distributions on the right.

To test the proposed metaheuristic algorithm in a realistic environment, all the pa-
rameter values of the mathematical model are set through experimental studies or with
the support of literature contributions. Appendix B explains in detail the values of the
parameters adopted and lists them in Table A3.

The first version of a software program (SWPG) was developed in Python 3.9 language
to implement the MOSA algorithm. This SWPG used an Intel(R) Core(TM) i7-11700 @
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2.50 GHz computer to test the different instances with realistic data. For each specific
instance, the developed SWPG elaborates several pieces of information and provides
different results relevant to the considered e-commerce platform. The SWPG is embedded
into a developed architecture composed of several elements necessary to read the needed
inputs and print the requested outputs (Figure 6).
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The dataset that contains the customers’ orders for a specific day and the dataset
that contains the driver and vehicle parameters are provided by the online platform to
the database that communicates with the developed SWPG. The polar coordinates of the
customer locations are sent to a docker, which is a container that virtualizes the online
server in a local computer. In detail, the docker used in this research duplicates the features
of the Valhalla server, which is an open-source map service that leverages Open Street
Map (OSM) geographical data, in a local computer, and it provides information about
distance, time, and elevation a.s.l. of specific locations. Since most of the map services are
distinguished by a limit on the number of requests performed by external software and on
the dimension of the considered problem in terms of the number of nodes, the adoption
of a docker enables overcoming these limits. Therefore, the Valhalla docker elaborates
the polar coordinates of the customers and releases three different matrices. The distance
matrix contains the travel distance between each node pair. The travel time matrix presents
the travel times between each node pair and relies on both the real data about the speed
limit on each arc provided by OSM and the related travel distance. These two matrices
are computed through the method “get_distance_travel_time” (Figure 7). In lines 4–5, the
“costing” attribute represents the mean of transportation according to which the distances
and travel times are computed.
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Finally, the height profile matrix contains, for each node pair, a list of elevations a.s.l.
This is due to the fact that each arc is divided into links of constant length and the elevation is
computed for the two extremum points of the link (as exhaustively described in Section 3.1)
through the method “get_height_profile (Figure 8). In lines 7–8, the “resample_distance”
attribute is the constant length (in meters) of each link into which each arc is divided to
compute its height profile. Thus, the output of these lines is a list of elevations a.s.l. of the
extremum points of each link.
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These three matrices are the input of the MOSA algorithm, which offers a 3D Pareto
front with the non-dominated solutions of the tackled optimization problem as output.
This front represents a useful tool for users and practitioners who can select the solution
that mostly satisfies their needs in terms of preferences for the three different objective
functions considered. For the selected solution, the SWPG also offers the users the map
of the drivers’ routes and a JavaScript Object Notation (.json) file with the scheduling of
the customers’ orders to be fulfilled for each driver. This latter is included in the drivers’
interface of the online e-commerce platform. Consequently, at the beginning of the working
day, each driver will receive his/her routing schedule so as to be informed in detail about
his/her trip.

5. Results and Discussion

The execution of the proposed MOSA algorithm through the developed software pro-
gram for each presented case study generated different 3D Pareto fronts from which several
outcomes are obtained. The drawback of this visualization is the difficulty in graphically
analyzing the obtained results. For this reason, this front is represented through the three
bidimensional views where the objective function that is not in the axes is visualized with
a color bar (Figure 9). Since all the solutions that belong to the Pareto front are multi-
objective optimal ones, the bidimensional fronts generated from the 3D one are relevant
representations for the decision-makers to select an efficient and appropriate solution for
their specific requirements, e.g., the one distinguished by the most convenient trade-off
among all the objectives according to the relevance given to each of them. For example,
Figure 9a,b shows a possible decision taken by a practitioner who analyzes the Pareto front.
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In detail, if the practitioner assigns equal importance to the three objective functions, a
proper approach would be to move from the bottom-right solution, which is distinguished
by the best economic and environmental performances but the worst social one, to the
central one (both highlighted through a red circle). This is because the central solution
drastically improves the social objective function compared to the bottom-right one (19.4%),
causing just a slight worsening in the economic and green objective functions (1.6% and
4.5%, respectively). This decision is just one of the potentials that could be defined since
the choice of the final solution to adopt depends on the importance that each practitioner
assigns to each objective function of the problem.
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In a Pareto front, the optimal solutions of the single problem objectives are called
anchor points (APs). Thus, the proposed problem is characterized by three APs, corre-
sponding to the three sustainable objective functions. Table 4 lists the value of the three
objective functions for each AP of Instance L2 to analyze the differences in all the aspects
when considering one AP rather than another one.

Table 4. Value of the objective functions for each anchor point of Instance L2.

AP Feco [EUR/ord] Fenv [kgCO2/day] Fsoc [%]

Economic 9.57 144.8 30.59
Environmental 9.60 144.5 30.98

Social 10.91 181.1 22.28

As expected, each AP minimizes the corresponding objective function. An interesting
aspect is that the economic and environmental APs are very close on the front since the
values of each objective function are similar. This outcome suggests that choosing one of
these two APs is quite similar in terms of overall performance. On the other hand, the
social AP presents very different values for the three objectives compared to the other two
APs. In detail, the social AP improves the social performance of the e-commerce platform
by 27.7% compared to the other two APs, but it worsens the economic one by 13.5% and
the environmental emissions by 25.2%. As already illustrated in Figure 8, two different
outcomes can be generated from the Pareto front through the adoption of the generated
software. The first one is the map visualization of the drivers’ routes. It helps to visualize
a solution and understand the set of clients covered by each driver. Keeping Instance L2
as an example, Figure 10 shows the map of the routes for the social anchor point, e.g.,
the solution that most balances the routes and, thus, assigns a similar number of nodes
to each driver. In this configuration, the customers are represented by a marker with a
number, indicating the order of visiting. These numbers are circled with different colors
that represent the different drivers (e.g., each driver has a different color) so all the nodes
featured with the same color are visited by the same driver. Furthermore, from the overall
visualization, it is also possible to filter by driver to analyze in detail every single route.
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The second outcome obtained through the software from the 3D Pareto front is the
.json file containing the scheduling of each driver. In particular, this file includes the
customers’ addresses sorted according to the sequence of visits and several KPIs regarding
the drivers’ activity, such as the distance traveled, the hours worked, the metabolic energy
consumed, and the number of clients visited. In Table 5, the scheduling of a single driver is
reported for the social AP of Instance L2. The entire .json file for this solution is presented
in Table A4.

Table 5. Scheduling of driver #5 in the social AP of Instance L2.

Driver ID N◦ Visited
Customers

Distance
Traveled
[km/day]

Time Spent at
Work [h/day]

Total Weight
Lifted in Load-
ing/Unloading

Activities [kg/day]

% of Metabolic
Energy Spent Customer Address

#5 6 157.29 3.22 86 21.21

1. Via Adamello, 16,
38086 Madonna di
Campiglio TN (Italy)

2. Via Vallesinella, 19,
38086 Madonna di
Campiglio TN (Italy)

3. Viale Marconi, 15,
38086 Pinzolo TN (Italy)

4. Frazione Godenzo,
38077 Comano Terme TN
(Italy)

5. Via per Belvedere, 2,
38123 Ravina TN (Italy)

6. Via Stella, 9/1, 38123
Ravina TN (Italy)

11. Via Bolghera, 34,
38122 Trento TN (Italy)

12. Via G. G. Tovazzi, 1,
38060 Volano TN (Italy)

The social AP optimizes the social objective function that leverages a min–max ap-
proach. Therefore, the social AP simultaneously minimizes the energy consumption rate
and balances the loads among all the drivers. For the sake of exemplification, Figure 11
shows the maximum and minimum values of three different indicators comparing the
social and economic APs for Instance L2. In detail, these indicators are the number of
clients served by each driver, the total distance traveled by each vehicle, and the energy
consumption rate of each driver. The difference between the maximum and the minimum
values among the different drivers is much wider for the economic AP than for the social
one for all three indicators. For instance, Figure 11a shows that the maximum gap in the
number of customers served among all the drivers in the economic AP is 18, while in
the social AP, this number decreases to 10. Moreover, the maximum gap in the distance
traveled by each vehicle in the economic AP is 182.63 km, while in the social AP, this gap is
equal to 60.25 km (Figure 11b). Finally, the gap in the metabolic energy consumption rate
among all the drivers in the economic AP is 28.95%, while it is only 2.5% in the social AP
(Figure 11c). Indeed, the social AP balances the routes to reach a similar consumption of
metabolic energy among all the drivers, independently of their personal characteristics.
Therefore, the managerial insight coming from this outcome is that the selection of solutions
closer to the social AP leads to more balanced routes in terms of traveled distance, number
of customers, and metabolic energy consumption.
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After a detailed analysis of the social AP, the focus shifts to the environmental one,
which minimizes the total emissions caused by the delivery process. Figure 12 illustrates
the range of the environmental objective function for all the Pareto solutions for the three
instances of Group L, which are characterized by the same product type delivered but
different geographical distributions of customers. Furthermore, this figure shows the range
of the total distances traveled by drivers for all the Pareto-optimal solutions. As expected,
Instance L1 has the least environmental impact since the geographical area covered by this
instance, and, consequently, the traveled distance, is very limited. However, an interesting
outcome regards the other two instances, which are located in the same area (Trentino
region) but have a different geographical distribution of customers. Indeed, Instance L2 is
distinguished by several customers being located in the most populated cities of the region,
whereas Instance L3 includes lots of customers in the mountains or valleys of the region. As
shown by Figure 12, although the total distance traveled in Instances L2 and L3 is similar,
the ranges of the environmental objective function differ drastically. This relevant outcome
is determined by the fact that the customers’ locations in Instance L2 are quite at the same
elevation a.s.l., while in Instance L3, they are distinguished by very different altitudes,
causing an increase in the carbon emissions due to the road gradient. From a managerial
point of view, this result confirms that the green aspect of the distribution process of e-
commerce platforms significantly depends on the orders’ geographic distribution. Indeed,
not just the amount of traveled km but also the characteristics of the traveled road have an
effect on the vehicles’ carbon emissions.
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Since the environmental AP focuses on reducing CO2 emissions, the drivers’ routes are
designed to minimize these ones, favoring the arcs that connect nodes at similar elevations
a.s.l. To emphasize this aspect, a specific driver route in the environmental AP is compared
to the same route in the social one (Figure 13). In detail, the map visualization of the
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two APs is accompanied by the corresponding height profile. This figure shows that the
height profile in the environmental AP fluctuates between 100 m a.s.l. and 300 m a.s.l.,
while in the social one, there are very high peaks and very low valleys, and this significant
change in road gradient dramatically worsens environmental performance. Through this
output, managers can compare the height profile of different routes designed by different
solutions and decide to adopt the one that minimizes altitude fluctuations to optimize the
environmental sustainability of their vehicles. On the other hand, the social AP improves
the social objective function by 26.7%, from 30.06% to 22.06%, compared to the social
objective function in the environmental AP.
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The results section focused so far on the instances of Group L, which are character-
ized by a different geographical distribution of customers but the same type of product
delivered. The instances of Group P, on the other hand, are distinguished by the same geo-
graphical distribution of customers, they are around the city of Trento, but different types
of products delivered. These types are distinguished by different weights and dimensions,
which are relevant parameters to compute social performance. Indeed, the weight of each
item determines the driver’s metabolic energy consumption for lifting activities, while its
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dimensions affect the vehicle capacity employed. The social objective function, divided
between its lifting and driving components, of the social AP is reported in Figure 14 for
all three instances of Group P. Counterintuitively, this goal decreases with the increase of
the product dimensions and weight. In particular, a significant decrement is experienced
comparing the Instances P1 and P2 with P3 since this latter product type is extremely bulky.
This is due to the fact that bigger dimensions of items increase the number of vehicles
(and drivers) needed to fulfill all the order requests. Therefore, the number of orders per
driver is lower in Instance P3 than in the other two instances, and this provides two main
consequences. On one hand, in Instance P3, each driver spends less time in driving activity
than drivers of Instances P2 and P1. Indeed, Figure 15 reports a significant decrease in the
average travel time from 4.55 h/day for Instances P1 and P2 to 1.57 h/day for P3. On the
other hand, the number of lifting activities per driver decreases. Consequently, the social
goal is reduced from 14.2% in Instance P1 to 5.6% in Instance P3 thanks to the decrease of
both the lifting and driving components.
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Regarding the economic performance of the considered problem, results report that
it worsens with the increase in products’ dimensions and weight. Large dimensions
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and heavy weight enable fewer orders to be assigned to each driver, and, thus, vehicles
travel a non-negligible distance empty to come back to the depot from the last customer
to load further big products to be delivered to the following customers. This feature is
not experienced when each driver delivers many orders, since during the delivery trip
to deliver goods, the vehicle simultaneously comes closer to the depot. To assess this,
the economic AP is studied. Figure 15 compares Instance P1, which is characterized by
small products, and Instance P3, which is characterized by big ones, both in the economic
objective function and in the percentage of distance traveled empty by each vehicle. It
illustrates that in Instance P1, the economic objective function is 4.65 EUR/order, with an
average percentage of distance traveled empty equal to 11%, whereas in Instance P3, the
economic objective function is 5.53 EUR/order due to an average percentage of distance
traveled empty equal to 27%. Thus, the delivery of small goods like books or electronic
devices generates a decrease of 59% in the average percentage of distance traveled when
empty by vehicles and an improvement of 16% in the economic performance compared to
the delivery of bigger goods like furniture. Therefore, the managerial implication of this
result is that higher economic performances can be reached by minimizing the distance
traveled when empty by the vehicles since this does not provide any added value to the
e-commerce platform. To accomplish this, small and medium products are preferable since
they allow more flexible solutions that can serve customers while simultaneously coming
back to the depot.

Furthermore, different general KPIs, not related to the specific objective functions,
can be computed. In particular, Table 6 lists, for each tested instance and each anchor
point, results regarding the number of vehicles employed as well as the total and average
traveled distance. It can be observed that big products need three times the number of
vehicles necessary to deliver small and medium ones, and they double the total traveled
distance. Furthermore, this table shows that although Instances L2 and L3 cover the same
geographic area, the latter needs more vehicles and causes an increase of almost 20% in the
total traveled distance. These general KPIs can be useful for practitioners to immediately
observe which AP performs better from an operational point of view in each tested instance.

Table 6. Summary of general KPIs of the tested instances.

Instance
Economic AP Environmental AP Social AP

N◦ Veh. TOT Dist. AVG Dist. N◦ Veh. TOT Dist. AVG Dist. N◦ Veh. TOT Dist. AVG Dist.

P1 3 114.50 38.17 3 122.02 40.67 3 116.27 38.76
P2 3 118.38 39.46 3 118.11 39.37 3 118.01 39.34
P3 10 233.50 23.35 10 235.50 23.55 10 236.00 23.60
L1 3 118.38 39.46 3 118.11 39.37 3 118.01 39.34
L2 7 815.25 116.46 7 818.86 116.98 7 1036.29 148.04
L3 9 977.35 108.59 9 977.35 108.59 9 1196.76 132.97

The last outcome proposed in this section deals with the adaptive feature of the
developed metaheuristic algorithm. In detail, Figure 16 presents both the average frequency
with which each LS operator is selected along the entire MOSA algorithm and the actual
number of times in which these operators are chosen in each segment of the algorithm
for one of the instances tested (L3 in particular). At the beginning of the algorithm, the
two inter-routes operators, namely, swap and relocation, are preferred, while at the end of
the same, the two intra-routes operators, e.g., 2-opt and replacement, are selected with a
higher frequency. In particular, the average percentage of the swap operator evolves from
30% in the initial stage to 11% in the final stage, whereas the average percentage of the
replacement operator evolves from 8% to 25%. This behavior is due to the fact that, in the
beginning, the MOSA algorithm explores a wide area of the solution space through the
inter-route operators, which determine more drastic changes in the reference solution. On
the contrary, in the final steps, it exploits the most promising area of solutions through
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intra-route operators, which slightly change the reference solution. Through the analysis of
the operators’ performance, managers can decide to replace some of them with new ones
or add operators with different features that could enhance either the exploration or the
exploitation phases.
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6. Conclusions

This paper presents the development and implementation of an adaptive MOSA
algorithm to deal with a real-world delivery problem of an e-commerce platform based in
the region of Trentino (Italy). In detail, the addressed problem is characterized by three
objective functions related, respectively, to economic, environmental, and social aspects.
The economic one represents the average cost per single order that the platform should
consider for the delivery process. The environmental one includes the total carbon dioxide
emissions due to delivery activities in a working period. To model the environmental aspect,
the authors propose to consider an emission factor dependent on both the speed of the
vehicle and the road gradient to adequately model the geographical aspect of this mountain
region. Finally, the social objective function consists of the maximum energy consumption
rate among all the drivers. After having developed the mathematical formulation of the
proposed optimization problem, a MOSA metaheuristic algorithm was developed to solve
it. Since four different LS operators are employed, the authors also include an adaptive
feature to iteratively choose the best-performer one. A peculiarity of this research deals
with the different scores of each LS operator, which are modeled to consider multiple
objective functions rather than a single one. The MOSA algorithm is implemented through
a Python-developed software program and tested in different instances divided into two
groups. Group P includes instances characterized by the same geographical distribution
of customers but different types of products delivered, while Group L includes instances
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characterized by the same product type but different customers’ geographical distribution.
The developed software program provides a tri-dimensional Pareto front for each instance.
This front represents a useful representation of the solutions for the practitioners who
have to make order-to-driver assignment decisions. Since all the solutions of the front
are optimal, the decision-maker can select the one that mostly fits with his/her needs,
e.g., trade-off solution. Furthermore, an example of a trade-off solution chosen based
on the Pareto front is presented that highlights how this solution provides a significant
improvement in the social objective function (19.4%) of the e-commerce platform with a very
limited deterioration in the economic and environmental ones (1.6% and 4.5%, respectively).
After a detailed analysis of the entire Pareto front, the APs are carefully assessed, which
are the solutions that optimize a specific objective function. In detail, the work reveals
that the social AP balances different aspects of the delivery process compared to the
other two APs, such as the number of customers assigned to each vehicle, their traveled
distance, and the metabolic energy consumption rate of each driver. For the considered
case study, a thorough assessment reveals that the environmental performance depends on
the geographical distribution of the nodes since the road gradient could significantly vary
among the different instances. In particular, both Instance L2 and Instance L3 cover the
entire region of Trentino, but the former includes nodes at similar elevation a.s.l., while the
latter is distinguished by more frequent oscillations of the height profile of the routes. This
causes a worse environmental performance since the environmental objective function also
depends on the road gradient. For the same reason, the environmental AP avoids routes
with frequent fluctuations in the height profile compared to the social AP.

Regarding instances of Group P, bigger and heavier items delivered improve the social
performance while worsening the economic one. Indeed, since these items need more
space to be stored in the vehicle, the overall number of vehicles needed is higher, and, thus,
the number of nodes assigned to each vehicle decreases. This implies that the metabolic
energy spent by every single driver is reduced, while, on the other hand, since about 30%
of the route is traveled empty by each vehicle in order to come back to the depot, the total
distance traveled by the fleet of vehicles increases as does the economic objective function.

Further research should include the implementation of the developed adaptive MOSA
metaheuristic algorithm for more advanced VRPs, for instance, the one that includes both
pickup and delivery nodes. For this problem category, more constraints occur, and, thus,
the implementation of the LS operators is much more challenging. An additional future
improvement regards the algorithm adopted to solve the targeted problem. Indeed, an
adaptive large neighborhood search is particularly promising to solve several types of
VRPs, but for the proposed problem, it should be adapted to simultaneously tackle multiple
objective functions. Finally, a comparison between different countries can be carried out
to check if the characteristics of each case study could affect the performances of the
distribution process of the local e-commerce platforms.
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Appendix A

This appendix thoroughly describes the tested instances. In detail, Table A1 lists some
additional features of the case study, such as the ranges of customers’ weight and volume
or minimum and maximum distance/elevation within the nodes.

Table A1. Additional features of the tested instances.

Instance Range of
Weight [kg]

Range of
Volume [m3]

Min Distance
[km]

Max Distance
[km]

Min Elevation
[m]

Max Elevation
[m]

P1 0.4–14 0.00071–0.0071 0.060 21.169 180 567
P2 4–26 0.048–0.192 0.060 21.169 180 567
P3 17–26 0.196–0.63 0.060 21.169 180 567
L1 4–26 0.048–0.192 0.060 21.169 180 567
L2 4–28 0.048–0.192 0.163 157.641 64 2035
L3 4–28 0.048–0.192 0.079 169.188 64 2035

The dataset of orders and depot for Instance L1 is used to test and validate the
developed MOSA algorithm (Table A2). This dataset includes information regarding the
address and the polar coordinates for the depot, as well as additional information like the
demand total weight and volume and the number of items ordered for each customer.

Table A2. Dataset of customers’ orders for Instance L1.

Customer Customer Address Latitude Longitude wi [kg] voli [m3] ni wsi [kg]

DEPOT Via Innsbruck, 65, 38121 Trento TN 46.1018703 11.0953068 0 0 0 0

CLI_1 Via Clementino Vannetti, 41, 38122
Trento TN 46.0725117 11.1218721 5.6 0.002824 4 1.4

CLI_2 Via Calepina, 63, 38122 Trento TN 46.066883 11.1230497 3 0.002118 3 1

CLI_3 Via Gianantonio Manci, 6, 38122 Trento
TN 46.06978 11.12172 6.6 0.004236 6 1.1

CLI_4 Piazza Lodron, 9, 38122 Trento TN 46.0680064 11.1232979 8.1 0.006354 9 0.9
CLI_5 Via Brigata Acqui, 19, 38122 Trento TN 46.06541792 11.12915831 4.9 0.004942 7 0.7

CLI_6 Via Missioni Africane, 13, 38121 Trento
TN 46.0801965 11.1262506 2 0.001412 2 1

CLI_7 Via del Brennero, 113, 38121 Trento TN 46.0862567 11.1182416 1.6 0.001412 2 0.8
CLI_8 Via Ponte Alto, 79, 38121 Cognola TN 46.0736462 11.1486234 6.5 0.00353 5 1.3
CLI_9 Via Venezia, 123, 38122 Trento TN 46.069728 11.1363013 6.6 0.004236 6 1.1

CLI_10 Piazza Giannantonio Manci, 14, 38123
Povo TN 46.0659892 11.15452018 5.5 0.00353 5 1.1

CLI_11 Via Mesiano, 40, 38123 Trento TN 46.066808 11.1405825 14 0.00706 10 1.4
CLI_12 Via Aurelio Nicolodi, 36, 38122 Trento TN 46.0616262 11.1353274 1.6 0.001412 2 0.8

CLI_13 Via Umberto Giordano, 6, 38123 Trento
TN 46.0494639 11.1474306 1.2 0.001412 2 0.6

CLI_14 Via Adalberto Libera, 3, 38122 Trento TN 46.05948295 11.11555332 0.8 0.000706 1 0.8

CLI_15 Corso 3 Novembre 1918, 98, 38122 Trento
TN 46.060764 11.124919 4.2 0.004236 6 0.7

CLI_16 Via Enrico Fermi, 12, 38123 Trento TN 46.0469256 11.1264445 0.9 0.000706 1 0.9

CLI_17 Via di Madonna Bianca, 5, 38123 Trento
TN 46.03312845 11.13228259 1.2 0.001412 2 0.6

CLI_18 Via di Stella di Man, 20, 38123 Trento TN 46.03665832 11.13057207 7 0.004942 7 1
CLI_19 Via Berlina, 5, 38123 Ravina, Trento TN 46.0396186 11.1090994 6.6 0.004236 6 1.1
CLI_20 Via Stella, 9/E, 38123 Ravina TN 46.0371586 11.114191 0.9 0.000706 1 0.9
CLI_21 Via Brescia, 19/A, 38122 Trento TN 46.0705724 11.112309 2.2 0.001412 2 1.1
CLI_22 Via Torre Verde, 29, 38122 Trento TN 46.0719552 11.1244405 5.6 0.005648 8 0.7

CLI_23 Via Hermann Gmeiner, 25, 38122 Trento
TN 46.0599676 11.1383921 0.8 0.000706 1 0.8
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Table A2. Cont.

Customer Customer Address Latitude Longitude wi [kg] voli [m3] ni wsi [kg]

CLI_24 Via Ancilla Marighetto Ora, 19, 38123
Trento TN 46.0389755 11.131729 2 0.001412 2 1

CLI_25 Via don Alfonso Anselmi, 38121 Trento
TN 46.0763673 11.1416464 4.2 0.004942 7 0.6

CLI_26 Via del Brennero, 142, 38121 Trento TN 46.08006575 11.12255285 4.8 0.004236 6 0.8

CLI_27 Via Santi Cosma e Damiano, 21, 38121
Trento TN 46.0820164 11.104088 4.2 0.004942 7 0.6

CLI_28 Via Mantova, 19, 38122 Trento TN 46.0680368 11.1240116 0.9 0.000706 1 0.9
CLI_29 Viale Trieste, 25, 38122 Trento TN 46.0649589 11.135579 3.3 0.002118 3 1.1
CLI_30 Via del Bompòrt, 27, 38123 Trento TN 46.0503962 11.1506536 3.6 0.002824 4 0.9

CLI_31 Via di Madonna Bianca, 3, 38123 Trento
TN 46.0330644 11.1318376 8.4 0.004236 6 1.4

CLI_32 Via Fersina, 15, 38123 Trento TN 46.040279 11.1241904 6 0.004236 6 1
CLI_33 Via Santa Croce, 4, 38122 Trento TN 46.0647175 11.1232132 4.4 0.002824 4 1.1
CLI_34 Via Provina, 2, 38123 Ravina TN 46.03835848 11.1156786 2.4 0.002118 3 0.8
CLI_35 Via Gorizia, 60, 38122 Trento TN 46.0611542 11.1322911 7 0.004942 7 1
CLI_36 Via Sommarive, 9, 38123 Povo, Trento TN 46.0678668 11.1503793 7.8 0.004236 6 1.3
CLI_37 Via Ponte Alto, 26, 38121 Cognola TN 46.0730193 11.1484633 5 0.00353 5 1
CLI_38 Via al Vascon, 8, 38122 Trento TN 46.0707678 11.1398733 2.7 0.002118 3 0.9

CLI_39 Via Luigi Caneppele, 31/A, 38121 Trento
TN 46.0972409 11.1027616 6.3 0.006354 9 0.7

CLI_40 Via Tommaso Gar, 21, 38122 Trento TN 46.0673166 11.1172685 1.4 0.001412 2 0.7
CLI_41 Via Giuseppe Giusti, 20, 38122 Trento TN 46.061068 11.1187935 2.8 0.001412 2 1.4
CLI_42 Via S. Pio X, 53, 38122 Trento TN 46.0547863 11.1204256 2.4 0.001412 2 1.2
CLI_43 Via Vittorio Veneto, 134, 38122 Trento TN 46.0589998 11.1250541 10 0.00706 10 1

CLI_44 Via della Malpensada, 88, 38123 Trento
TN 46.0465305 11.1332036 1.5 0.002118 3 0.5

CLI_45 Via dei Viticoltori, 5, 38123 Trento TN 46.03216046 11.13264804 7.7 0.004942 7 1.1
CLI_46 Via Ragazzi del ‘99, 13, 38123 Trento TN 46.0373822 11.1267424 12 0.00706 10 1.2
CLI_47 Via S. Rocco, 2, 38123 Trento TN 46.0383422 11.1456782 8.4 0.004236 6 1.4

CLI_48 Via Alcide Degasperi, 130, 38123 Trento
TN 46.04885915 11.12603933 2.2 0.001412 2 1.1

CLI_49 Via del Ponte, 15, 38123 Trento TN 46.0419377 11.112834 10.4 0.005648 8 1.3

CLI_50 Lungadige Marco Apuleio, 58, 38121
Trento TN 46.07218515 11.11541823 9 0.006354 9 1

CLI_51 Via Vittorio Alfieri, 1/3, 38122 Trento TN 46.0701909 11.1215643 6.5 0.00353 5 1.3
CLI_52 Via S. Pietro, 38, 38122 Trento TN 46.0691856 11.1242758 7.7 0.004942 7 1.1
CLI_53 Via Enrico Conci, 76, 38123 Trento TN 46.0395199 11.138199 3.5 0.00353 5 0.7
CLI_54 Via Luigi Einaudi, 56, 38123 Trento TN 46.0523237 11.1282468 3.2 0.002824 4 0.8

CLI_55 Via padre Eusebio Chini, 101/1, 38123
Trento TN 46.0521408 11.1324653 3.5 0.004942 7 0.5

CLI_56 Via Znojmo, 24, 38123 Povo, Trento TN 46.0545732 11.1511239 6 0.00706 10 0.6
CLI_57 Via Salè, 7, 38123 Trento TN 46.0618208 11.1522019 0.9 0.000706 1 0.9
CLI_58 Via Santa Croce, 67, 38100 Trento TN 46.0633434 11.1243886 11 0.00706 10 1.1

CLI_59 Via Card. Cristoforo Madruzzo, 24, 38122
Trento TN 46.06373927 11.12090676 1.2 0.000706 1 1.2

CLI_60 Via Antonio Rosmini, 24, 38122 Trento
TN 46.0677476 11.1186523 5.4 0.006354 9 0.6

CLI_61 Via Alcide Degasperi, 128, 38123 Trento
TN 46.0460736 11.12812796 10 0.00706 10 1

CLI_62 Vicolo dalla Piccola, 12/TERZO PIANO,
38122 Trento TN 46.06324985 11.12309766 10.8 0.006354 9 1.2

CLI_63 Via Fratelli Perini, 141, 38122 Trento TN 46.06064713 11.12272435 9 0.00706 10 0.9
CLI_64 Via Bellavista, 2, 38121 Trento TN 46.08857391 11.13179439 4.2 0.004942 7 0.6
CLI_65 Via del Dos, 3, 38121 Trento TN 46.07933262 11.13139755 1.5 0.002118 3 0.5
CLI_66 Via Gabbiolo, 13, 38123 Trento TN 46.05690205 11.15513618 2.2 0.001412 2 1.1
CLI_67 Via Galassa, 12, 38123 Trento TN 46.0428197 11.14196591 12 0.00706 10 1.2
CLI_68 Via dei Ronchi, 41, 38123 Trento TN 46.0697824 11.16801649 2.7 0.002118 3 0.9
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Table A2. Cont.

Customer Customer Address Latitude Longitude wi [kg] voli [m3] ni wsi [kg]

CLI_69 Via alla Césa Vècia, 11, 38123 Sardagna
TN 46.06279407 11.09981248 11.7 0.006354 9 1.3

CLI_70 Via per Belvedere, 51, 38123 Belvedere
TN 46.0452807 11.10733507 7.2 0.006354 9 0.8

CLI_71 Via IV Novembre, 35/1, 38121 Trento TN 46.10414425 11.11504602 6 0.00353 5 1.2
CLI_72 Via Danilo Paris, 17, 38121 Trento TN 46.09752085 11.10580399 0.9 0.000706 1 0.9
CLI_73 Via Centochiavi, 17/19, 38121 Trento TN 46.09530431 11.12054731 5.2 0.002824 4 1.3

CLI_74 Via Mansueto Mazzonelli, 38123 Ravina
TN 46.03795409 11.10802377 1.8 0.001412 2 0.9

CLI_75 Via Valnigra, 69, 38121 Trento TN 46.05219638 11.1474782 6 0.00706 10 0.6
CLI_76 Via alla Veduta, 74A, 38121 Cognola TN 46.07629864 11.14653324 0.4 0.002824 4 0.1
CLI_77 Località La Vela, 38121 Vela TN 46.0812068 11.10115023 11.2 0.005648 8 1.4
CLI_78 Corso degli Alpini, 14, 38121 Trento TN 46.07877475 11.11900546 2.1 0.002118 3 0.7
CLI_79 Via 25 Aprile, 4, 38121 Trento TN 46.09838646 11.11642566 3 0.001412 2 1.5

CLI_80 Via Giovanni Borsellino, 3, 38123 Trento
TN 46.04748631 11.12917844 2.2 0.001412 2 1.1

Appendix B

This appendix comprehensively describes the values adopted for the parameters of
the targeted problem (Table A3). For instance, the values of the parameters used to set
the intervals of the selection processes in the MOSA are based on the contribution of
Sankararao et al. [50], while the typical simulated annealing parameters, like λ, N_iter, and
Tend are fine-tuned through multiple algorithm iterations. The parameters of the considered
instances are set according to real data. For the sake of exemplification, the vehicle capacity,
both in weight and in volume, is based on typical light-duty vehicle dimensions. In detail,
only 70% of the total capacity of these vehicles is considered to be available since trucks
cannot be loaded completely due to some intrinsic inefficiencies of this activity. Moreover,
the values of the parameters related to operator metabolic energy are based on the literature
contributions. Body weight and working energy capacity of drivers according to their
personal characteristics are taken from the NIOSH report [34], δ is taken from Martnes
and Bere [47], and the values of β′

k and β′′
k and α′, . . ., α′ ′ ′ ′ are obtained with the help of

the contribution of Iqbal et al. [48]. For the tested instances, it is supposed that there are
three different types of drivers with specific personal characteristics that cover multiple
features, i.e., a 35-year-old man, a 35-year-old woman, and a 55-year-old man. Finally, the
parameters related to the adaptiveness of the algorithm, like N_seg, r, σ1, and σ2, are tuned
based on the contribution of Ropke and Pisinger [19].

Table A3. Values of all the parameters of the proposed metaheuristic algorithm and mathemati-
cal model.

Parameter Value Units of Measure

n 80 Customer
N_begin 1000 Iteration

Tmax 200 ◦C
Tend 0.05 ◦C

N_iter n × 40 Iteration
a1 0.1
a2 0.1
b1 30
b2 5
λ 0.9
ψ 0.85
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Table A3. Cont.

Parameter Value Units of Measure

l 0.5 km
W 434 kg
V 3.14 m3

cf 2.9 EUR/h
cop 23.3 EUR/h
cv 1.9 EUR/L
γ 0.07 L/km
T 8 h

tser 0.133 h

ECk

Younger Man (YM):2376;
Woman (W): 1663.2;

Older Man (OM): 1924.6
Kcal/day

BWk YM and OM: 75; W: 60 kg
δ 2.3 Kcal/kg·h

β′k YM and OM: −1.7; W: −1.3
β”k YM and OM: 2.1; W: 2.3
α′ 0.01
α′′ 0.4
α′′′ 0.76
α′ ′ ′ ′ 0.23

N_seg 1000 Iteration
σ1 33
σ2 9
r 0.1

Appendix C

This appendix shows the .json file containing the scheduling of each driver for the
social AP of Instance L2 (Table A4). This file includes the information for each driver ID
regarding the number of customers visited, the total distance traveled, the total time spent
at work, the total weight lifted, and the metabolic energy consumption rate. Furthermore,
this file lists the customers’ addresses sorted according to the sequence of visits during a
working shift.

Table A4. Scheduling of drivers in the social AP of Instance L2.

Driver ID N◦ Visited
Customers

Distance
Traveled
[km/day]

Time Spent at
Work [h/day]

Total Weight
Lifted in Load-
ing/Unloading

Activities [kg/day]

% of
Metabolic

Energy Spent
Customer Address

#1 12 150.45 4.13 131 19.78

1. Via Tamarisi, 2, 38057
Pergine Valsugana TN
(Italy)

2. Viale Dante, 81/G, 38057
Pergine Valsugana TN
(Italy)

3. Via Tadesia, 4, 38057
Sant’Orsola TN (Italy)

4. Frazione Piazzo, 21,
38047 Piazzo TN (Italy)

5. P.za Chiesa, 1, 38016
Mezzocorona TN (Italy)

6. Via Dante A., 5, 38016
Mezzocorona TN (Italy)
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Table A4. Cont.

Driver ID N◦ Visited
Customers

Distance
Traveled
[km/day]

Time Spent at
Work [h/day]

Total Weight
Lifted in Load-
ing/Unloading

Activities [kg/day]

% of
Metabolic

Energy Spent
Customer Address

7. Via Damiano Chiesa, 1,
38017 Mezzolombardo TN
(Italy)

8. Via Kufstein, 5, 38121
Trento TN (Italy)

9. Via dei Masadori, 4,
38121 Gardolo di Mezzo
TN (Italy)

10. Via del Brennero, 142,
38121 Trento TN (Italy)

11. Via Bolghera, 34, 38122
Trento TN (Italy)

12. Via G. G. Tovazzi, 1,
38060 Volano TN (Italy)

#2 10 145.88 3.73 171 22.01

1. Via della Zarga, 81,
38015 Lavis TN (Italy)

2. Via del Carmine, 7,
38015 Lavis TN (Italy)

3. Piazza SS. Filippo e
Giacomo, 2, 38010
Zambana TN (Italy)

4. Via Canè, 136, 38016
Mezzocorona TN (Italy)

5. Via Pizzegoda, 13, 38033
Cavalese TN (Italy)

6. Via Marco, 53, 38033
Cavalese TN (Italy)

7. Via Battisti, 22, 38037
Predazzo TN (Italy)

8. Via Ronchi, 2, 38043
Bedollo TN (Italy)

9. Via del Capitel, 17, 38042
Baselga di Pinè TN (Italy)

10. Piazza S. Maria, 7,
38045 Civezzano TN (Italy)

#3 13 119.49 4.00 148 22.28

1. Via Suor Fabiola Forti, 1,
38010 San Michele
All’adige TN (Italy)

2. Via Don A. Tamanini,
38010 San Michele
All’adige TN (Italy)

3. Corso Giuseppe
Mazzini, 3, 38017
Mezzolombardo TN (Italy)



Sustainability 2024, 16, 1810 32 of 36

Table A4. Cont.

Driver ID N◦ Visited
Customers

Distance
Traveled
[km/day]

Time Spent at
Work [h/day]

Total Weight
Lifted in Load-
ing/Unloading

Activities [kg/day]

% of
Metabolic

Energy Spent
Customer Address

4. Via Arturo de Varda, 10,
38017 Mezzolombardo TN
(Italy)

5. Via Santi Cosma e
Damiano, 21, 38121 Trento
TN (Italy)

6. Via dei Casai, 1, 38123
Baselga del Bondone TN
(Italy)

7. Via di Coltura, 9, 38123
Cadine TN (Italy)

8. Via Alcide Degasperi, 68,
38060 Aldeno TN (Italy)

9. Via Francesco Paoli, 11,
38068 Rovereto TN (Italy)

10. Corso Bettini, 24, 38068
Rovereto TN (Italy)

11. Via della Villa, 28,
38100 Villazzano TN (Italy)

12. Via dei Ronchi, 3, 38123
Povo TN (Italy)

13. Via Ponte Alto, 26,
38121 Cognola TN (Italy)

#4 16 156.56 4.91 188 22.23

1. Via Aldo Moro, 7, 38062
Arco TN (Italy)

2. Via Baltera, 20, 38066
Riva del Garda TN (Italy)

3. Viale Rovereto, 73, 38066
Riva del Garda TN (Italy)

4. Via del Garda, 63, 38065
Mori TN (Italy)

5. Via Cooperazione, 19,
38065 Mori TN (Italy)

6. Via Albino Zenatti, 27,
38061 Chizzola TN (Italy)

7. Via Monte Baldo, 7,
38063 Avio TN (Italy)

8. Via del Lavoro, 18, 38063
Avio TN (Italy)

9. Via XXVII Maggio, 49,
38060 Borghetto TN (Italy)

10. Via del Tambuset, 9,
38061 Ala TN (Italy)

11. Piazza Papa Giovanni
XXIII, 13, 38061 Ala TN
(Italy)
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Table A4. Cont.

Driver ID N◦ Visited
Customers

Distance
Traveled
[km/day]

Time Spent at
Work [h/day]

Total Weight
Lifted in Load-
ing/Unloading

Activities [kg/day]

% of
Metabolic

Energy Spent
Customer Address

12. Via Enrico Fermi,
13/15, 38061 Ala TN (Italy)

13. Località Navesel, 7,
38068 Rovereto TN (Italy)

14. Corso Verona, 4, 38068
Rovereto TN (Italy)

15. Via Lungo Leno
Sinistro, 64, 38068
Rovereto TN (Italy)

16. Piazza S. Valentino, 4,
38060 Noarna TN (Italy)

#5 6 157.29 3.22 86 21.21

1. Via Adamello, 16, 38086
Madonna di Campiglio TN
(Italy)

2. Via Vallesinella, 19,
38086 Madonna di
Campiglio TN (Italy)

3. Viale Marconi, 15, 38086
Pinzolo TN (Italy)

4. Frazione Godenzo,
38077 Comano Terme TN
(Italy)

5. Via per Belvedere, 2,
38123 Ravina TN (Italy)

6. Via Stella, 9/1, 38123
Ravina TN (Italy)

#6 14 126.8 3.97 171 21.16

1. Via Bortolamei, 18,
38057 Pergine Valsugana
TN (Italy)

2. Via de Vettorazzi, 2,
38056 Levico Terme TN
(Italy)

3. SP31, 32, 38030 Telve TN
(Italy)

4. Piazza Municipio, 1,
38050 Castelnuovo TN
(Italy)

5. Via Fratelli, 6, 38051
Borgo Valsugana TN (Italy)

6. Via del Moggio, 17,
38051 Borgo Valsugana TN
(Italy)

7. Via Bartolomeo
Salvadoris, 7, 38052
Caldonazzo TN (Italy)

8. Via Monterovere, 1,
38052 Caldonazzo TN
(Italy)
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Table A4. Cont.

Driver ID N◦ Visited
Customers

Distance
Traveled
[km/day]

Time Spent at
Work [h/day]

Total Weight
Lifted in Load-
ing/Unloading

Activities [kg/day]

% of
Metabolic

Energy Spent
Customer Address

9. Via Guglielmo Marconi,
28, 38052 Caldonazzo TN
(Italy)

10. Via Alessandro
Manzoni, 63, 38064
Carbonare TN (Italy)

11. Via L. Cadorna, 2,
38064 Folgaria TN (Italy)

12. Frazione Mezzomonte
di Sopra, 52, 38064
Folgaria TN (Italy)

13. Via Valentini, 31, 38060
Calliano TN (Italy)

14. Via Giulio Catoni, 106,
38123 Mattarello TN (Italy)

#7 9 179.74 4.08 117 22.10

1. Via Monte Brione, 5,
38062 Arco TN (Italy)

2. Via Pier Antonio
Cassoni, 18 Fr. Pieve di
Ledro, 38067 Ledro TN
(Italy)

3. Via Nuova, 18, 38067
Ledro TN (Italy)

4. Via Santa Lucia, 36,
38067 Bezzecca TN (Italy)

5. Via Giuseppe Garibaldi,
125/C, 38089 Storo TN
(Italy)

6. Via Saverio, 46, 38080
Daone TN (Italy)

7. Via Lungo Lago, 7A,
38018 Molveno TN (Italy)

8. Via Ponte Lambin, 9,
38010 Andalo TN (Italy)

9. Piazza Italia Unita, 16,
38010 Fai della Paganella
TN (Italy)
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