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Abstract: A source-grid-load cross-area coordinated optimal dispatch model based on IGDT and a
wind-photovoltaic-photothermal system is suggested to handle the problem of renewable energy
consumption under large-scale wind power and photovoltaic grid connections. Firstly, the peak
flexibility of a wind-photovoltaic-photothermal co-generation system is investigated to improve the
utilization rate of wind and solar resources. To increase the model’s efficiency and accuracy, the
alternating direction multiplier method (ADMM) is used. Finally, arithmetic examples are utilized
to examine and contrast how the system dispatch cost changed under risk-averse and risk-seeking
strategies. It also examines how the installed ratio of concentrated solar power plants affects the
overall cost of the system. The findings demonstrate that the suggested model may achieve a
coordinated optimization of the source, grid and load while lowering system operation costs.

Keywords: renewable energy; cross-regional consumption; power system optimization; concentrated
solar power plant; IGDT; ADMM

1. Introduction

Climate change, environmental pollution, and other issues are receiving more and
more attention. The traditional energy structure based on fossil energy has made it difficult
to meet the growing global energy demand. At the same time, due to the extensive use of
traditional mineral energy, the problem of environmental pollution has become increasingly
severe, posing a serious challenge to the sustainable development of human society. Since
the CO2 emissions of the power industry account for 40% of total national emissions, it
is necessary to fully use renewable energy sources such as wind, solar, and photothermal
energy to achieve low-carbon, economical operation of the power system [1,2].

The concentrated solar power (CSP) plant is a new technology that converts solar
energy into electricity [3]. It can focus solar energy on to a vast mirror, reflect it on to the
collector of the solar power station, and then convert it into heat energy. Such plants are now
widely used in power system scheduling studies. Okundamiya M. S. [4] described the size
optimization of a hybrid photovoltaic/fuel cell grid-connected power generation system,
including hydrogen storage. L. Pilotti et al. [5] constructed a mixed CSP-PV power plant.
They designed the system architecture of a CSP plant with a high degree of integration,
which improves the economics of the power system. To alleviate the negative influence
from the “power determined by heat” of CHP, Xin Li et al. [6] proposed an integrated
energy system with a CSP plant and combined heat and power (CHP), which enhances
the flexibility and low-carbon operation of the power system. Hydrogen production from
renewable energy is also an essential means to improve solar energy utilization. Hongji
Yang et al. [7] used high-temperature electrolytic hydrogen production technology to
convert the heat collected from a CSP plant into hydrogen, thus realizing the coupled use
of electricity-heat-hydrogen. To reduce the carbon emissions of the system, Jianwei Gao
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et al. [8] used carbon capture technology and electricity-to-gas technology to improve the
energy utilization of PV power plants. In summary, using PV power plants can improve
the economy, lower carbon levels, and improve the flexibility of a power system. However,
the above literature only considers the optimization of a single integrated energy system
and does not consider the impact of energy trading between two integrated energy systems
on system scheduling.

Various heuristic algorithms are widely used to solve the problem of economical
low-carbon dispatch of units in complex power systems. Devarapalli Ramesh and Biplab
Bhattacharyya [9] proposed a hybrid improved grey wolf optimization sine–cosine algo-
rithm for adjusting the parameters of the power system stabilizer to realize the optimal
parameter adjustment. Zhang Junbo et al. [10] proposed a data-driven reactive power
and voltage sequence control optimization method. Ruan Guangchun et al. [11] paid
special attention to the coordination between machine learning methods and optimization
models and carefully evaluated how this data-driven analysis can improve rule-based
optimization. Srivastava Abhishek et al. [12] proposed a new meta-heuristic optimization
technology based on AI: enhanced top-of-class optimization. It was used to solve the power
system’s large and complex economic load distribution and combined emission economic
dispatch problems. To address the problem of uncertainty in load and renewable energy
sources in power systems, Ahmad Alzahrani et al. [13] used the Lyapunov optimization
technique (LOT) to solve the real-time energy management problem of power systems.
The methods proposed in the above literature can achieve solutions in models to a high
degree. Nonetheless, they do not apply to the trading game problem involving multiple
power systems.

To achieve the safe and stable operation of an integrated energy system, it is imperative
to consider the uncertainty of many components in the context of a significant proportion of
renewable energy being linked to the grid. Xiao Xu et al. [14] categorized the uncertainties
based on the characteristics of electricity price, load, and customer behaviour and used a
hybrid stochastic model and distributed robust optimization model to measure the uncer-
tainties of the two types of factors, which balanced the economy and conservatism of the
system. Junjie Hu et al. [15] considered the uncertainties of wind power and photovoltaic
power and measured system uncertainty using the conditional risk price-value method to
achieve stable operation. The uncertainty of the system is measured using the dependent
risk-value method, and the regular operation of the power system is performed. In addition
to the uncertainty of load and unit active power, reactive power control is also a meaningful
way to ensure the system’s stable operation. Hao Zuo et al. [16] determined the reactive
power of a system based on the energy status of the system and the boundary of safe oper-
ation and established a reactive power optimization simulation model of a multi-energy
system, which improved the voltage stability of the integrated energy system. Yujia Song
et al. [17] used an interval optimization model to measure the multiple uncertainties of
a hydrogen-based integrated energy system to achieve the safe and stable operation of
the system. User energy behaviour is also an uncertainty factor facing system scheduling;
Xidong Zheng et al. [18] developed a machine learning model to identify the behavioural
states of users participating in demand response, established a special relationship between
the power demand response and the dynamic adjustment of the model, and improved the
efficiency of the model solution. The above literature considered the impact of multiple
uncertainties on systems but did not consider the impact of system uncertainty on the
scheduling results under the influence of uncertainties.

The preceding literature is significant for identifying ways of increasing the level of
renewable energy consumption. However, there are still several issues that need to be thor-
oughly addressed: (1) no in-depth analysis of the complementary peaking capacity of wind
turbines, photovoltaic power plants and photothermal power plants; (2) no consideration
of the risks brought by source–load bilateral uncertainty to the system and no combination
of the system manager’s risk appetite to formulate an optimal scheduling strategy; and
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(3) the optimal scheduling model of the complex power system needs to be improved in
terms of the rate of solving.

In summary, this paper proposes a source-grid-load cross-area coordinated optimiza-
tion model based on IGDT and a wind-photovoltaic-photothermal system to mitigate the
effects of load, wind, and PV uncertainty on system scheduling. In addition, the ADMM
algorithm is implemented to minimize the total cost of solving the problem. Following
this, an arithmetic example analysis is conducted to validate the efficacy of the scheduling
method described in the paper.

2. Cross-Area Interconnection System Model
Sending-End Power System

In an environment with a high proportion of renewable energy at the sending and
receiving end, the wind-photo-thermal-fire co-generation system is constructed as shown
in Figure 1. The system consists of the wind turbine (WT), photovoltaic (PV), gas turbine
(GT), gas boiler (GB), electric boiler (EB), thermal power unit (TP), electric storage system
(ESS), thermal storage system (TSS), and other equipment.
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Figure 1. Energy flow diagram of the sending system and receiving system. 
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wind power and completes the energy time shift at the same time. The energy time-shift 
characteristics of the wind-photothermal joint complementary effect and the addition of 
thermal power units will further enhance the stability of the system operation to ensure 

Figure 1. Energy flow diagram of the sending system and receiving system.

When wind power is significant, the electric heating device can convert part of the
surplus wind power energy into heat energy stored in the heat storage link. In the peak
load period, the heat energy stored in the heat storage link can be converted into electricity
to increase the power generation of the CSP plant, which promotes the consumption of
wind power and completes the energy time shift at the same time. The energy time-shift
characteristics of the wind-photothermal joint complementary effect and the addition of
thermal power units will further enhance the stability of the system operation to ensure the
delivery of power adequacy. In addition to supplying power to the loads at the sending
end, the surplus power is transmitted to the receiving end through the DC contact line.

The receiving system is fed power by DC tie lines and local thermal power units to
meet the load demand. The structure of the receiving system is the same as that of the
sending system and will not be described again here.
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The delivery-end system is centred on a CSP plant equipped with an electric heating
device. The CSP plant consists of three parts: heat collection, power generation, and
storage. The thermal collector converts solar energy into thermal energy and then uses
the thermal conductive mass to transmit the thermal energy. The transmitted thermal
energy is converted into electric energy through the power generation link, completing
the conversion of light-heat-electricity. In the heat storage link, the thermal conductive
mass can carry out a two-way flow of energy, and its stored thermal energy can be used for
power generation at any time.

The thermal energy collected in the heat collection link of the CSP plant can be
expressed as:

Ph
CSP,t = ηshSCSP Is,t (1)

The formula for the electrical energy output of the CSP plant is as follows:

Pe
CSP,t = ηhePhe

CSP,t (2)

The thermal storage model for the CSP plant is as follows:

QTSS,t = (1 − εTSS)QTSS,t−1 + ηc
TSSPh,c

TSS,t∆t −
Ph,d

TSS,t

ηd
TSS

∆t (3)

The internal thermal cycle of the CSP plant satisfies:

Ph
CSP,t + Ph

EB,t + Ph,d
TSS,t = Ph,c

TSS,t + Ph
CSP,loss,t + Phe

CSP,t (4)

where Pe
CSP,t represents the power generated by the CSP plant; Ph

CSP,t is the thermal energy
collected by the light field collector at time t; ηsh is the photothermal conversion efficiency of
the CSP plant; SCSP is the effective area of the light-field concentrating mirror; Is,t is the light
intensity at the time; ηhe is the efficiency of the conversion of thermal energy to electrical
energy in the CSP plant; Phe

CSP,t is the thermal energy consumed by the CSP plant to drive
the turbine to generate electricity at time t; QTSS,t, QTSS,t−1 are the heat storage capacity of
the TSS at time t, t − 1, respectively; εTSS is the rate of self-loss of heat from the TSS; ηc

TSS,
ηd

TSS are the heat storage and heat release efficiencies of the TSS, respectively; Ph,c
TSS,t, Ph,d

TSS,t
are the heat storage and exothermic power of the TSS at time t, respectively; Ph

CSP,loss,t is
the heat loss of the CSP plant; Ph

EB,t is the heat energy produced by the EB at time t.

3. Economic Dispatch Model of a Cross-Regional Interconnected System
3.1. Objective Function

A source-grid-load cross-area coordinated optimization model based on IGDT and
a wind-photovoltaic-photothermal system is proposed to achieve the lowest total system
operation cost. The objective functions of the sending and receiving systems are the same.
The optimization goal of the system operation can be formulated as follows:

minF = Fom + Ftrade

Fom =
T
∑

t=1
λy,omPy,t

Fbuy =
T
∑

t=1
λe

buy,tP
e
buy,t −

T
∑

t=1
λe

sell,tP
e
sell,t

(5)

where Fom and Ftrade are the unit operation and maintenance cost and the electricity trans-
action cost, respectively; λy,om is the operation and maintenance cost coefficient of unit y;
λe

buy,t and λe
sell,t are the power purchase price at time t, respectively; and Pe

buy,t/Pe
sell,t is the

purchased/sold electricity from the primary grid.
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3.2. Constraints

(1) Sending-end system constraints

(a) Energy balance constraints
µe

GBPe
GB,t + Pe

g,t + Pe
buy,t + Pe

v,t + Pe
w,t+

Pe
CSP,t + Pd

ESS,t = Le
t + Pe

sell,t + Pc
ESS,t + Ph

EB,t/ηh
EB,t

µh
GBPh

GB,t + Ph
CSP,t = Lh

t

(6)

where Pe
GB,t, Pe

g,t, Pe
w,t, Pe

v,t, and Pe
CSP,t represent the electric power output of the

GB, TP, WT, PV and CSP plant at time t, respectively; Ph
GB,t, Ph

EB,t and Ph
CSP,t repre-

sent the heating power output of the GB, EB and CSP plant at time t, respectively;
and ηh

EB,t is the EB’s electrical heat transfer coefficient.
(b) The upper and lower output constraints of other units

0 < Pe
w,t < Ppre

w,t
0 < Pe

v,t < Ppre
v,t

Pe
GB,min ≤ Pe

GB,t ≤ Pe
GB,max

Pe
g,min ≤ Pe

g,t ≤ Pe
g,max

Pe
CSP,min ≤ Pe

CSP,t ≤ Pe
CSP,max

Ph
CSP,min ≤ Ph

CSP,t ≤ Ph
CSP,max

Ph
GB,min ≤ Ph

GB,t ≤ Ph
GB,max

Ph
EB,min ≤ Ph

EB,t ≤ Ph
EB,max

Pe
buy,min ≤ Pe

buy,t ≤ Pe
buy,max

Pe
sell,min ≤ Pe

sell,t ≤ Pe
sell,max

(7)

where Ppre
w,t and Ppre

v,t are the predicted output of WT and PV, respectively; Pe
GB,max,

Pe
buy,max, Pe

g,max, Pe
CSP,max and Pe

sell,max represent the maximum electric power of
the GB, purchased electricity, TP, CSP plant, and sold electricity respectively;
Ph

GB,max, Ph
EB,max, and Ph

CSP,max represent the full electric power of GB, EB and
CSP plant respectively; Pe

GB,min, Pe
buy,min, Pe

g,min, Pe
CSP,min and Pe

sell,min represent
the minimum heat power of the GB, purchased electricity, TP, CSP plant, and sold
electricity respectively; and Ph

GB,min, Ph
EB,min, and Ph

CSP,min represent the minimum
heat power of GB, EB and CSP plant respectively.

(c) Energy storage device constraints

This paper uses generalized energy storage modelling for the electric storage and
thermal storage of the CSP plant. The energy storage charge state and power constraints
are as follows:  Qs,t = Qs,t−1(1 − εs) + Pc

s,tη
c
s uc

s,t∆t − Pd
s,tu

d
s,t∆t

ηd
s

Qs,min ≤ Qs,t ≤ Qs,max

(8)



0 ≤ uc
s,t + ud

s,t ≤ 1
uc

s,tP
c
s,min ≤ Pc

s,t ≤ uc
s,tP

c
s,max

ud
s,tP

d
s,min ≤ Pd

s,t ≤ ud
s,tP

d
s,max

T
∑

t=1
Pc

s,tη
c
s ∆t =

T
∑

t=1

Pd
s,t∆t
ηd

s

(9)

where s represents the type of energy storage devices; s = 1, 2 represents ESS and TSS,
respectively; uc

s,t and ud
s,t are binary variables, which refer to the charging and discharging

state parameters of the energy storage device s at time t, respectively; Qs,t is the capacity
of the energy storage device s at time t; εs is the self-discharge rate of energy storage
device s; ηc

s and ηd
s are the charging and discharging power of energy storage device s,

respectively; Qs,max and Qs,min are the charging and discharging power of energy storage
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device s, respectively; Pc
s,min and Pc

s,max are the maximum and minimum charging power of
energy storage device s, respectively; and Pd

s,min and Pd
s,max are the maximum and minimum

discharging power of energy storage device s, respectively.

(d) Network security constraints

−Ll,max ≤ Ll,t =
N

∑
n=1

Gl,nPt,n ≤ Ll,max (10)

where Ll,t is the DC power flow of the power system at time t; Ll,max is the
maximum transmission capacity of line l; Gl,n is the transfer distribution factor of
node n to line l; Pt,n is the active power injection power of node n at time t; and N
is the total number of nodes.

(2) Receiving-end system constraints

The receiving-end system’s balancing restrictions, unit output constraints, energy
storage constraints, and cybersecurity constraints are all identical to those of the sending-
end system. The limitations on the receiving-end system are not stated here.

3.3. Optimization Model Based on IGDT

Information gap decision theory (IGDT) is an optimization technique that may success-
fully deal with system uncertainties. In this sense, information refers to data that introduce
uncertainty into a system and impact the system’s aim. The gap is the difference between
the projected and actual values of the uncertainty. When the system’s uncertain parameters
are difficult to define in terms of probability, the information gap model can be used. The
uncertainty parameter, x, is expressed as follows:{

x ∈ U(α, x∗)
U(α, x∗) =

{
x :

∣∣∣ x−x∗
x∗

∣∣∣ ⩽ α
} (11)

where x∗ is the predicted value of x; α represents the uncertainty radius of the parameter
and α ≥ 0; and U represents the fluctuation range of the parameter. The maximum
fluctuation range of x∗ is ±αx∗.

The scheduling models for the sending- and receiving-end systems are the same. Based
on the IGDT theory, the model is reconstructed using the delivery-end system as an example:

minF(x, v)
s.t. H(x, v) = 0
G(x, v) ⩽ 0

(12)

where F is the objective function; v represents the decision variable; H(x, v) is the model
equation constraint; and G(x, v) is the model inequality constraint.

In this paper, the uncertainty in electrical and thermal loads is modelled using envelope
constraints. The expressions are as follows:

Le
t ∈ U(αL, Le∗

t ), 0 ⩽ αL

Lh
t ∈ U(αL, Lh∗

t ), 0 ⩽ αL

U(αL, Le∗
t ) =

{
Le

t :
∣∣∣ Le

t −Le∗
t

Le∗
t

∣∣∣ ⩽ αL
}

U(αL, Lh∗
t ) =

{
Lh

t :
∣∣∣∣ Lh

t −Lh∗
t

Lh∗
t

∣∣∣∣ ⩽ αL
} (13)

where αL is the uncertainty of the load, i.e., the gap between the actual and predicted values
of the load. The maximum variations between the real and anticipated values of the electric
and thermal loads are denoted by the letters ±αLLe∗

t and ±αLLh∗
t .
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Based on the decision maker’s risk bias, the following expressions are used to build
an opportunity model (OM) and a robustness model (RM):

minαL

s.t.minF(Le∗
t , Lh∗

t , v) ≤ (1 − βOM)F0
∀x ∈ U(αL, Le∗

t , Lh∗
t )

Equation (1)− Equation (10)

(14)


maxαL

s.t.maxF(Le∗
t , Lh∗

t , v) ≤ (1 + βRM)F0
∀x ∈ U(αL, Le∗

t , Lh∗
t )

Equation (1)− Equation (10)

(15)

Equation (14) is the OM, which transforms the deterministic model’s optimization
objective Equation (8) into a minimum uncertainty radius, αL, that meets the target cost
of less than (1 − βOM)F0. The smaller the αL obtained by the OM, the more likely the
corresponding decision scheme will have a positive result.

Equation (15) is the RM. The RM transforms the optimization objective of the deter-
ministic model Equation (8) into finding the maximum uncertainty radius αL that satisfies
the target cost no larger than (1 + βOM)F0. The bigger αL obtained by the RM shows
that the model is less susceptible to parameter uncertainty, i.e., the better the resilience
is. βRM and βOM are cost deviation factors created by the decision maker to indicate
the level of permissible deviation of the predicted cost above or below the benchmark
value, respectively.

3.4. Model Solution

In this paper, the ADMM algorithm is used to solve the problem. The advantage of
the ADMM algorithm is that it can make full use of the decomposability of the objective
function, and then alternately optimize the multivariate variables in the objective function
to improve the feasibility of the solution. The ADMM algorithm consists of the original
residuals and the dyadic residuals as the two convergence parameters. When the actual
residuals and the pairwise residuals of the transaction volume of the sending system and
the receiving system satisfy the convergence accuracy, the model exits the iteration and
obtains the optimal solution. The computational principle of the ADMM algorithm is
described in the literature [15] and will not be repeated in this paper.

Considering the system’s preference for risk, this paper constructs an IGDT-based
inter-area dispatch model of a power system to balance the economy and stability of the
two systems. The model solution process is shown in Figure 2.
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4. Example Analysis
4.1. Input Data and Scenario Setup

(1) Input data

This example is based on the power grid development plan of a region. According
to the planning data, each region’s installed capacity and installed share are as shown in
Table 1. The day-ahead forecast values of WT and PV output and load for a typical day are
as shown in Figure 3.

Table 1. Power supply installation data of the sending end system.

Installation Capacity Proportion

Wind Power 1200 23.24%
Photovoltaic 900 17.43%
Photothermal 1800 34.86%

Thermal Power 1163 22.53%
Gas boilers 100 1.94%

Final Assembly Machine 5163 100.00%
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Figure 3. Basic data. (a) Forecast value of electricity/heat load in the sending and receiving areas;
(b) Forecast value of PV/WT output in the sending and receiving areas.
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(2) Scenario setup

Three scenarios were investigated to analyze the optimization effect of the proposed
system scheduling model. The scenario details are listed in Table 2.

Table 2. Scenario classification.

Scenario 1 2 3

CSP plant
√ √ √

IGDT
(risk-seeking strategy) ×

√ √

IGDT
(risk-averse strategy) × ×

√

4.2. Operation Analysis

(1) Scheduling results

The amount of electricity traded, the total dispatch cost of the receiving system, and
the total dispatch cost of the sending system for the three scenarios are shown in Table 3.

Table 3. Optimization results of the power system in 3 scenarios.

Scenario Scenario 1 Scenario 2 Scenario 3

Electricity Trading Volume/MW 2875.44 2114.40 1304.11
Sending-end system cost/CNY 28,766 17,690 32,854

Receiving-end system cost/CNY 128,662 81,030 72,297

The load demand is determined under Scenario 1, and the CSP plant is introduced
into both the sending and receiving systems to enhance the utilization of light energy.
Using the receiving system as an example, Figure 4 depicts the scheduling result of the
CSP plant. During the 11:00–17:00 time period, when the light is intense, the CSP plant
transforms the extra light into heat and stores it in the thermal storage system, increasing
the system’s energy efficiency. The receiving system has acquired 2875.44 MW of power
from the transmitting system. The receiving system has a high power buy cost due to the
purchased power, costing 128,662 CNY.
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Figure 4. Scheduling results of the CSP plant for the receiving system.

Compared to Scenario 1, Scenario 2 employs the information gap decision theory to
assess load uncertainty. Scenario 2 uses the opportunity pursuit method, and the system
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can handle multi-source collaborative scheduling under certain conditions. In Scenario 2,
the power purchased by the receiving system fell by 36.00%. The load curve shifted after the
model added IGDT to measure the uncertainty of electric and heating loads. To minimize
the total cost of the receiving system, the power purchased was reduced, resulting in a
58.78% cost reduction. Although the delivery system’s energy sales revenue has declined,
unit operation and maintenance costs have decreased due to low load during specific
periods. Thus, the OM improves the economics of both the sending and receiving systems.

In Scenario 3, the system at both the sending and receiving ends is willing to sacrifice
part of the system’s economy when load fluctuations are severe and to adjust the unit’s
output to ensure system stability. The ADMM technique is used in this paper to solve the
problem efficiently. The model finishes the iteration for the 32nd time, and the iteration
curve is illustrated in Figure 5.
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Under the risk-averse strategy, the sending system adjusts the output of specific units
to maintain electric and thermal balance and minimize the impact of load fluctuation on
the system. In this scenario, the cost of the sending system experiences an increase of
85.72% while the system becomes more resilient. The receiving system unit can satisfy the
load demand with its output. Figure 6 displays the outcomes of the load balance analysis
for both the electric and thermal aspects of the receiving system. The gas boiler units,
WT, PV, and the CSP plant all have positive power. Co-dispatching the different types of
units maximizes their outputs to meet the heat and electricity demand of the system while
minimizing the overall cost of the system. Simultaneously, the thermal and electric energy
storage tanks accomplish a transfer of power in both space and time, thereby increasing the
efficiency of energy use.

Figure 7 shows the charging and discharging outcomes of the energy storage in the
receiving-end system. Energy storage undergoes charging during periods of low demand
and discharging during periods of high demand, thereby minimizing the disparity between
peak and low load levels. Furthermore, to enhance the system’s economy, the receiving
system implemented a further reduction in the quantity of electric energy procured, result-
ing in a 12.08% decrease in system cost. Consequently, implementing the RM improves the
sending system’s resilience and enhances the receiving system’s efficiency.
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Figure 6. Optimized scheduling results in Scenario 3; (a) Electricity balance in Scenario 3; (b) Thermal
balance in Scenario 3.
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The amount of electricity traded at each moment under the three scenarios is shown
in Figure 8. Under the deterministic model, the amount of power purchased by the end-
system is more significant than that in Scenario 2 and Scenario 3 for the periods 0:00–8:00
and 22:00–24:00, which indicates that the load of the system is reduced in these two time
periods after the model applies the IGDT to measure load uncertainty, and the end system
does not have to bear the high cost of purchasing power. Except for 10:00–12:00, the
purchased power of the recipient system in Scenario 2 is more significant than that in
Scenario 3. Under the risk-averse strategy, the recipient system reduces the amount of
energy traded. It increases the output of various types of units to balance the economy and
stability of the system.
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(2) Analysis of CSP plants’ capacity

The proportion of PV access to the grid will further expand in the future, and the
system cost will fluctuate with the change in the installed proportion of the CSP plant,
which affects the system peaking effect. Assuming that the regulating capacity of the unit
remains unchanged, Scenario 3 is used as the base scenario to explore the impact of the
installed proportion of the CSP plant on the system cost of the recipient system. The total
cost of the recipient system under different established proportions of the CSP plant is
shown in Figure 9. When the installed proportion of the CSP plant is in the interval of
[20%, 30%], the system’s total cost gradually increases with the increase in the installed
proportion of the CSP plant. When the installed proportion of CSP plants is in the interval
of (30%, 50%], the total cost of the system gradually decreases with the increase in the
installed proportion of the CSP plant. The reason is that at the initial stage of CSP plant
installation, the O&M cost of the CSP plant increases with the rise of its installed proportion,
which leads to an increase in total system cost. When the proportion of the CSP plant
is increased to more than 30%, the CSP plant can fully absorb excess light energy and
maintain the system’s stability through photothermal conversion, which improves the rate
of renewable energy consumption.

(3) Impact of IGDT on scheduling results

This paper investigates the impact of electric and heating load uncertainty on the
system. It provides decision-making solutions under various risk attitudes by varying the
chance/robust deviation factor range. Figures 10 and 11 show the change diagrams for
total system scheduling costs under OM and RM, respectively. Figure 10 shows that under
OM, as the deviation factor increases, the total cost of the receiving-end system decreases
while the total cost of the sending-end system gradually increases. As a result, under the
opportunity pursuit strategy, an increase in the deviation factor has a more significant
positive impact on the economics of the receiving system.
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Figure 11 shows that the RM’s sending- and receiving-end systems are relatively
robust. As the deviation factor increases, the receiving system must purchase more power
to maintain system stability, increasing the receiving system’s cost over time. The sending-
end system benefits from electric energy trading, gradually reducing its cost. As a result,
under the risk-averse strategy, an increase in the deviation factor improves the sending
system’s economics.
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5. Conclusions

In order to solve the new energy abandonment problem of the power system un-
der large-scale wind and solar grid integration, this paper proposes a source-grid-load
cross-area coordinated optimization method based on IGDT and a wind-photovoltaic-
photothermal system, which reduces the impacts of the uncertainties of the source and load
sides on the scheduling of the system at both the sending and receiving ends.

(1) The source-grid-load coordinated scheduling can more reasonably formulate the
scheduling plan according to the regulation period and regulation characteristics of
the three sides of the peaking resources so as to effectively realize the coordination
and complementarity of the peaking resources on each side. At the same time, the
comprehensive operating cost of the system is reduced.

(2) The introduction of information gap decision theory can reduce the impact of load
uncertainty on the system scheduling results. Based on IGDT theory, this paper
proposes a coordinated inter-area scheduling strategy for source-network-load of the
wind-photovoltaic-photothermal system, including both risk-seeking and risk-averse
strategies, which can provide decision-making references for the scheduling strategy
makers.

(3) The ADMM algorithm is introduced into the solution of the cross-area power trading
model, which can prevent the model from falling into the local optimal solution and
improve the solution efficiency.

However, the IGDT model does have some limitations. First, the baseline value deter-
mines the validity of the IGDT model. Future research should investigate a more scientific
method of establishing baseline values to improve the model’s effectiveness and rationality.
Second, the IGDT model’s efficiency may be low when considering uncertainty fluctuations.
Future research should compare and analyze the advantages and disadvantages of various
algorithms and the solving efficiency to improve the accuracy of the IGDT model solution.
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