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Abstract: Seaports are perceived as multimodal hubs of the logistics supply chain where various
transport modes intersect to exchange goods shipped by vessels. Increasing trade and capacity
constraints are making this area a major contributor to GHG emissions. National and regional
decision-makers perceive port sustainability as a concern while planning GHG mitigation projects.
However, to plan and conduct successful GHG management programs, it is critical to first develop
an appropriate assessment approach that fits well with the operating and geographical context of the
given port. For heavy-duty trucking activities taking place within such ports, several models and
methodologies for assessing GHG emissions are available, but their generalization is challenging for
many reasons, notably because of the specific features of traffic within the port. Therefore, this paper
presents an assessment model for heavy-duty trucking emissions within a non-containerized port
based on an in-depth study of the traffic per port zone and on parameters drawn from several real
data sources. The GHG model based on road traffic profiles by zone is implemented in a simulation
model for emission evaluation and prediction. The output shows the pattern of GHG emissions by
zone and provides an outlook on how decision-makers could achieve a GHG reduction plan.

Keywords: non-containerized port; GHG emissions model; simulation model; road transport

1. Introduction

As regional, national, and international economic development expands, the demand
for transportation and supply chains grows accordingly. This growth is particularly evident
in the port and maritime sector, which has experienced significant development over the
past two decades [1]. Seaports serve as multimodal logistics hubs where various transport
modes, such as ships, trucks, handling equipment, and locomotives, intersect to facilitate
the exchange of goods. Increasing trade volume and capacity constraints contribute to
the rise in greenhouse gas (GHG) emissions from this sector, impacting both the climate
and public health. Moriarty and Honnery [2] found that transportation accounts for
approximately 20–25% of global energy consumption and carbon dioxide (CO2) emissions,
playing a significant role in climate change. In Canada, the GHG emissions from freight
transportation saw a 54% increase from 1990 to 2020, with road transport being the leading
factor. The transportation sector emitted 159 megatons of carbon dioxide equivalent
(CO2eq) in 2020, representing 24% of Canada’s total GHG emissions [3]. Pachakis et al. [4]
discovered that heavy-duty vehicles (trucks) are the second-largest source of emissions
in ports, followed by ships. Consequently, many ports are investing in GHG mitigation
projects to promote and adopt a more sustainable approach to port operations.

Port activities are targeted for GHG mitigation programs, given their role as logistics
hubs and the increased volume of trucks frequenting the port. In effect, the 2030 and 2050
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horizons successively aim for substantial emission reductions and zero carbon emissions to
avoid the worst-case scenarios of climate change. Implementing GHG reduction policies
are complicated due to several reasons, including the increasing use of road transportation
modes, the energy transition challenges of trucks, and the lack of a standardized and
reliable method of assessing emissions, particularly in a port context. The main challenges
for the latter reason are related to the unpredictable behavior of trucks inside the port and
the choice and availability of attributes that can reliably inform emissions.

This work develops a GHG emissions assessment model for heavy-duty trucking
in a non-containerized port context, based on a framework that derives its parameters
from empirical data about truck behavior inside a port. The term “behavior” pertains to
the actions of trucks in real traffic conditions and their replication within the simulation
environment. This reproduction is detailed through parameters like speed, target area,
delay duration, distance covered, and time spent in the system. It is crucial to note that
while this behavior mirrors genuine traffic dynamics, it does not relate to self-driving trucks
or the conduct of drivers. Furthermore, the model considers the different zones of the
port separately, depending on the type of cargo handled in each zone, thereby providing
more flexibility to account for geographical and operational specificities in terms of route
distances, travel speeds, and loading/unloading times. By accurately modeling truck
behavior, the model can more accurately assess the GHG emissions generated by road
transportation in such non-containerized port contexts, facilitating the development of
effective emissions control strategies.

Tracking and detection systems are implemented in different areas by port authorities,
allowing the collection of valuable data about truck routes, distances, travel, and waiting
times. After analyzing and processing these historical data, the necessary parameters were
obtained to simulate truck behavior in various port zones and calculate the emissions
generated according to a GHG model inspired in part by the San Pedro Bay ports of
Long Beach and Los Angeles [5]. This method provides GHG emission factors based on
truck speed, which we were able to compute for our case. While the San Pedro Bay Ports’
approach considers GHG emissions as well as other local pollutants such as nitrogen oxides
(NOx) and diesel particulate matter (DPM), this paper focuses solely on the three main
gases contributing to global warming, CO2, methane (CH4) and nitrous oxide (N2O), as
this is a distinct matter from local pollutant emissions. Due to constraints related to data
availability, we were inspired by this approach and adapted it according to the level of
detail of truck traffic traceability data generally available at a port. Thus, the incorporation
of certain data from San Pedro was not aimed at adopting a pre-existing model but rather
integrating a strategic correlation between emissions by gas type and truck speed. This
methodological approach allows us to propose a distinct and innovative emissions model,
clearly distinguishing itself from other existing models, including that of San Pedro. The
results confirm the importance of perceiving the port as independent zones, with different
emission patterns for each zone based on their attributes in terms of loading/unloading,
travel, and waiting times.

The specific problems and research questions addressed in this work involve exploring
the complexities and challenges associated with implementing a GHG emission model
within the port context, developing a dependable GHG emissions assessment model
for trucks in a non-containerized port, and investigating the impact of port zoning on
emission patterns. This research enables port authorities to identify measures and factors
for consideration when promoting a sustainable GHG reduction program that focuses on
the traffic system and the port’s operational service level.

The organization of this paper is as follows: Section 1 provides a review of pertinent
literature, addressing the complexities and challenges associated with implementing a
GHG emission model within a port context. In Section 2, the methodology employed
for evaluating truck emissions in the port is presented, including the development of
a dependable GHG emissions assessment model for trucks in a non-containerized port.
Section 3 delves into the simulation results and their interpretations, investigating the
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impact of port zoning on emission patterns. Finally, Section 4 offers concluding observations
and future perspectives on this research, discussing the implication of port authorities in
promoting a sustainable GHG reduction program that focuses on the traffic system and the
port’s operational service level.

2. Literature Review

According to the majority of studies and research, there are two main categories of
GHG assessment models: (1) macroscopic models, which can provide estimates of emission
rates in large areas, such as the emissions from trucks in a country, based on a macroscopic
activity (travel time, distance, etc.); (2) microscopic models, which use instantaneous
analysis and adaptation to compute emissions at the scale of a small network (e.g., the
emissions of the truck fleet of a company) [6–10].

Macroscopic models, also known as static models or top-down models, as mentioned
by [11], are used to calculate a national or regional inventory of emissions. Liao et al. [7]
emphasize that “several related parameters in the macroscopic model include: average
speed, travel time, distance, and stop time”. The drawback of this category is that it
generally does not account for factors related to road, driver, and traffic, as reported by [12].
Consequently, planners cannot compare the effects of different scenarios [13]. In the United
States, the first two models for estimating emissions from mobile sources that have been
used are the MOBILE model (Mobile Source Emission Factor Model) of the Environmental
Protection Agency (EPA) and the EMFAC (Emission Factors Model) model of the California
Air Resources Board (CARB). To estimate total emission levels, these two models produce
emission factors depending on the type and age of the vehicle, its average speed, the
ambient temperature, and its mode of operation. However, these models generally fail to
capture road, driver, and traffic factors [12,14].

Microscopic models, also known as dynamic or bottom-up models, require a very
detailed level of data, such as fuel consumption in different speed ranges and driving
conditions; this often leads to very high costs for their implementation. This approach
cannot be applied to national emission inventories according to Elkafoury et al. [11]. In the
opinion of these authors, microscopic models can be classified into two categories. On the
one hand, traffic situation models integrate both speed and traffic conditions (congestion
in urban areas) in the estimation of emissions. Among these models, we can mention
HBEFA (Handbook Emission Factors for Road Transport) and ARTEMIS (Assessment
and Reliability of Transport Emission Models and Inventory Systems). On the other
hand, instantaneous models combine a traffic simulation model and an emission model
to provide a more detailed description of the emission behavior. The PHEM (Passenger
car and Heavy-duty Emission Model) is an example of this approach. In their study,
Kanagaraj and Treiber [15] distinguished two classes of microscopic models. The first is
speed profile emission models, which provide results for local or instantaneous emission
factors related to a single vehicle. The second is modal emission models, which are based
on the vector e(t) of instantaneous emission factors as a function of speed and instantaneous
acceleration modes.

Barth et al. [16] introduced an additional approach to those mentioned above: meso-
models, which lie between the macroscopic and microscopic approaches and aim to com-
bine the advantages of both. The consumption calculated using mesoscale models reflects
the average consumption of a class of vehicles, which often results in some divergence of
results when considering a specific vehicle.

Research works have presented a wide range of specific and accurate fuel consumption
models that have been integrated into traffic simulation models while relying on a wide
range of assumptions and scenarios to estimate emissions. Indeed, simulation is a tool
that enables the construction of an artificial environment with the available data and
the exploration of the effect of a restricted number of parameters [17,18]. Simulation is
frequently used by researchers to analyze and model various problems concerning transport
systems [19]. Arango [20] states that “the use of simulation models for seaport management
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is very common”. Using multiple modeling paradigms, simulation models show detailed
real-world truck operations and can be used to test different operating scenarios as well as to
assess, measure, and predict emissions. The simulation model incorporates all appropriate
characteristics, such as service time, working rules, and working hours [21].

AlKheder et al. [22] utilized PTV Vissim simulation software to evaluate two scenarios
at Kuwait’s Shuwaikh port. The first scenario reflected the port’s initial state without
changes, while the second involved a comprehensive transformation of road infrastructure
and port operations. A comparison revealed significant improvements in all port operations
for the second scenario. For instance, there were an average of 483 stops along a travel
period of 3600 to 4500 s in the first scenario, while the future scenario allowed them to reduce
the number of stops to between 250 and 404 stops, with an average of around 330 stops.
The authors also confirmed the latter scenario’s effectiveness in reducing truck emissions
by almost half (48.9%) due to improved port operations. One of the most frequently used
performance indicators in marine terminals is the time in the system (TS) [23–25]. Azab and
Eltawil [26] defined the TS as the time from the truck’s arrival at the terminal gates to the
time of departure from the port. Chen et al. [27] obtained a reduction in truck TS from 100
to 40 min at port terminals by using a mathematical optimization model. Rajamanickam
and Ramadurai [28] indicated that the TS in a terminal for loading/unloading is around
1 h (h), which is similar to the median TS (51 min) of Los Angeles—Long Beach’s port [29].

According to Neagoe et al. [30], the increase in road freight flows at a bulk cargo
maritime terminal in Australia has a significant impact on the TS. It has been observed
that trucks can be continuously loaded at the terminal within 10 to 12 min, yet the overall
TS for trucks typically exceeds 60 min and, in some instances, extends up to 150 min. It is
also noteworthy that approximately 95% of trucks are unloaded within the first hour after
arriving at the terminal.

Azab and Eltawil [26] developed a discrete event simulation model to study the
effect of various truck arrival patterns on the TS. Consequently, a maximum speed limit
of 18 km/h and a triangular distribution for processing time, spanning 5, 10, and 15 min,
were considered. Huynh et al. [31] observed that the average processing time in a terminal
at the port of Houston for each truck was 3–4 min. Rusca et al. [32] mentioned that the
arrival time between trucks is assumed to be constant (1, 2, or 5 min). Vlugt [33] used an
exponential distribution of truck service times with rates of 0.33, 0.5, and 0.67, which were
derived from the three service times (20, 30, and 40 min). In the same article, the result
of the simulation shows a small difference between Poisson and uniform arrivals in the
average waiting time. In the case of Poisson arrivals, the average daily waiting time per
trucker is assumed to be 11.14 min vs. 10.36 min for uniform arrivals.

Harrison et al. [34] conducted interviews with truck drivers at the Port of Houston,
Texas, and found that waiting times inside the terminal could sometimes exceed 2 h. The
average waiting time reported was 31 min, with a median of 20 min and a standard
deviation of 29 min. Lazic [35] revealed that trucks are responsible for approximately 70%
of emissions at container terminals, primarily due to prolonged waiting times and idling
engines for air conditioning or heating purposes.

Through an optimisation model, Chen et al. [36] reported a theoretical reduction
in trucks’ waiting time from 103 to 13 min on average. Sgouridis et al. [37] produced a
simulation model able to simulate several working days of a container terminal’s import
area. Thus, they used average parameters related to truck activity, such as truck’s load-
ing/unloading time (0.6 min), speed outside the stacking yards (15 km/h), and speed
inside the stacking yards (6.6 km/h). Zhang et al. [38] noted that the nominal speed of
trucks in inland ports and terminals is about 12.96 km/h.

The two modes of truck operations commonly cited by researchers are the standby
mode, during which the truck’s engine is idling, and the travelling mode. In multimodal
terminals, a large number of trucks are put on standby for a long time either to load or
unload goods, or for other activities. One can cite the example of a large proportion of the
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458,000 American long-haul trucks, which travel more than 500 miles per day and can be
on standby between 3.3 and 16.5 h per day according to Stodolsky et al. [39].

Chen et al. [36] aimed to reduce emissions from trucks at maritime container terminals
by creating a model that addresses the truck assignment problem. Their model minimizes
both waiting time and the total number of arrivals. The study evaluated truck emissions
with a focus on waiting time, revealing that a minor adjustment in truck arrival times,
such as shifting 4% of total arrivals from peak to off-peak hours, could significantly reduce
emissions from idling trucks—especially at access gates—by up to a third.

Okyere et al. [40] highlighted the importance of integrating environmental concerns,
such as CO2 emissions, into the development of sustainable transport systems. In the United
States and as part of a San Pedro Bay Port emissions inventory to estimate annual GHG rates,
Starcrest Consulting Group [5] used the California Air Resources Board (CARB) model.
Although the latter develops “low idle” and “high idle” emission rates, the “low idle” rates
have only been used in the emissions inventory. Indeed, these rates are “indicative of a
truck in a queue” for loading or unloading, while the “high idle” rates are intended to
reflect the activity associated with trucks in the port areas.

From the different references analyzed, it appears that the application of a microscopic
model at a port scale is difficult; furthermore, the waiting time represents a challenge for
its evaluation. Simulation models are the most used tool to reproduce the real behavior of
trucks in the port context, but their implementation can be difficult as it requires accurate
and reliable data to correctly estimate truck behavior in the port, based on operational,
geographic, and capacity constraints. The implementation of a GHG model to truck
behavior also faces many difficulties due to the heterogeneity of trucks regarding energy
usage, age, load carried, etc. All these factors are biases for the assessment models presented
in the reviewed literature.

The accurate quantification of GHG emissions from trucks within port facilities re-
quires a multifaceted approach. While there are several models in the literature for assessing
the carbon footprint in a port context, studies addressing GHG emissions associated with
truck states (movement and waiting) within the non-containerized port enclosure are rare.
On one hand, most studies tend to calculate and mitigate emissions at the gates rather
than within the port itself. This can be explained by the complexity of the environment,
the diversity of activities, and the dispersion of emission sources inside the port, making
data collection challenging. On the other hand, most of the research focuses solely on truck
movements, while emissions from waiting, often underestimated and neglected, are equally
crucial. Indeed, emissions generated by truck movements are generally easier to measure
and quantify than those related to truck waiting, which vary considerably depending on
various factors such as traffic congestion and engine regimes (slowing down, stopping,
and starting). Due to this variability, accurately quantifying emissions related to truck
waiting can be challenging. Furthermore, the existing literature focuses on investigating the
carbon footprint within the framework of containerized ports, while few studies address
the carbon footprint in the context of non-containerized ports. This highlights a notable
gap, leaving room for exploration and analysis in the realm of non-containerized ports.

This paper introduces a mathematical model designed to evaluate the carbon footprint
stemming from both the movement and idle times of trucks traversing through a port, from
entry to exit. This model is realized through a simulation that incorporates an in-depth
traffic study across different port areas and stochastic parameters based on real-world data
analysis. The simulation outputs provide a detailed breakdown of GHG emissions for
trucks in various operational states within each port zone, offering actionable insights for
port authorities to direct their efforts toward achieving carbon reduction goals.

3. Methodology

Our comprehensive methodology consists of several key components: the study
area, data collection and processing, and the creation and implementation of both a GHG
emissions model and a simulation model. The simulation model enables the assessment of
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emissions by replicating traffic activities within the port using a scenario analysis approach.
Figure 1 provides a visual representation of the complete framework, which will be detailed
in the following sub-sections.
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3.1. Study Area

Situated on the St. Lawrence River, the Port of Trois-Rivières is a central hub within
an extensive intermodal network that integrates rail, road, and sea transportation for
national and international destinations. Established in 1882, the port plays a crucial role in
regional, national, and international economic development across major industrial sectors.
Strategically positioned halfway between the two main metropolitan areas of Quebec,
Canada (i.e., Montreal and Quebec City), this port is highly sought after as a diversified
transshipment center, handling a wide range of goods such as food, industrial, forestry, and
consumer goods as well as other supplies. Each year, over 43,000 trucks, 10,000 railcars,
and 250 ships access the port to load or unload cargo, with annual traffic consistently
growing beyond 3.5 million metric tons [41]. The port comprises various terminals, which
are categorized into zones based on the types of goods managed, including a general cargo
terminal, grain terminal, and liquid and solid bulk terminal. To enhance the port’s overall
capacity, a new terminal project is slated for construction over a two-year period, which is
expected to result in a significant increase in traffic [41].

For the purpose of this study, the port was divided into distinct zones based on the
types of goods handled in each area. These zones include Zone A, which is a general cargo
terminal; Zone B, a grain terminal; Zone C, a liquid and solid bulk terminal; and Zone D,
a new terminal project designated as Terminal 21. This classification allows for a more
targeted analysis of the port’s operations and their respective emissions.
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At present, there are two access gates for the port. The main access gate (MG) features
three entries and one exit, while the secondary access gate (SG) has one entry and one exit.
Figure 2 depicts the locations of the access gates and the respective zones.
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3.2. Data Collection, Processing, and Analysis

The data employed for this research were derived from various sources, primarily
the port information system. A differentiation is made between access data associated
with the registration of trucks entering and exiting the port and data obtained from a
detection system technology installed in different port zones to record internal traffic.
Additionally, formal data on emission factors and GHG-related global warming potential
were gathered from other sources, ensuring a comprehensive understanding of the port’s
environmental impact.

3.2.1. Historical Access Data

An in-depth analysis of historical access data resulted in us selecting the years 2017–
2019 as the foundational period for the study, specifically to avoid the distortions caused
by the pandemic period. The chosen data were processed to eliminate recording errors
or extreme values related to vehicles outside the scope of our research or exceptional
operations not connected to the port’s routine activities. The historical data encompass
the entry and exit times of each vehicle type (truck, car), access gates (MG, SG), and access
mode (automatic, manual). A method was employed to categorize trucks by destination
zone (A, B, C, and D), as outlined in Section 3.1, considering the geographical specificities
that impact the time spent in the system, the distance traveled, and the speed of traffic
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within the port. The historical access data were utilized to determine the TS distributions
by zone, the inter-arrival time, and the truck flow for each zone.

• Time in the System

From the 2017–2019 access data, the TS is established. Weekly averages serve as
observations to form probability distributions for each port zone. Statistical indicators of
this distribution are depicted by box plots for each zone, as illustrated in Figure 3.
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The TS parameter is a composite variable that includes travel time, waiting time, and
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within the system. To mitigate this dependency effect, we will limit the TS variability to fall
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provided by the port authorities.

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 28 
 

within the port. The historical access data were utilized to determine the TS distributions 
by zone, the inter-arrival time, and the truck flow for each zone. 
• Time in the System 

From the 2017–2019 access data, the TS is established. Weekly averages serve as 
observations to form probability distributions for each port zone. Statistical indicators of 
this distribution are depicted by box plots for each zone, as illustrated in Figure 3. 

 
Figure 3. Boxplot illustrating the distribution of average time spent in the system for different zones. 

The TS parameter is a composite variable that includes travel time, waiting time, and 
loading/unloading time. Its variability can potentially affect the model’s convergence due 
to interference arising from the correlation between the TS and other time components 
within the system. To mitigate this dependency effect, we will limit the TS variability to 
fall between the first (Q1) and third (Q3) quartiles. This data adjustment enables the 
extraction of the most suitable probability distributions for the TS in each zone, as shown 
in Figure 4 for Zone A, Figure 5 for Zone B, and Figure 6 for Zone C. For Zone D, the TS 
is estimated to average 1 hour, comprising 20 min of loading/unloading time (LUT), based 
on data provided by the port authorities. 

Figure 4. TS density function and probability distribution in Zone A. Figure 4. TS density function and probability distribution in Zone A.



Sustainability 2024, 16, 1904 9 of 27Sustainability 2024, 16, x FOR PEER REVIEW 9 of 28 
 

 

Figure 5. TS density function and probability distribution in Zone B. 

 

Figure 6. TS density function and probability distribution in Zone C. 

• Inter-Arrival Time and Truck Flow by Access Gate 
The inter-arrival time (TIA) parameter is calculated based on the daily truck flow 

derived from the average number of trucks visiting the port per year, using the reference 
period of 2017–2019. After data cleaning, the daily number of freight trucks is found to be 
118. However, for construction trucks, the port authority’s forecasts indicate an average 
of 145 trucks per day. As a result, using historical access data, the TS and TIA are 
ascertained. This facilitates the computation of the time spent in the system and the 
distribution of trucks—either freight (Zone A, B, and C) or construction (Zone D)—across 
access gates: 72% through MG and 28% via SG. 

Figure 5. TS density function and probability distribution in Zone B.

Sustainability 2024, 16, x FOR PEER REVIEW 9 of 28 
 

 

Figure 5. TS density function and probability distribution in Zone B. 

 

Figure 6. TS density function and probability distribution in Zone C. 

• Inter-Arrival Time and Truck Flow by Access Gate 
The inter-arrival time (TIA) parameter is calculated based on the daily truck flow 

derived from the average number of trucks visiting the port per year, using the reference 
period of 2017–2019. After data cleaning, the daily number of freight trucks is found to be 
118. However, for construction trucks, the port authority’s forecasts indicate an average 
of 145 trucks per day. As a result, using historical access data, the TS and TIA are 
ascertained. This facilitates the computation of the time spent in the system and the 
distribution of trucks—either freight (Zone A, B, and C) or construction (Zone D)—across 
access gates: 72% through MG and 28% via SG. 

Figure 6. TS density function and probability distribution in Zone C.

• Inter-Arrival Time and Truck Flow by Access Gate

The inter-arrival time (TIA) parameter is calculated based on the daily truck flow
derived from the average number of trucks visiting the port per year, using the reference
period of 2017–2019. After data cleaning, the daily number of freight trucks is found to be
118. However, for construction trucks, the port authority’s forecasts indicate an average of
145 trucks per day. As a result, using historical access data, the TS and TIA are ascertained.
This facilitates the computation of the time spent in the system and the distribution of
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trucks—either freight (Zone A, B, and C) or construction (Zone D)—across access gates:
72% through MG and 28% via SG.

3.2.2. iNode Data Collection

Data are gathered from re-identification sensors (iNode), radar sensors, and connected
truck technologies. The raw data supplied by the port information system are crucial due
to the internal traffic patterns they encompass. Approximately 29 sensors are installed at
various sites within the port areas to record internal truck traffic. The collected observations
primarily concern Zones A and C, while estimates were made for parameters related to
Zone B and the future Zone D, as detailed in the rest of the sub-section.

The data obtained consist of information regarding a sample of routes taken by moni-
tored trucks (raw data of 3650 observations in total). Each route is represented as a sequence
of nodes that specify the waiting time at each node and the travel time between every pair
of nodes. An example of the raw data is provided in Table 1, and a visual representation of
one of the routes can be seen in Figure 7.

Table 1. Original and processed data related to a single truck route observation.

Route Wait Times Travel Times

Raw data MG→ E→ F→ G→ H→ G
→ F→ E→MG

0:01:06→ 0:00:00→ 0:01:49→
0:00:00→ 0:00:06→ 0:09:35→

0:01:57→0:00:08→ 0:00:00

0:02:09→0:01:48→ 0:01:11→
0:00:28→ 0:00:43→ 0:01:40→

0:02:25→ 0:00:57

Computed data 1.62 km Waiting Times = 0.25 h
LUT = 0.16 h 0.189 h
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Advanced processing techniques were employed to extract key parameters that de-
scribe the truck traffic profile in various port areas from the raw data. In the first step of
data processing, the following metrics were calculated for each route:

• Distance traveled;
• Average speed;
• Waiting time;
• Loading/unloading time (LUT);
• Travel time.

The parameters mentioned earlier are calculated by examining the nodes and arcs in
each route, as demonstrated in the following computations:

• Travel time: the total time spent between traversed nodes is computed by summing
the times, resulting in 0.189 h.

• Distance: the total distance between traversed nodes is computed by summing the
distances, resulting in 1.62 km.

• Speed: the average speed is calculated by dividing the distance by the travel time,
resulting in 8.57 km/h.

• Waiting times, including loading/unloading times: the waiting times are determined
by adding up the times recorded at each visited node, resulting in 0.25 h.

• Loading/unloading time: the highest waiting time is defined to be the loading/unloading
time, resulting in 0.16 h.

• Waiting times other than loading/unloading time: the waiting time excluding load-
ing/unloading time is calculated by subtracting the loading/unloading time from the
waiting times, resulting in 0.09 h.

• Time in the system: the total time spent in the system, including loading/unloading
time, waiting time, and travel time is calculated by summing these times, resulting in
0.439 h.

The initial processing of the data reveals the presence of outliers for all parameters;
these are presented in Table 2.

Table 2. Descriptive statistics of raw data after the first processing step, including mean, standard
deviation, minimum, maximum, and quartile values for various parameters.

Stat. Distance (km)
Time (minutes)

Load/Unload Travelling Waiting

count 3650 3650 3650 3650
mean 2.0 34.7 12.4 57.5

std 2.2 30.8 31.1 42.7
min 0.0 0.0 0.0 0.0
25% 0.7 13.2 1.1 28.3
50% 1.5 27.9 2.2 46.3
75% 2.5 43.5 10.1 74.7
max 49.7 213.6 678.6 340.2

The broad range of parameter values observed calls for a detailed treatment to remove
any outliers that may not accurately represent regular freight activity. For instance, speeds
close to zero indicate micro-stopovers along the route, while excessively high speeds
may result from erroneous truck detection. To address these anomalies, we employed a
processing approach that leverages statistical rules and other techniques to identify relevant
observations and their associated probability distributions for each parameter. The steps
taken to achieve this are described below.

• Loading/Unloading Time

The LUT parameter, as mentioned earlier, is estimated as the longest waiting time
registered in a node along a given route. However, this parameter may present outliers,
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particularly when it overlaps with waiting times not related to loading or unloading. These
outliers are illustrated in the box plot shown in Figure 8.
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To remove any outliers and address the distortion of the LUT parameter, we made
adjustments to limit the LUT value between Q1-1.5IQR and Q3 + 1.5IQR. This approach
adheres to statistical rules that remove aberrant values, where Q1 and Q3 are the first and
third quartiles, respectively, and IQR is the interquartile range (Q3–Q1). Figure 9 depicts
the distribution of the LUT observations after this adjustment.
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Zone C (b).

The adjusted observations were used to generate the required probability distributions
of the LUT parameter for Zones A and C, as illustrated in the frequency distributions and
distribution curves presented in Figures 10 and 11. The gamma distribution was found to
be the most suitable for modeling the LUT parameter in both zones. The average LUT for
Zones A and C was validated by comparing it to an empirical study conducted previously
in the port [42].

For the LUT parameter in Zone B, the parameters of a triangular distribution (min,
mean, and max) were also derived from the results of the aforementionned empirical
study [42]. As for Zone D, the LUT parameters were obtained from the port authorities,
who provided data based on past experience from a previous terminal construction. The
LUT in Zone D was observed to range between 15 and 25 min, with an average of 20 min.
These parameters were used to construct a triangular distribution for the LUT parameter in
Zone D.
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• Speed

As depicted in Figures 12 and 13, the captured speeds have outliers that may represent
micro-stopovers between nodes, leading to small speeds or inflated speeds, likely due to
position adjustments of the tracking sensors.
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To address the outliers observed in the captured speeds, the first adjustment step
was to follow the same statistical rule used for the LUT parameter. The output of this
adjustment is shown in the histograms presented in Figure 14. However, to avoid speeds
that are too low or exceed the third quartile, it was determined that the speed should be
adjusted to fall between 5 km/h (minimum truck speed similar to walking speed) and
50 km/h (typical maximum urban traffic speed even if the internal rules of the port limit
the speed to 30 km/h). The frequency and fitting distribution of the adjusted speeds for
Zones A and C are shown in Figures 15 and 16, respectively. For Zone B, the adopted speed
is the average of the speeds observed in Zones A and C, while for Zone D, the speed is set
to be the same as that of Zone A, given their similar average distances.
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• Distance

The distance values of the truck routes also show some aberrations, as can be seen in
Figure 17, which may be due to the internal operational activities of the port. To address
this issue, the statistical rule of interquartile adjustment was applied, which effectively
solved the problem. Two fitting distance distribution probabilities were then performed for
Zones A and C, as shown in Figure 18.
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To generate the triangular distribution probability of the distance parameter, the
value of Point c (mode value) was determined for each zone according to the formula:
max(d)−2(max(d)−median(d))2

(max(d)−min(d)) , where d is the distance. Nevertheless, for Zones B and D, their
respective distance distributions were approximated using measurements from Google
Maps for the specific route that must be followed by trucks visiting these zones, with an
allowance for a 20% deviation in either direction.

Six probability distributions were employed to characterize the historical data, as
summarised in Table 3; they estimate the likelihood of observing parameter values for
travel time, distance, LUT, and speed in different zones of the port area.

Table 3. Probability distributions adopted for modeling various parameters.

Probability Distributions

Zone TS LUT Distance Speed
A Uniform Gamma Triangular Uniform
B Lognl Triangular Normal Uniform
C Weibull Gamma Gamma Uniform
D Uniform Triangular Normal Uniform

3.3. GHG Model Based on the Speed

The GHG emissions model aims to assess the emissions produced by trucks within
the port area. The model considers the two main truck behaviors within the port: wait-
ing and traveling. Waiting includes both loading/unloading and queueing. The model
characterizes the state of the truck and calculates the corresponding emissions for each
state using speed, distance traveled, and waiting time. To calculate travel and waiting
emissions, we established a correlation between speed and GHG emissions for each of the
three primary gases that contribute to global warming: CO2, CH4, and N2O. This approach
draws inspiration from a method used by the San Pedro Bay Ports of Long Beach and
Los Angeles [5]. Other emissions listed in [5] are associated with different air pollutant
emissions but are not GHGs and are thus excluded from our study. Table 4 shows the speed
intervals and the corresponding emissions for trucks.

Table 4. GHG emissions based on the speed of the truck (adapted from [5]).

Speed (mph) CO2 CH4 N2O Units

0 (Idle) 6082 0.6750 0.8982 g/h
5 3691 0.4985 0.5912 g/mi
10 3176 0.3279 0.5082 g/mi
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Table 4. Cont.

Speed (mph) CO2 CH4 N2O Units

15 2609 0.1929 0.4168 g/mi
20 2275 0.1349 0.3633 g/mi
25 2051 0.1027 0.3273 g/mi
30 1880 0.0821 0.3000 g/mi
35 1748 0.0679 0.2788 g/mi
40 1649 0.0576 0.2630 g/mi
45 1580 0.0498 0.2519 g/mi
50 1539 0.0439 0.2453 g/mi
55 1525 0.0392 0.2429 g/mi
60 1549 0.0390 0.2467 g/mi
65 1607 0.0391 0.2558 g/mi
70 1607 0.0391 0.2558 g/mi

From Table 4, we aggregated GHG emissions into gram CO2 eq/mile. To convert the
emission model described in Table 4 into a model in CO2 equivalent units, we used the
values of global warming potential for each type of GHG, as determined by the IPCC [43]:
CO2, CH4, and N2O emissions were multiplied by 1, 25, and 298 respectively. Then,
several regression models were used to interpolate the discrete interval points in Table 4 for
different values of speed for a truck t from st = (0, . . .70) miles per hour to create a smooth
curve that shows a continuous correlation between speed and emissions. A fourth-degree
polynomial model was selected and fitted, with a coefficient of determination of 0.985, to
establish the correlation between speed and CO2 equivalent emissions as demonstrated in

F(st) = 0.0012st
4 − 0.2071st

3 + 13.251st
2 − 387.18st + 6259.1 (1)

where
F(st) denotes the GHG emissions per hour (st = 0) or per mile (st > 0) according to the

speed of the truck.
The fitted model is depicted in Figure 19, and it applies from zero speed, when the

truck is in a waiting state, to 70 miles per hour when the truck is moving. For the waiting
state, the emission model is applied to each waiting hour; meanwhile, in the traveling case,
the model applies to each mile driven.
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Figure 19. Emission regression model based on speed. 
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3.4. The Global Emission Model

The global emissions produced by truck traffic in the port are computed by

GHGGE = ∑z ∑t Etrt,z + ∑z ∑t Ewt,z ; z = Zone A, B, C And D; t = truck 1, 2..n (2)

where
GHGGE denotes the GHG global emissions for the trucks visiting the port.
Etrt,z denotes the GHG emissions of the truck t in travelling state visiting the zone z.
Ewt,z denotes the GHG emissions of the truck t in waiting state visiting the zone z.
The travelling emission is defined as the product of the distance traveled in miles and

the travelling speed emission determined according to Equation (1); it is expressed as

Etrt,z = F(st)Dt,z , st > 0 (3)

where
Dt,z denotes the distance travelled in miles by the truck t in the zone z.

Ewt,z= F(st)WTt,z , st = 0 (4)

WTt,z = LUTt,z + OWTt,z (5)

where
WTt,z denotes the waiting time recorded in hours by the truck t in the zone z.
LUTt,z denotes the loading/unloading time recorded by the truck t in the zone z.

OWTt,z = TSt,z − LUTt,z − TTt,z (6)

where
OWTt,z denotes the other waiting time recorded by the truck t in the zone z.
TSt,z denotes the TS recorded by the truck t in the zone z.

TTt,z = Dt,z/st (7)

where
TTt,z denotes the travel time recorded in hours by the truck t in the zone z.
To validate the emissions model adopted, its predictive results were compared with

those reported in the literature reported for similar contexts. Roso [44] reported that
trucks emit 6000 g/h of CO2 while idling. Quiros et al. [45] reported an emission of
3055 g/km CO2 eq for conventional diesel trucks from the year 2007 in an urban context
with a speed of 7.8 mph. Abou-Senna and Radwan [46] revealed that there is a significant
potential for reducing emission levels at specific travel speeds, particularly between 55
and 60 mph. A study conducted by Barth and Boriboonsomsin [47] revealed a rapid,
non-linear increase in pollutant emissions and fuel consumption when vehicle speeds drop
below 30 mph. Li et al. [48] reported CO2 levels close to 1000 g/km at a speed of 60 km/h
(37.3 mph) for heavy-duty diesel trucks in Beijing. These results show that the adopted
GHG emissions model provides a good outcome and is consistent with some research work
on the port context.

Regarding the epistemological position of the developed model, it appears to lean
more toward the mesoscopic approach. As documented in the literature, meso-models
allow for modeling the carbon footprint and its impacts by combining the advantages of
macroscopic and microscopic approaches. This could be considered an intermediate scale
between a global view and an extremely detailed view. Compared to microscopic models
that focus on individual behaviors and specific entities in real time, meso-models are less
demanding in terms of computational resources and rely on average data to assess the
carbon footprint (as is the case for this work), since the input of the developed model is the
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average speed for a fleet of port trucks. However, the accuracy of meso-models depends on
the quality of the input data.

3.5. Simulation Model

A simulation model was developed using Simio version 15 to evaluate the emissions
generated by trucks within the port. This model aimed to replicate the behavior of trucks
using stochastic parameters derived from historical data, and it incorporated the global
emission model to calculate GHG emissions. The Simio library was utilized to establish the
different flows, entrance/exit gates, and zones (A, B, C, and the new terminal D) within
the port. Stochastic simulation parameters were implemented within various objects and
processes to model truck behavior.

The simulation system comprises two flow sources, each dedicated to a specific vehicle
type: freight trucks and construction trucks. Based on the historical data, it allocates each
vehicle to a specific destination zone and follows a stochastic time schedule tailored to
the assigned area. Then, the simulation assigns stochastic parameters to each truck to
determine their loading/unloading times, speed, and distance. Upon completion of the
time schedule for the zone, the truck leaves the port through a specific exit gate.

To simulate the truck flow for a day, the simulation model is configured accordingly.
The inter-arrival time of trucks is defined as a function of the simulated period divided by
the number of trucks expected to attend the port during that time. To achieve a stationary
state, the simulation model operates for a duration of 30 days. This extended running
time is necessary to plan and conduct simulation experiments effectively. Furthermore,
the simulation model underwent validation through an adequate number of replications,
ensuring convergence towards the mean of its stochastic parameters. This specific count
of replications was chosen to generate results for subsequent analyses. The design of the
simulation model is depicted in Figure 20.

Sustainability 2024, 16, x FOR PEER REVIEW 20 of 28 
 

 
Figure 20. Design of the simulation model. 

Trucks were assigned to specific zones based on probabilities that reflect historical 
traffic flows. These assignments consider several parameters, including distance, speed, 
the duration of loading/unloading, and the overall time spent within the system. To 
calculate travel time, the model divides the distance by the speed. Furthermore, it 
determines other waiting times by subtracting the sum of travel time and 
loading/unloading durations from the total time in the system. The emission calculations 
utilize a regression model that distinguishes between idle (accounting for both 
loading/unloading durations and other waiting times) and travel states. For the idle state, 
the regression emission model assigns emissions equivalent to zero speed, whereas for 
the traveling state, it assigns emissions corresponding to the actual moving speed. These 
calculations are based on the duration of idle states and the distance covered during the 
travel state. The aggregate emission value merges emissions from idling (including both 
loading/unloading and other wait times) and traveling. After completing their activities, 
trucks leave the port, and their emissions are added to the overall emissions count. 
Additionally, Figure 21 demonstrates the integration of the emission model within the 
simulation framework, providing a visual representation of how emissions are computed 
and attributed throughout the simulation process. 
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Trucks were assigned to specific zones based on probabilities that reflect historical
traffic flows. These assignments consider several parameters, including distance, speed, the
duration of loading/unloading, and the overall time spent within the system. To calculate
travel time, the model divides the distance by the speed. Furthermore, it determines other
waiting times by subtracting the sum of travel time and loading/unloading durations
from the total time in the system. The emission calculations utilize a regression model that
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distinguishes between idle (accounting for both loading/unloading durations and other
waiting times) and travel states. For the idle state, the regression emission model assigns
emissions equivalent to zero speed, whereas for the traveling state, it assigns emissions
corresponding to the actual moving speed. These calculations are based on the duration of
idle states and the distance covered during the travel state. The aggregate emission value
merges emissions from idling (including both loading/unloading and other wait times) and
traveling. After completing their activities, trucks leave the port, and their emissions are
added to the overall emissions count. Additionally, Figure 21 demonstrates the integration
of the emission model within the simulation framework, providing a visual representation
of how emissions are computed and attributed throughout the simulation process.
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3.6. Scenario Design

The evaluation scenarios for the simulation model include a baseline scenario as a
reference point and exploration scenarios for assessing emissions under various prospective
contexts. These scenarios are designed to account for the anticipated increase in the number
of trucks visiting the port and the impact of trucks during the construction period. The
data provided by the port authority indicate that the number of freight trucks is expected
to increase by approximately 23% over this period, while construction trucks are forecasted
to average 145 trucks per day.

4. Evaluation Findings and Related Discussion

After validating all the implemented stochastic parameters, the simulation model was
ready to present the results of the emissions evaluation for heavy-duty trucking within the
port. In addition to the baseline scenario, the simulation model was also used to predict
GHG emissions during the construction period of the new terminal. After conducting the
prediction scenario, the results were analyzed and interpreted to gain insights into the
impact of the construction period on GHG emissions in the port.

4.1. Baseline Scenario

The preliminary results of the simulation model, which ran for 365 days, reveal that
GHG emissions from trucks vary depending on the zone within the port. Additionally, the
emission structure within each zone differs based on the truck’s behavior states of moving,
loading/unloading (L/U), and waiting. Table 5 summarizes the results obtained for an
annual activity of 43,286 freight trucks in the different zones of the port. The total annual
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GHG emission amounts to 453 tons, distributed as follows: Zone A (36.2%), Zone B (36.1%),
and Zone C (27.7%).

Table 5. Overall annual result by zone.

Zone Trucks
Number

Distance
(km)

Time (h) GHG Emission (kg CO2eq)

TS LUT Travelling Waiting L/U Travelling Waiting Total %

A 13,714 31,151 18,314 6286 1728 10,301 39,889 58,778 65,373 164,040 36.2
B 15,679 25,186 19,673 2823 1380 15,470 17,916 47,249 98,172 163,336 36.1
C 13,893 15,114 16,184 6918 810 8456 43,901 28,033 53,662 125,596 27.7

Total 43,286 71,451 54,171 16,027 3918 34,227 101,707 134,059 217,207 452,973 100

On average, a truck in Zone A emits 12 kg of CO2eq, distributed as follows: travelling
(36%: 4.3 kg of CO2eq), L/U (24%: 2.9 kg of CO2eq), and waiting (40%: 4.8 kg of CO2eq).
Waiting is the most GHG-emitting behavior for all zones, accounting for 40%, 60%, and
42% of emissions for Zones A, B, and C, respectively. Table 6 and Figure 22 provide further
details on the distance and time spent in the system.

Table 6. Summary of annual results for each zone, including the number of trucks, distances, times
in the system, and emissions.

Zone Trucks
Number

Distance
(km)

Time (h) GHG Emission (kg CO2eq)

TS LUT Travelling Waiting L/U Travelling Waiting Total %

A 16,138 37,260 21,545 7402 2080 12,066 46,970 70,339 76,568 193,878 18.0
B 22,722 36,576 28,540 4085 2021 22,433 25,924 68,771 142,361 237,056 22.0
C 13,857 15,077 16,148 6899 819 8429 43,781 28,093 53,493 125,367 11.6
D 53,688 119,246 53,678 17,913 6619 29,148 113,677 224,724 184,971 523,372 48.5
Total 106,405 208,159 119,910 36,299 11,539 72,076 230,352 391,928 457,394 1,079,674 100
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Figure 23 depicts the average time and emissions per truck for each zone within
the port.

4.2. Emissions Prediction for the Construction Period

The port authorities are anticipating a significant increase in the number of trucks vis-
iting the port during the construction phase, primarily due to the presence of construction
trucks at the new terminal (Zone D). Consequently, the simulation model parameters for
flows and inter-arrival times will change. During this period, the global GHG emission
is projected to double to 3 tons per day and will be distributed among Zones A (18%),
B (22%), C (11.6%), and D (48.5%). Table 6, along with Figure 24, illustrate the numbers
of trucks, distances traveled, and the details of times in the system and emissions for this
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period. These visual aids provide valuable insights into the anticipated impact of increased
truck traffic on emissions and operational efficiency within the port system.
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The total GHG emissions during the construction period are estimated to be 1079
tons annually, which represents a significant increase of approximately 138% compared to
annual emissions under the baseline scenario. The increase in emissions is primarily due
to the rise in the number of trucks using the port in Zones A (2440 trucks annually) and
B (7250 trucks annually) and the trucks involved in the construction of the new terminal
(an average of 145 trucks per day). This increase in truck traffic will result in a significant
impact on GHG emissions within the port system.

Figure 25 illustrates the difference in the additional GHG emissions generated annually
in the predicted scenario (SC1) compared to the baseline scenario (SC0) considering the
incremental number of trucks visiting Zones A, B, and D.

Figure 26 shows the average GHG emissions and time per truck for each zone within
the port.
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4.3. Discussion

The outcomes derived from the simulation model underscore the distribution of
GHG emissions across different zones and truck conditions, providing clear guidance
for targeting and achieving GHG reduction goals. The findings reveal that a substantial
portion of GHG emissions stems from waiting times within the port, making it the primary
contributor. Consequently, priority efforts should concentrate on minimizing this factor.
Chen et al. [49] assert that reducing emissions in ports hinges on diminishing waiting times,
achievable through optimizing truck arrival coordination and upgrading port equipment.

Do et al. [50] suggest that emissions from truck waiting times can be significantly
decreased by restricting the entry times for each truck. Among the most effective strategies
for optimizing truck arrival scheduling is the adoption of a truck appointment system (TAS)
in the USA or a vehicle booking system (VBS) elsewhere [51]. The TAS standardizes truck
arrival rates, markedly reducing waiting times and subsequently curbing CO2 emissions
from heavy-duty vehicles at port terminals [23,52]. Morais and Lord [53] conducted a study
for the Canadian government, affirming the successful implementation of a TAS at the Port
of Vancouver and offering recommendations for its effective adoption elsewhere.
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Additional measures to decrease waiting times encompass documenting the fuel
consumption profiles (such as age, engine speed, etc.) of the port’s truck fleets to pinpoint
inefficiencies, implementing GPS trackers to optimize routes and minimize stops, and
instituting compulsory, recurring training programs for truck drivers. This program aims
to increase awareness of access and traffic issues, discouraging engine idling, and promoting
environmentally responsible choices while on-site.

In Zone C, scrutinizing and diminishing loading/unloading durations could prompt
a re-evaluation of service levels and a reduction in GHG emissions. Nielsen et al. [54]
discovered that at the port of Singapore, appropriate loading/unloading services can
significantly slash truck emissions. They found that emissions decrease by approximately
4% when the time allotted for loading and unloading is capped at 8 or 12 h instead of 24 h.

For Zone A, where emissions predominantly stem from traffic, exploring the feasibility
of a new gate for direct access to loading/unloading zones is recommended, potentially
alleviating congestion between Zones A and C.

Other strategies effective in curbing fuel consumption and GHG emissions involve
substituting low-emission commercial vehicles for the truck-trailers used in intra-port
journeys, promoting the adoption of start–stop systems to shut down engines at standstill,
advocating for biofuels or low-emission alternatives, electrifying freight transport, and
even deploying autonomous trucks. In this context, Massar et al. [55] have analyzed factors
conducive to reducing GHG emissions through vehicle automation.

4.4. Perspectives and Limitations of the Study

As with all scientific research, this study is subject to a number of limitations, which
are listed below:

• Despite the model incorporating stochastic speeds for all trucks, a more intricate
approach to speed within the port can be attained by segmenting routes into a series
of arcs. This segmentation reduces uncertainties linked to employing a single speed
distribution for an entire area. Consequently, the simulation model can allocate
multiple speeds to individual trucks, contingent on their position along the route and
the designated destination zone. Such granularity has the potential to enhance the
accuracy of emission estimates.

• Micro-waiting: The available data do not allow us to analyze stop-and-go situations.
The model could better simulate these critical moments by precisely identifying slow-
down zones.

• Truck characteristics: the robustness of the model could be enhanced by including
other truck characteristics, such as age, engine type, weight, etc.

• Level of service: One limitation of the study lies in its assumption of a constant level
of service irrespective of the number of trucks, which is unrealistic and warrants
revision. In reality, the level of service in a port encompasses the overall quality and
efficiency of port operations aimed at facilitating the swift transportation of goods.
This metric is subject to influence by various factors, including the volume of trucks
within the system.

• The outlook of this study encompasses the following points:
• Truck–Service level correlation: Future studies should explore the relationship between

truck flow and service level. This would help adjust the model to reflect reality
more accurately.

• Studying of the proposed solutions: it would be beneficial to evaluate the real impacts
of suggested solutions, such as the planning of truck arrivals, in order to offer concrete
recommendations for reducing GHG emissions.

• Urban congestion: the integration of congestion simulation along the urban transit of the
truck within the city before/after its entrance/exit in/out the port is crucial to understand-
ing the interactions between port emissions and those of the urban environment.
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5. Conclusions

This study introduces an advanced model to quantify GHG emissions from heavy-
duty vehicles in the specialized setting of non-containerized port interfaces. By rigorously
applying descriptive and analytical statistical methods to real-world data, our model stands
as a testament to our commitment to delivering accurate and relevant insights in the realm
of environmental analysis.

Simulating the intricate behaviors of heavy-duty vehicles within the defined parame-
ters of the port represents a substantial challenge, primarily due to the complexity of the
data processing required. Beyond the fundamental objective of evaluating emissions, this
model serves a pivotal role in pinpointing specific zones or procedures that necessitate
intensified scrutiny and intervention. It aims to identify effective GHG reduction strategies
in areas or operations that warrant heightened attention, contributing to broader, more
impactful environmental conservation efforts.

However, to realize the full potential and applicability of this work, further advance-
ments should focus on a more microscopic scale, delving into individual truck-related
attributes such as age, energy consumption, load, driving behaviors, and engine power.
Each of these elements significantly influences the emissions produced, and their care-
ful consideration is crucial for the development of a more comprehensive and accurate
emissions model.
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