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Abstract: The construction industry is infamous for its high insolvent failure rate because construction
projects require complex processes, heavy investment, and long durations. However, there is a lack
of a comprehensive framework and a requirement for such a framework in predicting the financial
distress of construction firms. This paper reviews relevant literature to summarize the existing
knowledge, identify current problems, and point out future research directions needed in this area
using a scientometric analysis approach. Based on a total of 93 journal articles relating to predicting
construction company failure extracted from multiple databases, this study conducts a holistic review
in terms of chronological trends, journal sources, active researchers, frequent keywords, and most
cited documents. Qualitative analysis is also provided to explore the data collection and processing
procedures, model selection and development process, and detailed performance evaluation metrics.
Four research gaps and future directions for predicting construction company failure are presented:
selecting a broader data sample, incorporating more heterogeneous variables, balancing model
predictability and interpretability, and quantifying the causality and intercorrelation of variables.
This study provides a big picture of existing research on predicting construction company insolvent
failure and presents outcomes that can help researchers to comprehend relevant literature, directing
research policy-makers and editorial boards to adopt the promising themes for further research
and development.

Keywords: prediction; construction company; business failure; scientometric analysis; qualitative review

1. Introduction

In 2020, the global construction industry reached a staggering market size of USD
10.7 trillion, which is expected to exceed USD 15.2 trillion by 2030 [1]. Compared to other
industries, construction is particularly vulnerable to financial crises [2] and sensitive to
economic cycles [3] due to its various specificities, including the uniqueness and long
duration of construction projects, the complexity of the construction process, the involve-
ment of multiple specific teams, and uncertainties surrounding construction activities [4].
Unsurprisingly, therefore, despite its large size, growing momentum, and notable economic
contribution, the industry is infamous for its high business insolvent failure rate [5], making
the accurate prediction of company failure important for both the companies themselves
and such other stakeholders as investors, creditors, shareholders, and employees [6–9].

Business failure prediction, also known as bankruptcy prediction or default predic-
tion, requires the quantitative analysis of a corporate enterprise to forecast the likelihood
of its default, and much research has been conducted in different regions using various
predictive approaches to achieve this goal. Earlier research, for instance, primarily focused
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on adopting statistical techniques to build linear models such as the multivariate discrim-
inant analysis [10], multiple regression analysis [11], and logistic regression models [12].
Thanks to the recent development of artificial intelligence, emerging techniques such as
machine learning [3], deep learning [13], and ensemble learning [2] have been adopted for
prediction purposes and have enabled the use of more variables, larger sample sizes, and
higher accuracy.

However, despite some fruitful academic results, limited reviews have been conducted
that are specifically concerned with the construction industry. Of these, Edum-Fotwe
et al. summarized how to utilize weighted financial ratios to construct a single index
(known as a Z-score) that classified construction companies as failing, at risk, or non-
failing [14]. Wong and Ng integrated the common causes of construction company failure
and listed pertinent prediction techniques as ratio analysis, multiple discriminant analysis,
conditional probability models, and subjective assessment [15]. Alaka et al. investigated
70 relevant journal articles and doctoral theses, summarizing their country, variables
selected, techniques used, sample size, performance, etc., but incorporated articles from
other industries like banking, IT, and manufacturing, and did not exclusively focus on
the construction industry [16]. Alaka et al. summarized the critical factors for insolvency
prediction regarding factor frequency and model accuracy and conducted a questionnaire
survey of construction industry professionals to collect their feedback on those factors [17].
More recently, Assaad and El-adaway reviewed relevant research over the past 30 years to
identify the failure factors impacting the business operations of construction firms using
both simplified analysis and social network analysis [18].

Nonetheless, although these authors made a valuable contribution to the current
body of knowledge, they primarily focused on evaluating and selecting variables involved
and failed to consider other important technical aspects such as data processing methods,
model development process, and performance evaluation criteria. In addition, they are
essentially manual and ad hoc qualitative reviews and do not adopt any scientometric
approach to conduct a systematic review. At the same time, recent research has found
that humans are better at discovering and comprehending domain knowledge presented
in graphical forms [19,20]. To update the research trends, this paper adopts the science
mapping approach, which reveals the inherent relationships among existing research
work using graphical representation and conducts a quantitative review of construction
company failure prediction studies to complement existing qualitative work. The specific
research objectives of this review include: (1) applying a science mapping approach to
analyze the journals, keywords, researchers, and articles in the domain of predicting
construction company insolvent failure; (2) analyzing the existing key research works
related to predicting construction company insolvent failure; (3) revealing the recent
research gaps and pointing out some possible future research directions of predicting
construction company insolvent failure.

The paper is structured as follows. Section 2 lists the research methods used in the
study with all the inclusion and exclusion criteria. Section 3 contains the results of the
scientometric analysis. Section 4 includes further qualitative discussions by reviewing
data collection and processing procedures, model selection and development process,
and detailed performance evaluation metrics and identifying research gaps and future
directions. Finally, Section 5 concludes the study.

2. Research Methods

This section describes the three-step review methods, a commonly adopted method
for the science mapping-based systematic review [21–24] that comprises the literature
search, scientometric analysis, and qualitative discussion. Figure 1 illustrates the detailed
workflow of the research methods.



Sustainability 2024, 16, 2290 3 of 22

Sustainability 2024, 16, x FOR PEER REVIEW 3 of 23 
 

 

search, scientometric analysis, and qualitative discussion. Figure 1 illustrates the detailed 

workflow of the research methods. 

 

Figure 1. Detailed workflow of the research methods. 

2.1. Literature Search 

Following PRISMA protocols, a literature search was carried out using the query 

“(distress OR crisis OR failure OR bankrupt OR default OR insolvency OR insolvent) AND 

(forecast OR predict OR early warning) AND (construction OR contractor OR construct)” 

to confine the topic to predicting construction company insolvent failure. Three com-

monly used databases in the construction company failure domain [16,18,25–27]—Web of 

Science, Scopus, and Engineering Village—were selected to perform the search and only 

journal articles published in English were retained. In total, 1088, 1764, and 1121 articles 

were retrieved from each database, yielding 3973 initial documents. Next, 2085 duplicated 

articles were removed, and the remaining 1888 articles’ titles and abstracts were manually 

reviewed for further filtering. This resulted in the further exclusion of articles concerning 

Figure 1. Detailed workflow of the research methods.

2.1. Literature Search

Following PRISMA protocols, a literature search was carried out using the query
“(distress OR crisis OR failure OR bankrupt OR default OR insolvency OR insolvent) AND
(forecast OR predict OR early warning) AND (construction OR contractor OR construct)”
to confine the topic to predicting construction company insolvent failure. Three commonly
used databases in the construction company failure domain [16,18,25–27]—Web of Science,
Scopus, and Engineering Village—were selected to perform the search and only journal
articles published in English were retained. In total, 1088, 1764, and 1121 articles were
retrieved from each database, yielding 3973 initial documents. Next, 2085 duplicated
articles were removed, and the remaining 1888 articles’ titles and abstracts were manually
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reviewed for further filtering. This resulted in the further exclusion of articles concerning
industries other than construction (e.g., banking, manufacturing, high-tech, fashion, and
hospitality); other topics (e.g., forecasting construction cost or price [28], predicting project
performance [29], and estimating technological capabilities [30]); and only analyzing busi-
ness insolvent failure factors without using predictive models [17]—leaving 93 journal
articles eventually selected to constitute the literature sample for analysis.

2.2. Scientometric Analysis

The second step of the review involved the use of scientometric analysis, which is a
generic process of domain analysis and visualization [31] that was broadly adopted to facili-
tate the systematic literature review of different building construction-related topics [21–24].
A text-mining tool VOSViewer (v1.6.19) [32,33] was used, which created distance-based vi-
sualizations of networks. With this, each node in the network represented information such
as the source journal, author, organization, country, and keyword, and the distance between
nodes reflected the closeness of nodes measured in such different metrics as co-authorship,
shared references, and co-occurrence [34]. The 93 articles were transported into VOSViewer
for scientometric analysis to generate results related to the influences of journals, keywords,
researchers, and articles in predicting construction company insolvent failure.

2.3. Qualitative Discussion

Finally, an in-depth qualitative discussion was carried out to explore the results of
the scientometric analysis from multiple perspectives, including the data collection and
processing procedures used, comparing different predictive models, summarizing different
performance evaluation metrics, identifying existing research gaps, and suggesting future
research directions.

3. Results

This section presents the science mapping results of the 93 articles. It starts with a
chronological trend and journal source analysis and concludes with a researcher, keyword,
and document analysis using VOSViewer.

3.1. Chronological Trend and Journal Source Analysis

Figure 2 displays the annual publication count of articles, highlighting the growing
focus of researchers on creating models to predict the insolvent failure of construction
companies. This period can be segmented into two phases: the first phase (1977–2008)
and the second phase (2009–2022). During the first phase, there was a lower output of
articles, averaging 0.72 articles per year. In contrast, the second phase saw a marked
increase in publication frequency, with an average of 5.00 articles per year. Notably, the
articles published in the second phase comprise 75% of the total sample, underscoring the
escalated academic interest in recent years towards precise prediction construction company
insolvent failure. Considering the exponentially growing scientific outputs across different
domains, the relatively slow growth speed shown in Figure 2 indicates that the research
domain of predicting construction companies’ bankruptcy needs further exploration.

Figure 3 shows the journal sources involved, as represented by the node, the size of
which is proportionate to the number of publications. The internode distance approximately
reflects their cross-reference times [34], and the node color demonstrates the clustering
results, which were automatically determined by VOSViewer using a smart local mov-
ing average algorithm [33–35]. This indicates the Journal of Construction Engineering and
Management is ranked first due to the large number of publications in the corresponding
area, followed by Construction Management and Economics, Engineering Construction and
Architectural Management, and Expert Systems with Applications.
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Figure 2. Chronological distribution of journal articles (dotted lines representing phase average).
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Figure 3. Visualization of journal sources.

Table 1 summarizes the associated quantitative metrics, with the Journal of Construction
Engineering and Management, Construction Management and Economics, Engineering Construc-
tion and Architectural Management, and Expert Systems with Applications having received the
highest number of publications and the publications from Journal of Construction Engineer-
ing and Management, Expert Systems with Applications, and Journal of Civil Engineering and
Management having received the most total citations. To adjust for bias, given that earlier
documents are more likely to receive more citations than recent documents, a normalized
citation that equals the citation number of a document divided by the average citation
number of all documents was introduced and calculated by VOSViewer [32]. On average,
the documents in the Journal of Risk and Financial Management and Journal of Management in
Engineering are more recent.
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Table 1. Quantitative metrics of top journal sources.

Journal Source Number of
Publications

Total
Citations

Average
Publication Year

Average
Citations

Normalized
Citations

Average
Normalized

Citations

Journal of Construction Engineering
and Management 13 420 2004 32.31 11.67 0.90

Construction Management and Economics 8 70 2003 8.75 7.13 0.89
Engineering Construction and

Architectural Management 5 68 2010 13.60 5.32 1.06

Expert Systems with Applications 5 240 2014 48.00 14.18 2.84
Journal of Civil Engineering

and Management 3 89 2013 29.67 4.27 1.42

Journal of Management in Engineering 3 40 2017 13.33 3.97 1.32
Journal of Risk and

Financial Management 3 13 2021 4.33 2.52 0.84

3.2. Researchers, Keyword, and Document Analysis

Figure 4 shows the number of articles (≥2) published by each researcher in VOSViewer.
This time, a node represents a researcher, with the node size representing the number of
citations, and the internode distance reflecting the number of times two researchers cited
each other. This indicates that H.P. Tserng, D. Arditi, P.C. Chen, R. Kangari, and J.S. Russell
have received the most citations. Table 2 provides the associated quantitative metrics of the
researchers involved.
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Table 2. Quantitative metrics of most-cited researchers.

Researcher
Name

Number of
Publications

Total
Citations

Average
Publication

Year

Average
Citations

Normalized
Citations

Average
Normalized

Citations

H.P. Tserng 8 141 2013 17.63 7.11 0.89
D. Arditi 6 138 2002 23.00 6.18 1.03
P.C. Chen 7 137 2013 19.57 6.65 0.95
R. Kangari 2 123 1990 61.50 2.03 1.02
J. Russell 3 100 1996 33.33 2.97 0.99

S. Lee 2 96 2015 48.00 6.13 3.07
L.K. Tsai 4 90 2012 22.50 3.62 0.91
S. Kale 3 62 1999 20.67 3 1.00
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Keywords, including both Author Keywords that authors believe best represent the
context of their paper and Keywords Plus that appear frequently in the titles of an article’s
references and not necessarily in the title of the article or as Author Keywords, are critical
textual information for scientific publications. Both Author Keywords (manually input by
the document authors) and Keywords Plus (automatically suggested by Web of Science
programs based on cross-referenced articles) were utilized here. Textual data pre-processing
was also manually conducted to unify the writing formats of different semantically similar
expressions. For example, in the context of this research, “artificial neural network model
(ANN)”, “artificial neural networks”, and “artificial neural networks” all equal “artificial
neural networks”. The number of keywords was reduced from 416 to 148 after the data pre-
processing process. After setting the minimum number of occurrences of a keyword at three
in VOSViewer, 54 out of 148 keywords were selected and visualized in Figure 5. Each note
represents a keyword, and the node size indicates its number of occurrences. The internode
distance approximately reflects the number of times two keywords co-occur, and the node
color demonstrates the average occurrence year of each node, as indicated by the timeline
legend. The ten most frequent keywords are “bankruptcy prediction” (42), “financial
ratios” (32), “construction industry” (29), “performance metric” (23), “financial distress
prediction” (22), “prediction model” (21), “neural networks” (19), “risk management” (18),
“discriminant analysis model” (16), “contractor” (16), “business failure prediction” (14),
and “support vector machine” (13), where the values in parentheses denote the number
of occurrences.
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Figure 5 shows that predicting construction company insolvent failure can also identify
“bankruptcy prediction”, “financial distress prediction”, “insolvency prediction”, “corpo-
rate failure”, or “company failure” problems within the “construction industry”. In terms
of “prediction model”, “statistical techniques” such as “z-score”, “discriminant analysis
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model”, and “regression analysis” were utilized in the early stage. More recently, more
advanced techniques such as “machine learning”, “neural networks”, “support vector
machine”, and “long short-term memory” have emerged. In addition to problem definition
and predictive methods, input “variables” such as “macroeconomic indicators” and “stock
market” and evaluation metrics like “receiver operating characteristics” have also recently
occurred in the keyword visualization map.

Finally, the literature samples are analyzed based on the documents. Figure 6 shows
the 43 selected connected documents obtained in VOSViewer after setting the minimum
citations of a document to 10. In this case, each node represents a document, and the
node size indicates the total number of citations the document had received. The closer
documents are more related, and their internode distance approximately reflects the number
of references shared.
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Table 3 summarizes the titles and citations of the 20 most-cited documents sorted by
their citations. These highly cited articles demonstrate that their common goal is to identify
the factors that significantly impact construction company insolvent failure and make
corresponding predictions as accurately as possible. Predictive methods that have worked
well for other industries may not be suitable for the construction sector due to its unique
nature [36–38], especially when considering the relatively long duration of construction
projects [2]. Early-stage highly cited research focused on exploring and evaluating the im-
pact of different factors involved [10,11,39–43] and, with the notable exception of Altman’s
research (which also adopted neural networks), primarily utilized linear methods [39].
More recently, highly cited research has increasingly incorporated more non-linear predic-
tive methods and has generally achieved higher prediction accuracy [2,3,7,36,37,44,45].
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Table 3. Top 20 highly cited articles in the literature sample.

Article Title Total
Citations Normalized Citations

Altman et al. [39]
Corporate distress diagnosis: Comparisons using
linear discriminant analysis and neural networks

(the Italian experience)
440 1.87

Lee and Choi [36]
A multi-industry bankruptcy prediction model
using a back-propagation neural network and

multivariate discriminant analysis
87 4.33

Kangari [40] Business failure in the construction industry 67 1

Kale and Arditi [41] Business failures: Liabilities of newness,
adolescence, and smallness 62 1

Lam et al. [44] A support vector machine model for
contractor prequalification 60 1.74

Heo and Yang [37] AdaBoost-based bankruptcy forecasting of Korean
construction companies 56 3.89

Kangari et al. [11] Financial performance analysis for the
construction industry 56 1

Russell and Jaselskis [42] Predicting construction contractor failure prior to
contract award 53 1

Kapliński [38] Usefulness and credibility of scoring methods in
the construction industry 52 1.65

Tserng et al. [3] An enforced support vector machine model for
construction contractor default prediction 47 1.76

Russell and Zhai [43] Predicting contractor failure using stochastic
dynamics of economic and financial variables 47 1

Sueyoshi and Goto [46]
DEA–DA for bankruptcy-based performance

assessment: Misclassification analysis of Japanese
construction industry

45 1.30

Sánchez-Lasheras et al. [47] A hybrid device for the solution of sampling bias
problems in the forecasting of firms’ bankruptcy 44 2.04

Dikmen et al. [48] Using analytic network process to assess business
failure risks of construction firms 42 1.58

Horta and Camanho [7] Company failure prediction in the
construction industry 41 2.04

Ng et al. [49] Applying the Z-score model to distinguish
insolvent construction companies in China 39 1.46

Choi et al. [2] Predicting financial distress of contractors in the
construction industry using ensemble learning 39 4.43

Hall [12] Factors distinguishing survivors from failures
amongst small firms in the UK construction sector 30 0.13

Chen [45] Developing SFNN models to predict the financial
distress of construction companies 29 1.34

Zoričák et al. [50]
Bankruptcy prediction for small- and

medium-sized companies using severely
imbalanced datasets

29 2.04

4. Qualitative Discussion

Following previous scientometric analysis and results, this section provides an in-
depth qualitative discussion of research related to predicting construction company in-
solvent failure. This summarizes up-to-date research into the perspectives of data collec-
tion and processing, predictive models, performance evaluation, and research gaps and
future directions.

4.1. Data Collection and Processing
4.1.1. Sample Determination

Sample determination is central to any prediction model, as it informs the initial inves-
tigation of the data and facilitates effective model construction [51]. Of the 93 investigated
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articles, 22 focus on construction companies in the United States, followed by Taiwan (8), the
United Kingdom (6), South Korea (6), the Czech Republic (5), Japan (4), Spain (4), China (4),
Russia (4), Hong Kong (3), Poland (3), Portugal (3), and the Slovak Republic (2) (the value
in parentheses following each region represents the number of associated articles). This
points to a research gap for future research to be conducted into the less studied regions
because predictive models that work well for a particular region may not necessarily be
effective for other regions due to their different construction market dynamics, accounting
systems, and definitions of corporate insolvent failure. For this reason, the articles tend to
focus on a single region.

Sample size and sample type are often critical factors that influence predictive model
construction and accuracy. A total of 86 out of the 93 investigated articles disclose the
sample sizes of their studies, of which 65 have a sample size of less than 1000, 15 have
a sample size between 1000 and 10,000, and the remaining 6 have a sample size greater
than 10,000. Due to the advent and utilization of big data analytical techniques, the
average sample size has grown from 142 for articles published in and before 2010, to 4005
subsequently. In terms of type, many studies focus on publicly trading companies, as they
are required by different Securities and Exchange Commissions to periodically disclose
their financial reports [50], making their financial data more accessible than their small-
and medium-sized counterparts. In addition, the insolvent failure of large companies tends
to have a greater impact on the construction market [52].

4.1.2. Variable Selection

Once an appropriate sample has been determined, relevant variables (features, factors,
or indicators) are selected for model construction. However, there is no extant theory or
academic consensus to indicate which variables are better than others for distinguishing
between failing and non-failing companies [53–55], and hence this comprehensive review
of the variables adopted in previous studies will be helpful for future variable selection.

One type of commonly utilized variable, for instance, is the financial ratios of
companies [56–58], which have been considered objective measurements of companies
based on publicly available information [59] and can generally be classified into five
different categories that demonstrate the liquidity, leverage, activity, profitability, and
cash flow situations of those companies when they are selected as explanatory variables
to construct predictive models. It is not surprising that financial ratios are the most
frequently used variables for corporate insolvent failure prediction due to their irrefutable
relationship discovered as early as 1966 [60]. Several studies rely solely on financial ratios as
explanatory variables, with the assumption that these ratios contain all relevant information
for corporate insolvent failure prediction [54,57,58]. Table 4 summarizes the financial ratio
variables of each category based on their occurrence in the sample publications.

Table 4. Frequently selected financial ratio variables for each category.

Type Variable Name Variable Description Occurrence

Liquidity

Current ratio Current assets/current liabilities 40
Working capital to total assets (Current assets − current liabilities)/total assets 37
Quick ratio (Current assets − inventory)/current liabilities 22
Debt to net worth Total liabilities/(total assets + total liabilities) 17
Current assets to net assets Current assets/(total assets − current liabilities) 14
Fixed assets to total assets Fixed assets/total assets 9
Current liabilities to total assets Current liabilities/total assets 9
Current assets to total assets Current assets/total assets 6
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Table 4. Cont.

Type Variable Name Variable Description Occurrence

Leverage

Debt ratio Total liabilities/total assets 26
Debt to equity ratio Total liabilities/total shareholders’ equity 22
Times interest earned Earnings before interest and taxes/interest expense 20

Retained earnings to sales (Beginning period retained earnings + net income −
cash dividends − stock dividends)/sales 14

Retained earnings to total assets (Beginning period retained earnings + net income −
cash dividends − stock dividends)/total assets 12

Activity

Total assets turnover Net sales/average total assets 40
Accounts receivable turnover Net sales/average account receivables 22
Working capital turnover Net sales/(current assets − current liabilities) 20
Equity turnover Net sales/average shareholders’ equity 13
Inventory turnover Net sales/average inventory 13
Fixed asset turnover Net sales/average fixed assets 13
Accounts payable turnover Net sales/average account payables 12
Current assets turnover Net sales/average current assets 7

Profitability

Return on assets Net income/average total assets 42
Return on equity Net income/shareholders’ equity 31
Return on sales Net profit/net sales 25
Earnings before interest and taxes
to total assets Earnings before interest and taxes/total assets 12

Operating profit margin Operating profit/total income 11
EBIT margin Earnings before interest and taxes/total sales 8
Gross margin Gross profit/total income 8
Return on invested capital (Net income − dividends)/(debt + equity) 7
Profits to net working capital Net profit/(Current assets − current liabilities) 6
Sales to net income Sales/net income 5

Cash flow

Cash and cash equivalents to
total debts Cash and cash equivalents/total debts 7

Cash and cash equivalents to
current liabilities Cash and cash equivalents/current liabilities 6

Cash and cash equivalents to
total assets Cash and cash equivalents/total assets 5

However, other studies have questioned such assumptions and have pointed out
limitations of the financial ratio variables, in that they may reflect a company’s recorded
book value rather than its true value [61] and do not contain all the information related
to financial distress [62]. Consequently, researchers have started incorporating other com-
plementary variables to improve the predictive power of the models. Other commonly
used variables include those that represent the characteristics of the companies, the charac-
teristics of construction projects undertaken by companies, and the economic conditions
of the construction industry, and the broader stock market. Table 5 summarizes the other
frequently selected variables based on their occurrence in publications.

The importance of meticulously cataloging the frequency of selected variables in prior
studies cannot be overstated, as this quantification underscores the significance of each
variable in the research domain [63]. Of those non-financial variables, the primary focus
should be placed on the strategic variables that encapsulate the unique characteristics of
construction companies. These variables are designed to mirror the strategic positioning
of these companies within the industry, which is pivotal in determining their operational
performance. This assertion is substantiated by the findings of Horta and Camanho, who
highlighted the profound impact of industry positioning on company performance [7].
Furthermore, the incorporation of project characteristic indicators is imperative. Given that
the construction sector is inherently project-centric, with projects dictating the majority
of a company’s operations, these indicators significantly influence the financial health of
a company [64]. Khanzadi’s research further emphasizes the pervasive nature of risks
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within construction projects, noting that failing to account for these risks inevitably leads
to challenges in meeting project objectives on time, within budget, and to the required
quality standards [65]. In addition, variables pertaining to economic conditions are critical
for the prediction of bankruptcy among construction companies. The susceptibility of
these companies to macroeconomic fluctuations is particularly pronounced, given the
construction industry’s substantial contribution to the global economy. Variations in
economic conditions have a direct impact on the financial stability of construction firms
and the financial capacity of consumers [13,66]. Lastly, stock market variables, which serve
as proxies for macroeconomic factors, warrant consideration for their role in enhancing
the precision of predictive models. These variables encapsulate timely information that is
crucial for assessing the likelihood of success or failure among contractors. Tserng’s research
corroborates the significance of these variables in providing insights into contractors’
survivability or failure [4].

Table 5. Other selected non-financial variables.

Type Variable Name Occurrence

Company characteristics

Company age 12
Number of employees 9
Academic and professional qualifications of
senior management 7

Number of senior management personnel 6
Credit granted 5
Technical competency 5
Environmental considerations 4
Headquarter geographic location 3
Claims history 3

Project characteristics

Project value 6
Project contract value in progress 4
Number of projects in progress 2

Duration and complexity of project 2
Number of past similar projects 1

Economic conditions

Interest rates 11
Gross domestic product 10
Consumer price index 5
Total number of companies 5
Number of employees in the construction industry 4
Inflation rate 4
Unemployment rate 3
Housing starts 3
Housing prices 2
Construction consumption price index 2
Volume of performed construction work 1

Stock market

Earnings per share 7
Index of stock price 3
Price to book ratio 3
Market to book ratio 3

4.1.3. Data Processing

After selecting a set of initial variables, feature selection and extraction are common
steps in the data processing phase. The main advantage of this is in dimensionality
reduction, which reduces the computational effort of training predictive models and the
risk of overfitting, making classification problems easier to solve [67]. Studies have also
shown that feature selection enables predictive models to provide better results by allowing
models to focus on the more important features involved [68].
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Data filter [66,69] or wrapper [13,50] methods are also utilized to conduct feature
selection and extraction that create a subset of refined variables for model construction.
Filter methods carry out the feature selection before the model construction stage and are
therefore independent of the predictive algorithms. Wrapper methods, on the other hand,
use predictive algorithms as subroutines that measure the effectiveness of the variables
with the prediction accuracy over a validation set [70,71]. Of these, filter methods tend
to be used more in general because of their computational efficiency and lower risk of
overfitting [72].

Because the number of non-failing companies is much higher than that of failing
companies, the datasets collected for predicting company insolvent failure in the con-
struction industry or many other industries are often imbalanced [73]. Learning from
an imbalanced dataset can result in predictive models that do not accurately represent
the data characteristics and may lead to suboptimal classification models that provide
poor prediction results across data classes [74]. An empirical study has shown that an
imbalanced dataset, in which the minority class represents 20%, significantly disturbed
prediction accuracy [75]. This introduces another important but often overlooked data
processing step for constructing reliable models to predict construction company insolvent
failure (of the 93 investigated articles, only 14 disclosed that they adopted relevant methods
to deal with the data imbalance issue).

Two different techniques are often suggested to deal with the data imbalance issue:
under-sampling (e.g., random under-sampling [76]) and oversampling (e.g., synthetic mi-
nority oversampling technique (SMOTE) [77]). Under-sampling techniques seek to decrease
the number of majority class members (non-failing companies), while oversampling seeks
to increase the number of minority class members (failing companies) in the training set.
The advantage of oversampling is that no information from the original training set is lost,
since all original members remain, but oversampling would increase the size of the training
set and thus increase training time and amount of memory accordingly [78]. Some recent
studies have adopted the SMOTE + Tomek links approach, a hybrid method that combines
oversampling and under-sampling techniques [13,79,80]. Extant studies disagree on which
technique is better, and conflicting results are likely due to the combination of different
datasets and classification algorithms [78,81–83].

4.2. Predictive Models
4.2.1. Statistical Models

Various statistical models were adopted to predict construction company insolvent failure,
especially in early studies. Those most commonly utilized included the Z-score [38,49,84,85],
discriminant analysis—both linear discriminant analysis (LDA) [39,86–89] and multivariate
discriminate analysis (MDA) [90–93]—multiple linear regression [11,40,43,94], and logistic
regression [12,95–97].

The Z-Score model was proposed by Altman [98] and has been widely utilized to
predict corporate bankruptcy. It calculates the Z-Score by linearly combining different
financial ratios and generally sets two thresholds to classify companies into three zones of
safe, grey, and distress. Discriminant analysis is a parametric technique that determines
the weightings of predictors that best discriminates between two or more categories by
constructing a suitable statistical decision function—the discriminant function [99,100].
Depending on the number of categories and the method of constructing the discriminant
function, discriminant analysis can be categorized into LDA, MDA, and quadratic discrimi-
nant analysis (QDA). Multiple linear regression constructs a linear equation to determine
the response variable as a function of multiple explanatory variables. Logistic regression,
introduced by Ohlson [101] in his study of default prediction, is a conditional probability
model that estimates the probability of an event taking place, and can be used to solve both
binary and multi-category classification problems [102].

Although these statistical models are popular in financial distress research and have
been widely used to predict construction company insolvent failure, their assumptions
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often limit them quite restrictively. For example, discriminant analysis is based on the
assumption that participants are independent of each other (randomly sampled) and the
explanatory variables are normally distributed and not linearly interrelated with other
explanatory variables (i.e., lack of multicollinearity) [103]. Multiple linear regression
assumes that the response variable is a linear combination of explanatory variables, the
error term variance does not depend on the values of explanatory variables, errors of
explanatory variables are not intercorrelated, and explanatory variables cannot be linearly
predicted from other explanatory variables [104]. Although logistic regression does not
make assumptions about the distributions of explanatory variables and does not assume a
linear relationship between explanatory and response variables, it does assume that the
explanatory variables are linearly related to the logarithm of the response variable [105].
The model’s predictive power decreases should these assumptions be violated.

4.2.2. Artificial Intelligence Models

Artificial intelligence models supported by advanced computational power and en-
hanced data supply have become increasingly popular. These models learn from the data
to capture the relationship between the explanatory and response variables, and with fewer
constraints than statistical models [106]. Commonly adopted artificial intelligence models
are neural networks [36,45,107,108], support vector machines [7,44,50,109], and decision
trees [86,110–114]. Lee and Choi’s predictive comparison found that artificial intelligence
models usually outperform statistical methods due to their ability to handle non-linear
relationships and lack of restrictive model assumptions [36]. Nevertheless, unlike statisti-
cal methods, artificial intelligence methods require more sample data and have complex
training processes. They are also exposed to overfitting risk, which reduces the stability of
cross-sample prediction.

Ensemble models that combine multiple artificial intelligence models and statistical
models (base learners) have recently gained popularity in predicting construction company
insolvent failure [2,37,69,115–117] due to their lower variance, better accuracy, and higher
model stability than base learners [118]. Commonly used ensemble methods include
voting, bagging, boosting, and stacking. Voting combines the model outputs (hard voting)
or predicted probabilities (soft voting) of base learners through weighted or unweighted
averages to produce an aggregated predictive result [115,119]. Bagging, developed by
Breiman [120], generates different training subsets using random sampling to train base
learners and combine them using majority voting to obtain a strong classifier [121]. Boosting
trains each base learner separately by iteratively selecting misclassified instances from the
training set to convert the weak learners into strong learners and then combines their results
using weighted mechanisms [122]. Stacking adopts a two-level structure that consists of
level-0 (base level) learners and level-1 (meta-level) learners [123], and first trains level-0
learners whose predicted results will then be used as input to train the level-1 learners [124].

More recently, deep learning models have been used to predict construction company
insolvent failure, and relevant research has primarily focused on the long short-term mem-
ory (LSTM) recurrent neural network (RNN) model [13,79,80,125]. Jang et al. first adopted
the LSTM RNN model, and it was found that this deep learning model had outperformed
both the neural networks model and the support vector machine model for both one-year
ahead [79] and three-year ahead [80] predictions. Jing et al. later combined the structural
default probability estimation model (ZPP) and time-series neural networks (LSTM) to
estimate the corporate default probabilities [125]. A Shapley value-based approach was
also proposed to quantify the impacts of input variables in deep learning models [13].

Artificial intelligence models can generally provide better predictive results than sta-
tistical models, and ensemble models and deep learning models can outperform single
classifiers. Deep learning models also have an advantage over ensemble models when
analyzing data with high dimensionality [126]. Despite their superior predictive ability,
these models have their limitations. For example, the vital steps of building ensemble
models determine the learning strategies for generating base learners and ensemble criteria
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for creating ensemble learners, but there are no stationary rules for deciding which learning
strategies or ensemble criteria are better than others [127]. One has to construct the appro-
priate ensemble classifiers by referring to specific situations, which inevitably hinders the
universality of using ensemble models in many artificial intelligence applications. Deep
learning models are often limited because they are intractable when distinguishing the
impact of input variables [125]. They are usually considered “black box” models whose
internal structure and learned parameters are not interpretable [26].

4.3. Performance Evaluation Metrics
4.3.1. Threshold Metrics

Evaluation metrics play a critical role in model optimization and comparison during
and after the model development. Threshold metrics set a predefined threshold and
evaluate models by assessing how the predicted values fall relative to that threshold [128].
The threshold metrics in construction company insolvent failure research are summarized
in Table 6. Accuracy (the ratio of correctly classified samples to the total number of samples)
and error rate (1 − accuracy) are the threshold metrics most widely used by researchers to
discriminate and select optimal classifiers. Moreover, the F measure (the harmonic mean of
precision and recall) and the geometric mean (a metric that maximizes both true positive
and true negative while keeping them relatively balanced) were also adopted to evaluate
model performance.

Table 6. Threshold metrics in construction company insolvent failure research.

Metrics Formula 1 Relevant Articles

Accuracy
tp+tn

tp+ f p+tn+ f n [7,13,36,44,45,47,79,87,88,96,97,108,111–113,116,117,129–133]

Error rate
f p+ f n

tp+ f p+tn+ f n [46,69,90,92,93,134]

F-measure
2∗P∗R
P+R [56,74,79,135]

Geometric mean
√

tp ∗ tn [50]
1 Note: tp—true positive, tn—true negative, fp—false positive, fn—false negative, P—precision, R—recall.

These threshold metrics are easy for humans to compute and understand. However,
their effectiveness is often limited when handling imbalanced datasets, which is often the
case for predicting construction company insolvent failure. In such cases, these metrics do
not provide adequate information about prediction ability, and their results are often biased
towards the majority class (non-failing companies), leading to a higher misclassification
rate for the minority class or a higher Type I error rate (identifying failing companies as
non-failing companies) [26,52,136].

4.3.2. Area under the ROC Curve

The area under the receiver operating characteristic (ROC) curve is better than the
accuracy metric [137] because it visually represents classifiers’ performance and is insen-
sitive to imbalanced datasets. It visualizes the trade-off between the tp and fp rates and
includes misclassification costs regardless of the sample proportion. Studies have widely
adopted this evaluation metric to evaluate predictive models for construction company
insolvent failure with imbalanced datasets [50,64,66,89,90,114,115,125,138]. In addition, the
precision–recall curve (PRC) has also been used to evaluate construction company insolvent
failure models as an alternative to the area under ROC curve [125,129].

4.3.3. Other Metrics

In addition to the metrics already mentioned, several less frequently used metrics
exist for construction company insolvent failure research. For example, entropy is a
probability metric used for evaluating the utility of attributes of data in building optimized
decision tree classifiers [138]. The cumulative accuracy profile (CAP) curve has been
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used to visualize the predictive capability of a developed model and compares it with a
perfect classification model and a random classification model [139]. Both the root mean
squared error (RMSE) [129] and the mean absolute percentage error (MAPE) [140] have
been used to evaluate how the predicted output deviates from the desired output. It is
worth mentioning, however, that different metrics involve different tradeoffs, often making
it difficult to determine the best evaluation metric in practice [128]. For this reason, the
ability of a given (or novel) predictive model should be evaluated by multiple metrics,
resulting in a multi-dimensional metric space.

4.4. Research Gaps and Future Directions

Although an increasing number of articles have been published in the construction
company insolvent failure domain, several limitations can be identified and addressed to
recognize research gaps and outline future research directions.

4.4.1. Selecting a Broader Data Sample

Much research has selected listed (large) construction companies from developed
regions for their research samples. There is, therefore, the potential for future studies to be
carried out of construction companies in much less-studied developing regions because
of the different accounting principles, construction market characteristics, and economic
conditions involved. The high-performing predictive models for developed regions may
not work well for those developing regions, and it is necessary to test the universality
of those models and increase their prediction potentials accordingly. More involvement
is also suggested for construction SMEs because of their growing proportion within the
construction industry and increased vulnerability to economic volatilities, thus making
them more likely to suffer from corporate insolvent failure. However, it is likely that future
work of this kind would be subject to major data availability restrictions.

4.4.2. Incorporating More Heterogeneous Variables

Research to date has relied heavily on data from financial statements (financial ratios)
for model development, but has neglected the utilization of non-financial indicators such as
such as project characteristics, economic conditions, construction industry dynamics, and
stock market performance that can complement the existing financial ratios and provide
additional information for model development. It is suggested that future work incorporate
variables from different data sources to constitute a more heterogeneous dataset. In addi-
tion to numerical data, textual data such as management discussions outlined in annual
filings, actions described in corporate social responsibility (CSR) reports, and sentiment
information disclosed in corporate news could also be utilized with the help of natural
language processing (NLP) techniques, which would inevitably require more advanced
classification techniques. In this case, it would be necessary to consider the interactions and
synergies between different variables and choose an optimal set of input variables, and us-
ing feature selection and removing redundant variables could reduce storage requirements
and computational time and enhance training and prediction efficiency.

4.4.3. Balancing Model Predictability and Interpretability

An increasing number of studies have adopted complex models such as ensemble
methods and deep learning methods to predict construction company insolvent failure,
and many have demonstrated an empirically superior predictive ability compared to other
single artificial intelligence models and statistical models. These complex models, however,
are often criticized, as they function like “black boxes” whose internal structure and learned
parameters are not fully interpretable. They cannot explore the relationships or causalities
between the various input variables involved and business insolvent failure. Therefore,
they face the limitation of being unable to provide corporate strategies to improve business
conditions and reduce default risks. This yields a gap in balancing model predictability



Sustainability 2024, 16, 2290 17 of 22

and interpretability when researchers choose the right models for their predictive and
interpretable purposes in future research.

4.4.4. Quantifying the Causality and Intercorrelation of Variables

Finally, as most extant research has focused on building complex models for better
predictive accuracy, it is also critical to quantify the causality of selected variables to
the ultimate company insolvent failure as well as the intercorrelation between selected
variables. When doing so, it is helpful to identify and incorporate variables that have
a causal impact on company insolvent failure into the predictive model, thus reducing
dataset dimensionality and enhancing model predictive power. This approach not only
refines the model but also offers practical advice to stakeholders and management teams
regarding the underlying causes of company insolvent failure, enabling them to focus on
improving business operations. This analysis can be achieved by using data filter methods,
data wrapper methods, and dimensionality reduction techniques. Additionally, employing
approaches such as cross-lagged correlation analysis and longitudinal path analysis can be
instrumental in examining the relationships among selected variables over time.

5. Conclusions

This study reviewed 93 key journal articles relating to predicting construction company
insolvent failure using both scientometric analysis and qualitative discussion. The results of
the scientometric analysis reveal the proliferation of relevant research over the last 12 years
or so. The Journal of Construction Engineering and Management, Construction Management and
Economics, Engineering Construction and Architectural Management, and Expert Systems with
Applications have made the most contributions in terms of article numbers. H.P. Tserng,
D. Arditi, and P.C. Chen are the most influential researchers who have both produced the
most articles and received the most citations. A chronological keywords analysis found
that the research focus—business insolvent failure prediction—can also be considered as
“bankruptcy prediction”, “financial distress prediction”, or “insolvency prediction”, but the
“prediction models” have gradually shifted from “statistical techniques” such as “z-score”,
“discriminant analysis model”, and “regression analysis” to more advanced “machine
learning” techniques such as “neural networks” and “support vector machine”. Finally, the
articles receiving the most citations were identified, visualized, and discussed.

A detailed qualitative discussion was conducted to set out data collection and process-
ing procedures, compare different predictive models, summarize performance evaluation
metrics, point out research gaps, and suggest future research directions. The extant research
focuses heavily on studying publicly traded construction companies in developed regions.
With the help of big data analytical techniques, the average sample size has significantly
increased from 142 for articles on and before 2010 to 4005 for articles after 2010. It is also
found that financial ratio variables are commonly utilized for model development, followed
by variables representing company characteristics and economic conditions. Due to the
imbalanced nature of construction company insolvent failure datasets, under-sampling
and oversampling techniques need to be utilized to yield more balanced datasets. Artificial
intelligence models have recently gained more popularity than statistical models due to
their generally superior prediction ability. However, they are also criticized because of
their “black boxes” nature and, thus, lack of interpretability. Different model performance
evaluation metrics are also discussed in terms of usage and limitations, and it is suggested
that multiple metrics should be used to evaluate a given (or novel) predictive model, since
different metrics show different tradeoffs. Finally, several research gaps and corresponding
future directions are identified in areas: selecting a broader data sample, incorporating
more heterogeneous variables, balancing model predictability and interpretability, and
quantifying the causality and intercorrelation of variables.

This review-based study combines a novel scientometric analysis approach and tradi-
tional qualitative discussion to provide a holistic review of research related to predicting
construction company insolvent failure. It provides an overview of relevant research works
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from both visual and textual perspectives and outlines research gaps and directions for fu-
ture studies. One limitation of this study is that it focused on only English language journal
articles from Web of Science, Scopus and Engineering Village databases when selecting the
literature sample. Future studies will require extending the inclusion criteria by considering
other publication outlets (e.g., conference articles, books) and articles published in other
languages and other sorts of databases (e.g., PubMed, Google Scholar).
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