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Abstract: The U.S. Energy Information Administration (EIA) provides crucial data on monthly and
annual fuel consumption for electricity generation. These data cover significant fuels, such as coal,
petroleum liquids, petroleum coke, and natural gas. Fuel consumption patterns are highly dynamic
and influenced by diverse factors. Understanding these fluctuations is essential for effective energy
planning and decision making. This study outlines a comprehensive analysis of fuel consumption
trends in electricity generation. Utilizing advanced statistical methods, including time series analysis
and autocorrelation, our objective is to uncover intricate patterns and dependencies within the
data. This paper aims to forecast fuel consumption trends for electricity generation using data from
2015 to 2022. Several time series forecasting models, including all four benchmark methods (Mean,
Naïve, Drift, and seasonal Naïve), Seasonal and Trend Decomposition using Loess (STL), exponential
smoothing (ETS), and the Autoregressive Integrated Moving Average (ARIMA) method, have been
applied. The best-performing models are determined based on Root Mean Squared Error (RMSE)
values. For natural gas (NG) consumption, the ETS model achieves the lowest RMSE of 20,687.46. STL
demonstrates the best performance for coal consumption with an RMSE of 5936.203. The seasonal
Naïve (SNaïve) model outperforms the others for petroleum coke forecasting, yielding an RMSE of
99.49. Surprisingly, the Mean method has the lowest RMSE of 287.34 for petroleum liquids, but the
ARIMA model is reliable for its ability to capture complex patterns. Residual plots are analyzed to
assess the models’ performance against statistical parameters. Accurate fuel consumption forecasting
is very important for effective energy planning and policymaking. The findings from this study will
help policymakers strategically allocate resources, plan infrastructure development, and support
economic growth.

Keywords: fuel consumption; forecasting; time series analysis; sustainable energy policies; RMSE

1. Introduction

The United States relies on a diverse array of energy sources, broadly categorized
into primary sources, including fossil fuels, nuclear energy, and renewables, and sec-
ondary sources, represented by electricity generated from primary sources [1]. Measure-
ment units vary across energy types, with liquid fuels being quantified in barrels or
gallons, natural gas being quantified in cubic feet, coal in short tons, and electricity in
kilowatts and kilowatt-hours [2]. The British thermal unit (Btu) serves as a standard for
energy comparison, revealing that the total U.S. primary energy consumption reached
100.41 quadrillion Btu in 2022 [3,4]. In the realm of electricity generation, the United States
employs a spectrum of sources and technologies that have evolved over time. The three
principal categories encompass fossil fuels (coal, natural gas, and petroleum), nuclear
energy, and renewables. Predominantly, steam turbines, drawn from fossil fuels, nuclear
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energy, biomass, geothermal energy, and solar thermal energy, stand as the dominant force
in electricity generation [5].

Other technologies contributing to this landscape include gas turbines, hydro turbines,
wind turbines, and solar photovoltaics [6]. Notably, within the domain of fossil fuels,
natural gas emerges as the predominant player, contributing approximately 40% to the
electricity generated in the U.S. in 2022 [7]. Coal, occupying the third-largest share at around
18%, predominantly fuels steam turbines, with certain facilities converting coal to gas for
utilization in gas turbines. Petroleum’s contribution is nominal, constituting less than 1%,
where residual fuel oil and petroleum coke are applied in steam turbines, and distillate fuel
oil powers diesel engine generators [7]. Nuclear energy commands a substantial portion,
accounting for nearly one-fifth of U.S. electricity, and it is generated through steam turbines
and nuclear fission. Renewable energy sources, constituting approximately 22% of the
total electricity generated in the U.S. in 2022, have witnessed substantial growth since 1990,
when their contribution to utility-scale electricity generation was approximately 12% [8].
This discernible shift underscores the escalating significance of renewables in shaping the
U.S. energy landscape [3,7]. In-depth analyses and insights from reputable sources further
verify these trends and dynamics.

Understanding the fluctuations in fuel usage for generating electricity, as described
by the U.S. Energy Information Administration, is quite difficult. The irregular nature
of these consumption patterns highlights a critical need for precise predictive models, as
their absence delays informed decision making, leaving us struggling with the dynamic
shifts in energy demands. This urgent situation makes it important to start researching
and developing better ways to predict future electricity needs. These improved forecasting
techniques are crucial for planning ahead in the field of electricity generation [9]. Accurate
predictions of fuel consumption not only facilitate efficient resource allocation and guide
infrastructure development but also serve as the bedrock for informed energy policies [10].
Apart from just numbers and predictions, these forecasts have a large effect on decisions
about where to invest money and how to plan for the environment, manage power grids,
save costs, and come up with strategies for the market [11]. They emerge as key tools
for emergency preparedness and play a pivotal role in planning a seamless transition to
renewable energy, ultimately forging a path toward a stable, sustainable, and resilient
energy sector [12]. As we investigate the statistics of this fluctuation, the intricate jump of
fuel consumption in electricity generation unveils itself, highlighting the pressing need for
foresight in steering the future of our energy landscape [10].

This study mainly focuses on constructing a robust forecasting model for fuel con-
sumption in U.S. electricity generation, utilizing comprehensive data spanning the years
2015 to 2022. The method involves a systematic analysis of seasonal and trend patterns,
a rigorous autocorrelation analysis, and refinement by eliminating biases from historical
trends. Leveraging actual consumption data, the approach includes model validation and
fine-tuning through a detailed comparison of forecasted and real consumption figures. By
employing data from the U.S. Energy Information Administration, this eight-year analysis
aims to explain the primary trend of fuel consumption for electricity generation across the
entire United States, mitigating potential uncertainties associated with regional variations.
The forecasting process integrates diverse benchmark methods, including STL, ETS, and
ARIMA, facilitating a robust comparison to identify the most accurate model. Evaluation
metrics, such as Mean Error (ME), Mean Percentage Error (MPE), Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE),
guide the selection of the optimal model. Once identified, this model will be deployed to
predict future fuel consumption trends, offering valuable insights for strategic energy plan-
ning. The combination of a comprehensive approach, diverse forecasting models, a specific
fuel analysis, and a focus on policy impact distinguishes this work from previous studies in
the field of fuel consumption forecasting for electricity generation. This research is crucial
for informing stakeholders and decision makers, enabling them to make well-informed
decisions on resource allocation, energy planning, and sector-specific strategies, with the
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main goal of contributing to the formulation of sustainable energy policies for a stable and
reliable national energy supply [13–15].

2. Analytical Framework
2.1. Data Source and Collection

The U.S. Energy Information Administration (EIA) serves as the primary data source
for this study, offering crucial insights into monthly and annual fuel consumption for
electricity generation. The comprehensive dataset provided by the EIA encompasses
significant fuels that are essential for electricity generation, including coal, petroleum
liquids, petroleum coke, and natural gas. The data utilized in this study were obtained
from the U.S. Energy Information Administration and are accessible through their official
website at www.eia.gov/electricity/monthly/ (accessed on 26 February 2024) [7,16]. The
availability of monthly data spanning from 2015 to 2024 allows for a robust analysis of fuel
consumption trends over an eight-year period. The dataset includes monthly data for coal,
petroleum liquids, petroleum coke, and natural gas consumption specifically tailored for
electricity generation purposes. The units of measurement for each fuel type are as follows:

• Coal: Thousand Tons;
• Petroleum Liquids: Thousand Barrels;
• Petroleum Coke: Thousand Tons;
• Natural Gas: Million Cubic Feet.

By incorporating data from the U.S. Energy Information Administration, this study
conducts a comprehensive analysis of fuel consumption trends in electricity generation
across the entire United States. The inclusion of monthly data from 2015 to 2024 facilitates
the exploration of primary trends while mitigating potential uncertainties associated with
regional variations. This transparent approach to data collection provides a solid foundation
for the subsequent analysis and forecasting efforts outlined in this project proposal.

2.2. Statistical Methods

The analysis includes a detailed comparison of forecasting models based on statistical
errors, such as Mean Error (ME), Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Percentage Error (MPE), Mean Absolute Percentage Error (MAPE), and
Autocorrelation Function at lag 1 (ACF1). The significance of these error metrics is twofold:
they quantify the accuracy and reliability of the forecasts and provide a statistical basis for
model selection. Lower values of RMSE and MAPE, for example, indicate higher forecast
accuracy. We further elaborate on the statistical underpinnings of these metrics, explaining
how they are calculated and their relevance in assessing model performance. This error
analysis is crucial for understanding why certain models outperform others and how the
confidence intervals derived from these errors inform the precision of our forecasts.

2.3. Forecasting Models

In the methodology section, we employed a variety of time series forecasting models
to analyze fuel consumption trends, including the Mean, Naïve, Drift, Seasonal Naïve,
STL, ETS, and ARIMA methods. Each model was chosen for its ability to capture different
aspects of the data’s temporal dynamics. For instance, the Mean Model provides a basic
benchmark by averaging past observations, while the Naïve method assumes the last
observed value is the next period’s value, which is useful for highly stable series. The
Drift method extends the Naïve approach by allowing trends over time, and the Seasonal
Naïve method accounts for seasonal patterns. Advanced models, like STL, ETS, and
ARIMA, were selected for their flexibility in modeling complex patterns involving trends
and seasonality. The best-performing model was determined based on the lowest Root
Mean Square Error (RMSE), ensuring the most accurate forecasts. We applied these models
to the dataset, systematically comparing their performance to identify the most accurate
forecasting approach for different fuel types.

www.eia.gov/electricity/monthly/
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3. Data Analysis
3.1. Overall Trend Analysis of Fuel Consumption

The trends observed in fuel consumption over time, depicted in Figure 1, show
the dynamics of various fuel types utilized for U.S. electricity generation. Natural gas
consumption (Figure 1a) exhibits a consistent upward trajectory from January 2016 to
January 2022, with occasional fluctuations [7,16]. This significant increase, supported by
statistical evidence [16], is attributed to several factors, including the growing preference for
natural gas as a cleaner alternative, increased efficiency in gas-powered plants, and a shift
towards renewables in the energy mix. In contrast, coal consumption (Figure 1b) displays a
fluctuating trend with distinct periods of growth and decline, reaching a significant trough
in January 2020.
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This decline aligns with a broader global trend of decreasing reliance on coal, driven
by environmental concerns, regulatory shifts, and the pursuit of cleaner energy sources [17].
Notably, the drop in January 2020 coincides with the onset of the COVID-19 pandemic,
which induced a temporary reduction in industrial activities and energy demand, con-
tributing to the observed drop in coal consumption. Similarly, petroleum coke (Figure 1c)
usage exhibits variability, experiencing peaks at specific times. The visible drop in January
2020, concurrent with the pandemic’s onset, can be attributed to a combination of reduced
industrial activities, altered production patterns, and an overall decline in energy demand
during the initial phases of the pandemic [18]. Petroleum liquids (Figure 1d) demonstrate a
diverse trend with notable spikes, particularly in early 2018. This increase can be linked to
a confluence of factors, including economic conditions, geopolitical events, and shifts in
energy policies [19]. For instance, the spike in early 2018 may be associated with increased
demand driven by economic growth and geopolitical factors affecting oil prices [20].
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In summary, the observed trends emphasize the comprehensive nature of fuel con-
sumption patterns, influenced by a complex interplay of economic, environmental, and
technological factors. These notable changes, especially during the COVID-19 pandemic,
highlight the importance of considering external influences when analyzing fuel consump-
tion dynamics for strategic energy planning and policy formulation [21].

3.2. Seasonality Analysis of Fuel Consumption

Conducting a seasonality analysis of fuel consumption is vital for understanding
recurring patterns and cycles in fuel consumption over time. It enables accurate forecasting
and prediction, aiding in operational planning and resource management. The seasonality
analysis of the consumption of different fuels is explained below.

3.2.1. Seasonality Analysis of NG Consumption

In Figure 2a, the upward trajectory of NG consumption from June to August each
year reflects a consistent seasonal pattern, particularly during the summer months. This
observed peak aligns with that of Figure 2b, illustrating the typical seasonal demand for
electricity, which is notably driven by increased air conditioning needs in warmer weather.
The surge in NG consumption during these summer periods can be attributed to its crucial
role in meeting the heightened electricity demand, with natural gas power plants playing a
pivotal role. This seasonality underscores the importance of natural gas in addressing the
specific requirements of peak periods, providing valuable insights into its usage dynamics.
The ascending trend in NG consumption from 2016 to 2022 further emphasizes its increasing
significance as an energy source for electricity generation, supported by advancements in
natural gas technologies, its environmental advantages, and evolving energy policies.
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3.2.2. Seasonality Analysis of Coal Consumption

The monthly trend and seasonality pattern observed in coal consumption from 2015 to
2022, shown in Figure 3, reveals a distinct seasonality pattern. The monthly trend, depicted
in Figure 3a, illustrates a gradual decline in consumption from January to April, followed
by an increase starting in April, reaching a peak in consumption during the summer months
of July and August. It then gradually starts to decline through September and October.
Subsequently, consumption reaches a relatively low level in November and experiences an
upturn again in December. The seasonal analysis pattern, illustrated in Figure 3b, further
reinforces this observed trend. It clearly shows the peak consumption during the summer
months, indicating a significant surge in activity during this period. This repeating pattern
shows that coal usage is strongly influenced by the seasons. Coal consumption increases
during the summer when there is a higher demand for cooling, and then it decreases again
as the winter becomes closer.
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The numbers behind this trend show that there is a regular change in coal usage each
month. By looking at the differences between the highest and lowest points, we can see
how much seasonal changes affect coal consumption [16]. The observed cyclicality aligns
with established industry knowledge on the impact of weather-related demand fluctuations
on energy consumption patterns [22,23]. This seasonality analysis, presented in Figure 3a,b,
contributes valuable insights for energy planners and policymakers, enabling informed
decisions to address the cyclical nature of coal consumption in the context of changing
climate and energy demand dynamics.
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3.2.3. Seasonality Analysis of Petroleum Coke Consumption

The monthly trend of petroleum coke consumption from 2015 to 2022, depicted in
Figure 4a, exhibits noteworthy fluctuations, revealing distinctive patterns across different
months. The seasonality analysis in Figure 4b further explains these trends, highlighting
recurring patterns within the specified timeframe. In particular, petroleum coke consis-
tently reaches its lowest consumption levels in October, with a recurring trend of reduced
usage also observed in November. Conversely, the summer months of July and August
consistently exhibit the highest consumption levels, which is indicative of a seasonal peak
in fuel usage. This observed seasonality aligns with industry practices, where heightened
energy demands during the summer, which are possibly attributed to increased industrial
activities and higher temperatures, drive an uptick in petroleum coke consumption. The
recurrent nature of these patterns emphasizes the importance of considering seasonal
variations for accurate forecasting and strategic energy planning. These observations are
grounded in data from reputable sources, providing a robust foundation for understanding
the intricate seasonality dynamics in petroleum coke consumption.
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3.2.4. Seasonality Analysis of Petroleum Liquid Consumption

The graphical representations in Figure 5a,b offer comprehensive insights into the
monthly trends and seasonality analysis of petroleum liquid consumption in the United
States from 2015 to 2022. In Figure 5a, the monthly trend reveals notable fluctuations,
bringing attention to abnormal spikes in February 2015, January 2018, January 2022, and
December 2022. These anomalies may be attributed to various factors, such as geopolitical
events influencing global oil markets, economic shifts impacting demand, or specific regula-
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tory changes affecting petroleum consumption. Figure 5b, showing the seasonality analysis,
provides a deeper understanding of recurring patterns. The observed regular fluctuations
suggest that seasonal changes, economic cycles, or global events have a potential influence
on petroleum liquid consumption. For instance, heightened demand during winter months
or economic upturns may contribute to periodic spikes. These insights underscore the
need for a nuanced understanding of the complex factors influencing petroleum liquid
consumption, integrating considerations beyond mere temporal patterns. The observed
data from the U.S. Energy Information Administration (EIA) provide additional context for
these observations [7,22,23].
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3.3. ACF and PACF Analyses of Consumption of Different Fuels

Analyzing the Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF) plots is a pivotal step in formulating an accurate forecasting model for fuel con-
sumption in electricity generation spanning the years 2015 to 2022. These plots play crucial
roles in detecting seasonality and identifying autoregressive (AR) and moving average
(MA) components, which are vital for comprehending how fuel consumption changes
over time. Autoregressive (AR) and moving average (MA) components are vital in a time
series analysis; they are identified through Autocorrelation Function (ACF) and Partial
Autocorrelation Function (PACF) plots. The AR model order is determined by ACF plot
lags where autocorrelation drops, while the MA model order is identified by PACF plot lags
where partial autocorrelation diminishes. ARIMA models integrate AR and MA compo-
nents, addressing non-stationarity for comprehensive time series forecasting. The ACF plot
provides a comprehensive overview of autocorrelation at various lags, offering insights
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into longer-term patterns such as seasonality in fuel usage during specific calendar periods.
This relationship can be expressed mathematically as shown in Equation (1):

ACF (k) =
∑n

t=k+1
(
Xt − X̂

)
(Xt−k − X̂)

∑n
t=1
(
Xt − X̂

) 2 (1)

where

• k is the lag;
• n is the total number of observations in the time series;
• Xt is the value of the time series at time t;
• X is the mean of the time series.

Simultaneously, the PACF plot focuses on the direct relationship between the current
observation and observations at individual lags, aiding in model selection by revealing
correlations within the fuel consumption time series. This approach allows for a nuanced
understanding of fuel consumption patterns, capturing both broader trends and specific
lagged relationships. This relationship can be expressed mathematically as shown in
Equation (2) [24,25].

PACFk = corr (Lt, Lt−k|Lt−1, . . .. . .. . . Lt−k−1) (2)

Utilizing the ACF enables the identification of overarching temporal patterns, while
the PACF emphasizes the immediate connections within the fuel consumption data. By
employing Equation (2), the PACF quantifies the correlation at lag, Lt, extending up to a
defined number of lags, contributing to a more robust analysis [24,25]. The significance of
ACF and PACF analyses lies in their ability to uncover temporal dependencies, aiding in the
formulation of a forecasting model that accounts for seasonality and lagged relationships,
ultimately enhancing the accuracy of the predictions. This methodological approach is
fundamental for gaining a comprehensive understanding of the intricate fuel consumption
patterns that are crucial for effective energy planning and policy formulation.

3.3.1. Autocorrelation Analysis of NG Consumption

In the specific analysis focused on natural gas consumption using a lag of 36 in
the ACF plot, the majority of lines are observed to cross the blue dashed line on the
positive side, suggesting a significant positive autocorrelation at lag 36 (Figure 6a). The
positive crossings indicate a correlation between values at a given month and those from
36 months prior, revealing a prolonged cyclicality in consumption trends. As the line (blue
dashed) typically represents the 95% confidence interval for the autocorrelation values,
points outside this interval may indicate significant autocorrelation. This confidence
interval is essential because it helps determine whether observed autocorrelation values
are statistically significant or simply due to random variation. By setting the confidence
level at 95%, we establish a threshold for significance, allowing us to identify meaningful
autocorrelation patterns with a high degree of confidence. In addition, in the PACF plot
shown in Figure 6b, the lines crossing the blue dashed line up to lag 15 indicate statistically
significant partial autocorrelations, and partial autocorrelations beyond this point are not
statistically significant.

Lag 36 is chosen for the analysis of natural gas consumption to capture recurring
seasonal patterns or business cycles, aligning with standard practices in time series analysis.
This lag allows for the exploration of relevant patterns while maintaining a balance between
examining autocorrelation over an adequate timeframe and capturing significant temporal
dynamics. By considering the confidence interval alongside lag selection, the autocorrela-
tion function (ACF) analysis offers valuable insights into the structure of autocorrelation,
facilitating the development of robust forecasting models and informed decision making.
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3.3.2. Autocorrelation Analysis of Coal Consumption

The ACF plot shown in Figure 7a for coal consumption with a lag of 36 provides
insights into the autocorrelation structure, indicating the presence of seasonality within
the first 27 months, followed by a change in the pattern. The positive crossing on the ACF
plot up to lag 27 indicates significant positive autocorrelation at these lags. This suggests
the presence of a repeating pattern or seasonality within the first 27 months of the coal
consumption data. The crossing to the negative side at lag 27 could indicate a reversal
in the autocorrelation pattern. Moreover, the PACF plot shown in Figure 7b indicates
significant autocorrelation up to lag 13, suggesting strong dependencies within the data up
to that point. However, beyond lag 13, the autocorrelation decreases as the lag increases.
The decrease in the number of lines crossing the confidence interval as the lag increases
may suggest a decline in the partial autocorrelation, indicating that the direct influence of
observations on other observations diminishes as the lag increases.
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3.3.3. Autocorrelation Analysis of Petroleum Coke Consumption

The ACF plot for petroleum coke consumption, depicted in Figure 8a, indicates a
positive correlation between observations at different lags, with the strength of correlation
decreasing as the lag increases. The diminishing correlation suggests a changing influence
of past observations on the current consumption pattern, possibly reflecting evolving
trends or temporal dynamics. Conversely, the PACF plot (Figure 8b) does not show
significant correlations, emphasizing the specific and direct influences captured by partial
autocorrelations at each lag.
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3.3.4. Autocorrelation Analysis of Petroleum Liquid Consumption

In the ACF plot of petroleum liquid consumption, the absence of lines crossing the
dashed line, except at lag 0 and lag 35, indicates a lack of significant autocorrelation at most
lags (Figure 9a). At lag 0, the line crossing the blue dashed line suggests a correlation with
itself, which is expected. The PACF plot in Figure 9b does not show significant correlations,
emphasizing the specific and direct influences captured by partial autocorrelations at
each lag.
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3.4. Forecasting Models for Consumption of Different Fuels

The development of forecasting models holds vital importance in anticipating and
adapting to the dynamic demand profiles inherent in fuel consumption, particularly for
natural gas (NG), for electricity generation [26]. In this research work, we deployed four
distinct forecasting methodologies to project fuel consumption for electricity generation
in the United States for the upcoming years 2023 and 2024. The models experienced a
thorough training phase spanning an 8-year period from January 2015 to December 2022,
followed by careful validation using test data from January 2023 to August 2023. To
comprehensively assess their performance, we conducted a detailed comparative analysis,
evaluating the forecasting models based on their error metrics. The effectiveness of each
model was further analyzed through a precise comparison of forecasted data against actual
consumption figures [12]. The applied models along with the mathematical formula can be
described accordingly.

3.4.1. Benchmark Models

The benchmark methods serve as crucial reference points in fuel consumption forecast-
ing, providing intuitive approaches for comparison with more sophisticated models [27,28].
Benchmark approaches constitute foundational methodologies in time series forecasting,
characterized by their simplicity and practicality.

Mean Model

The Mean approach employs the average of historical observations to project future
values [29]. The Mean Model, often used as a baseline for comparison, forecasts future
values by calculating the average of all past observations. This simplistic approach is
grounded in the assumption that the future will closely mirror the average historical
behavior of the dataset, making no adjustments for any trends or seasonal patterns that
may exist. The model’s simplicity lies in its disregard for complex behaviors, focusing
instead on the central tendency of the data. The mathematical formula can be written as
shown in Equation (3).

Ŷt =
1
n

n

∑
i=1

yi (3)

where Ŷt is the forecasted value for the future period, t; n is the total number of observations;
and yi represents each observed value.

Naïve Model

The Naïve Model provides forecasts by simply assuming the next value will be identi-
cal to the last observed value. Its effectiveness and simplicity make it a reliable benchmark
for evaluating the performance of more sophisticated models, especially in datasets where
trend and seasonality are minimal or absent. Equation (4) shows the mathematical formula
as follows:

Ŷt+1 = Yt (4)

Here, Ŷt+1 is the forecasted value for the next time period, t + 1, and yt is the observed
value at time t.

Drift Model

The Drift Model extends the Naïve Model by incorporating a linear trend into the
forecasts. This trend is calculated based on the average change observed in the historical
data, making it suitable for datasets with a consistent trend over time. The mathematical
formula is shown in Equation (5).

Ŷt+h = Yt + h
(

Yt−Y1

t − 1

)
(5)
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where h represents the number of periods ahead for which the forecast is being made.

Seasonal Naïve Model

The Seasonal Naïve Model forecasts future values based on the last observed value
from the same season in the previous cycle. It captures seasonality by assuming that
patterns repeat at a fixed seasonal frequency. The mathematical formula can be written as
follows (Equation (6)):

Ŷt+m = Yt+m−s (6)

where m indicates the forecasting interval and s indicates the length of the seasonal cycle.

3.4.2. STL (Seasonal and Trend Decomposition Using Loess)

Decomposition techniques constitute crucial elements in the nuanced analysis of
time series data, facilitating the discernment and isolation of pivotal components that
are essential for unveiling trends, seasonal fluctuations, and cyclical patterns. One such
sophisticated method is STL, denoting Seasonal and Trend Decomposition using Loess. This
method stands out for its robustness in handling outliers and its adaptability in addressing
seasonal time series characterized by frequencies exceeding one. Unlike methodologies
confined to specific temporal resolutions, such as monthly or quarterly intervals, STL
demonstrates versatility by accommodating a broader spectrum of seasonal patterns,
rendering it particularly well suited for precise fuel consumption forecasting [30,31]. The
mathematical formula can be written as follows (Equation (7)):

Ŷt = Tt + St + Rt (7)

where Yt is the original time series, Tt is the trend component, St the seasonal component,
and Rt is the remainder or residual.

3.4.3. ETS (Error, Trend, Seasonality)

The ETS (Error, Trend, Seasonality) forecasting methodology, renowned for its efficacy
in time series prediction, is instrumental in modeling and anticipating fuel consumption
patterns. This approach dissects time series data into three fundamental components:
error, trend, and seasonality. The error term encapsulates stochastic fluctuations, the trend
encapsulates long-term directional movements, and seasonality captures recurring patterns
at fixed intervals. Diverse ETS model variations, such as ETS (AAA), ETS (AAN), and ETS
(MAM), tailor to distinct time series characteristics by combining different error, trend, and
seasonality components. Their adaptability to varied time series patterns and capacity to
unveil insights into future trends make ETS models pervasive in forecasting applications.
Equation (8) shows the mathematical formulation.

Ŷt = Tt × St × Et (8)

3.4.4. ARIMA (Autoregressive Integrated Moving Average)

ARIMA models, encompassing autoregressive, differencing, and moving average
components, offer a comprehensive framework for forecasting time series data. These
models are adept at handling data with underlying trends and autocorrelations, providing
a robust method for predicting future values. They combine autoregressive (AR) terms,
differencing (I) to achieve stationarity, and moving average (MA) terms, making them
suitable for data with trends and seasonal patterns. The pivotal parameters of the ARIMA
model encompass the autoregressive component (p), which is vital for discerning corre-
lations with antecedent values; the integrated component (d) determining the order of
differencing requisite for achieving stationarity; and the moving average component (q),
which is effective in accounting for correlations with prior prediction errors. The optimal
values for ‘p’, ‘d’, and ‘q’ are calculated through optimization techniques, such as grid
search. After training on historical data, the ARIMA model proficiently extrapolates future
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NG consumption values, adeptly accommodating both transient oscillations and enduring
trends within the temporal dataset. This renders ARIMA an invaluable tool for precise and
holistic forecasting within the realm of energy consumption [32].

ARIMA(p, d, q)

where p is the order of the autoregressive part, d is the degree of differencing needed to
achieve stationarity, and q is the order of the moving average part.

Each of these models contributes uniquely to the forecasting process, enabling a
nuanced understanding of the time series data’s behavior. By applying a combination
of these models, this study leverages a broad spectrum of statistical tools to predict fuel
consumption trends with greater accuracy and reliability.

3.4.5. An Analysis of the Consumption of Fuels Using Forecasted Methods
Forecasting Models for NG Consumption

Figure 10 serves as a visual representation of the forecasted NG consumption for
the years 2023 and 2024, employing diverse forecasting methodologies. The benchmark
methods, STL decomposition, ETS method, and ARIMA method each contribute to a multi-
faceted analytical approach, offering an understanding of the varied strategies employed
in forecasting. This rigorous methodology adheres to industry standards and contributes
valuable insights to the realm of energy planning and policy formulation [33].
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Particularly, among the illustrated benchmark methods (refer to Figure 10a), the
SNaïve technique distinguishes itself by adeptly capturing the majority of fluctuations in
fuel consumption. The forecasting outcome following STL decomposition is illustrated in
Figure 10b, attesting to its efficacy in enhancing predictive accuracy.



Sustainability 2024, 16, 2388 15 of 30

Figure 10c illustrates the forecasted natural gas (NG) consumption data using the ETS
method. The ETS decomposition plot in Figure 11, derived from the ETS (M, N, M) model—
signifying multiplicative error, no trend, and multiplicative seasonality—was selected
based on the minimal values of AIC, AICc, and BIC, which were determined through the
ETS () function in R. The estimated parameters for exponential smoothing include α = 0.583
and Υ = 0.0001, with a calculated σ2 of 0.0024. Notably, α at 0.583 denotes a moderate
emphasis on recent observations in forecasting, and the lower σ2 value suggests heightened
stability and predictability. These parameters assume a pivotal role in governing the rate of
change for error, trend, and seasonality components, offering flexibility through α and Υ in
adjusting level and trend, respectively.
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The forecasted natural gas (NG) consumption for electricity generation in 2023 and
2024, derived from the ARIMA forecasting method, is visually presented in Figure 10d,
thereby showcasing the model’s predictive prowess in delineating future trends.

Forecasting Models for Coal Consumption

In the prediction of coal consumption for electricity generation in the U.S., we applied
various forecasting methods, including the benchmark method, STL decomposition, ETS
method, and ARIMA method, as outlined in Section 5. The coal consumption values from
2015 to 2022 were used as input data for predicting the values for the years 2023 and 2024.
Figure 12a–d visually represent the forecasted coal consumption values obtained through
different methods.

Forecasting Models for Petroleum Coke Consumption

The forecasting process for petroleum coke consumption in the years 2023 and 2024
followed the same methodology discussed in Section 5. Similar forecasting methods
were applied to determine the most effective approach. Figure 13 visually presents the
forecasted values for petroleum coke consumption obtained through the benchmark, STL
decomposition, ETS, and ARIMA methods.
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Forecasting Models for Petroleum Liquid Consumption

Created by applying forecasting methods similar to those discussed in Section 5,
Figure 14 visually shows the forecasted values for petroleum liquid consumption obtained
through the benchmark, STL decomposition, ETS, and ARIMA methods.
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3.5. Model Comparison in Terms of Errors for Energy Streams

The evaluation of the models’ performance in forecasting energy streams is predicated
on a robust statistical analysis of the forecast errors on both the training and testing datasets.
The models selected for comparison encompass a range of statistical and machine learning
approaches, each with distinct assumptions and complexities. To ensure a comprehensive
and unbiased comparison, a suite of error metrics, each capturing different aspects of
forecast accuracy and bias, were employed. Each model was applied to the same training
and testing datasets to ensure accurate comparison. The error metrics used for comparison
are standard in forecasting literature and include the Mean Error (ME), Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Percentage Error (MPE), Mean Absolute
Percentage Error (MAPE), and the first autocorrelation of the forecast errors (ACF1). The
ME is calculated as shown in Equation (9).

ME =

√
1
n

n

∑
t=1

(
Yt − Ŷt

)
(9)

It measures the average deviation of the forecasts (ŷt) from the actual values (yt),
indicating a bias if the ME is significantly different from zero. The RMSE is sensitive to
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outliers and provides a measure of the dispersion of forecast errors. The RMSE is computed
using Equation (10).

RMSE =

√
1
n

n

∑
t=1

(
Yt − Ŷt

)2 (10)

This metric penalizes larger errors more severely and provides a measure of the mag-
nitude of the error. The Mean Absolute Error (MAE) is similar to the RMSE in measuring
the magnitude of errors but does not square the deviations, thus offering a linear scale of
error. The MAE is given by the following equation:

MAE =
1
n

n

∑
t=1

∣∣Yt − Ŷt
∣∣ (11)

It represents the average magnitude of the errors in a set of forecasts without consid-
ering their directions. The Mean Percentage Error (MPE) and Mean Absolute Percentage
Error (MAPE) are relative error metrics, providing a perspective of errors in terms of the
observed data’s magnitude. The MPE is calculated as follows (Equation (12)):

MPE =
100%

n

n

∑
t=1

(
Yt − Ŷt

Yt

)
(12)

It indicates the average percentage deviation of the forecasted values from the actual
values, providing a scale-relative error measure. The MAPE, similar to the MPE, is the
mean absolute value of the percentage errors and is calculated as follows:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣∣Yt − Ŷt

Yt

∣∣∣∣∣ (13)

This metric is widely used because it is scale-independent and can compare forecast
performance across different data scales. Lastly, the ACF1 is the autocorrelation of the
forecast errors at lag 1, indicating whether there is a pattern in the errors over time. The
equation for ACF1 can be written as follows:

ACF1 = Correlation (εt, εt−1) (14)

where εt = (ŷt − yt) represents the forecast errors at time t. An ACF1 near zero suggests
that the forecast errors are random, which is a desirable property of a good forecast.

An examination of both the training and testing datasets was conducted to assess
the authenticity of the conclusion. Errors on the training set reflect the model’s ability to
learn from historical data, while errors on the testing set provide insights into the model’s
predictive accuracy on unseen data. A model that performs well on both datasets is
considered robust, whereas a large discrepancy may indicate overfitting. To further validate
our results, cross-validation techniques were employed, providing a more exhaustive
assessment of the model’s predictive power across various subsamples of the dataset. This
process mitigates the risk of coincidental patterns influencing the model’s performance and
ensures the reliability of the findings.

3.5.1. Natural Gas

In assessing the accuracy of various forecasting methodologies for NG consumption, a
comprehensive evaluation was conducted by partitioning the dataset into a distinct training
set (the 2015–2022 period) and testing set (the 2023–2024 period). The performance of seven
forecasting models was evaluated using six different accuracy measures, as demonstrated
in Tables 1 and 2. The measures, designed to explain biases and precision across different
models, encompass metrics such as the ME for bias estimation, the MAE for precision
measurement, and the RMSE as an indicator of precision that penalizes larger errors [34,35].
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These three metrics operate on a scale-dependent basis. Conversely, the MPE and MAPE
are articulated in percentage terms, offering a more conducive platform for a comparative
analysis across diverse consumption levels [36]. Remarkably, the ETS model emerged as
the optimal performer, showing the lowest RMSE values in both the training (39,237.5) and
testing (20,687) datasets. The consistent excellence of the ETS model is evident in its ability
to fit historical data and forecast future values. This makes it the chosen model for natural
gas consumption forecasting in both training and testing scenarios.

Table 1. Model comparison in terms of errors for training dataset (NG).

Tr
ai

ni
ng

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF 2485.022 46,311.86 37,269.12 0.19733 4.054975 −0.31132
ARIMA −1003.74 42,482.11 34,075.3 −0.43476 3.772431 0.028523
ETS 2776.487 39,237.5 32,580.19 0.124194 3.633987 0.029872
MEAN −3.88 × 10−11 187,831.5 150,235 −3.91587 16.47926 0.758566
NAÏVE 2849.021 129,627.5 104,644.3 −0.54117 11.12082 0.372243
SNAÏVE 28,184.8 85,297.44 72,281.51 2.45759 8.001223 0.716488
RW-DRIFT 2.94 × 10−11 129,596.2 104,914.3 −0.86377 11.16892 0.372243

Table 2. Model comparison in terms of errors for testing dataset (NG).

Te
st

in
g

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF 14,741.56 50,661.2 44,064.48 0.566659 3.729218 0.648806
ARIMA 25,348.86 51,424.27 46,082.33 1.857718 4.030831 0.341779
ETS 7600.542 20,687.46 17,204.31 0.513017 1.477106 0.117672
MEAN 199,798.9 308,728.4 212,774.1 14.57299 16.03116 0.650277
NAÏVE 99,858.38 255,666.4 185,054.6 5.251944 14.63274 0.650277
SNAÏVE 75,924.13 86,594.7 75,924.13 7.302419 7.302419 0.271527
RW-DRIFT 87,037.78 245,731.8 181,637.9 4.152805 14.53365 0.647994

Moreover, as seen in the residual plot of the ETS model shown in Figure 15, a normal
distribution of residuals appears in the histogram plot, signifying a normal distribution
of errors. The ACF plot, which identifies any remaining patterns in the residuals, illus-
trates that only a limited number of lines cross the blue dashed line, indicating statistical
significance. This suggests that the model has successfully captured the majority of auto-
correlation in the data. Moreover, the random fluctuation in the residual plot indicates that
the model is capturing the underlying patterns in the data. In summary, the ETS model is a
good fit for forecasting NG consumption as the residuals display randomness, normality,
and a lack of systematic patterns.

3.5.2. Coal

Analyzing the performance on both the training and testing datasets reveals distinct
characteristics of the models. While the ETS model boasts a lower RMSE of 3831.801 on the
training data (Table 3), the STLF model demonstrates superior generalization on the testing
data with the lowest RMSE of 5936.203 compared to the ETS model’s RMSE of 7288.344
(Table 4).

This difference in performance suggests that the STLF model outperforms the ETS
model when forecasting coal consumption, particularly in terms of its ability to generalize
well to unseen data. The choice to prioritize the STLF model is supported by its superior
performance on the testing data, highlighting its potential for accurate and reliable coal
consumption predictions in real-world scenarios.
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Table 3. Model comparison in terms of errors for training dataset (Coal).
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Model ME RMSE MAE MPE MAPE ACF1

STLF −96.8973 4234.149 2884.178 −0.74241 6.481808 −0.32284
ARIMA −399.02 4385.426 3269.713 −1.15739 7.247969 0.012544
ETS −334.795 3831.801 2944.868 −1.1289 6.287089 0.036044
MEAN 2.43 × 10−12 12,092.34 9731.963 −6.69494 21.85658 0.762233
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Table 4. Model comparison in terms of errors for the testing dataset (Coal).

Te
st

in
g

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF −5630.45 5936.203 5630.449 −17.4302 17.4302 0.35842
ARIMA −10,728.1 11,186.03 10,728.1 −35.0688 35.06884 0.030943
ETS −6864.8 7288.344 6864.795 −21.1329 21.13289 0.338486
MEAN −15,923.6 17,662.76 15,923.57 −56.8521 56.85209 0.536813
NAÏVE −9111 11,892.15 10,296 −34.8482 37.53244 0.536813
SNAÏVE −8444.63 9014.585 8444.625 −28.1565 28.15649 0.300924
RW-DRIFT −7707.28 11,166.73 10,062.05 −30.5693 35.90604 0.560167

As seen in Figure 16, the STLF model for coal consumption forecasting is robust, with
residuals displaying normality, a minimal significant autocorrelation in the ACF plot, and
random fluctuation. Overall, the model effectively captures the underlying data patterns.
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3.5.3. Coak

As seen in Table 5, the ETS model exhibits the lowest RMSE of 44.60 on the training
data, indicating a good fit to the training set. However, the situation changes when assessing
the testing data, where the snaive model achieves the lowest RMSE of 99.49, outperforming
the ETS model with an RMSE of 134.36 (Table 6).

Table 5. Model comparison in terms of errors for training dataset (Coak).

Tr
ai

ni
ng

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF 0.072135 50.30918 38.44801 −1.7798 15.68808 −0.31094
ARIMA −7.79429 50.97813 39.21442 −6.92597 16.82244 −0.04866
ETS −2.2064 44.60708 35.05145 −3.58674 14.38404 0.147046
MEAN 0 66.17165 52.33333 −7.38547 21.85282 0.57797
NAÏVE −1.11579 59.88902 47.55789 −3.72212 19.53299 −0.17484
SNAÏVE −12.619 71.87241 60.09524 −9.37567 25.92356 0.360049
RW-DRIFT 1.08 × 10−14 59.87863 47.54859 −3.2987 19.48854 −0.17484

Table 6. Model comparison in terms of errors for testing dataset (Coak).

Te
st

in
g

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF −134.524 139.2002 134.5243 −97.8964 97.89637 0.392624
ARIMA −100.747 115.8635 100.7467 −79.5287 79.52873 0.571681
ETS −130.006 134.3647 130.0063 −94.2535 94.25347 0.375933
MEAN −122.75 134.7748 122.75 −94.6778 94.67779 0.558346
NAÏVE −134.75 145.7884 134.75 −102.904 102.9036 0.558346
SNAIVE −78.5 99.49749 90 −64.2448 68.79813 0.355008
RW-DRIFT −129.729 141.8381 129.7289 −99.7341 99.73414 0.565986

Based on the visual analysis depicted in Figure 17, the snaïve model for petroleum
coke consumption forecasting demonstrates robustness. The residuals exhibit a normal
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distribution in the histogram, a minimal significant autocorrelation in the ACF plot, and
random fluctuation.
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3.5.4. Petroleum Liquid

As seen in Tables 7 and 8, the ARIMA model exhibits the lowest RMSE on the training
data at 1199.579, indicating a robust fit to historical observations. However, with the testing
data, the mean method surpasses the ARIMA model, achieving the lowest RMSE of 287.34
in contrast to ARIMA’s RMSE of 424.909. Despite the mean method’s superior performance
on the testing data, we prioritize the ARIMA model for its capability to capture underlying
complex patterns, which is particularly advantageous in forecasting petroleum liquid
consumption.

Table 7. Model comparison in terms of errors for training dataset (Petroleum Liquids).

Tr
ai

ni
ng

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF 51.27077 1206.734 469.8335 −5.79073 20.42126 −0.351
ARIMA −0.39939 1199.579 556.5674 −12.6417 22.80608 −0.00636
ETS −72.5277 1522.814 687.7297 −11.0457 34.25543 −0.26354
MEAN 0 1214.503 563.3268 −12.923 23.11294 0.136773
NAÏVE 27.18947 1548.012 604.3474 −9.65595 25.94808 −0.37293
SNAÏVE −1.96429 1494.727 578.4881 −6.82803 22.23511 0.142605
RW-DRIFT −1.82 × 10−13 1547.773 604.41 −11.2077 26.08228 −0.37293

Table 8. Model comparison in terms of errors for testing dataset (Petroleum Liquids.

Te
st

in
g

D
at

a

Model ME RMSE MAE MPE MAPE ACF1

STLF −3879.82 3893.528 3879.82 −225.717 225.7167 −0.24153
ARIMA −353.011 424.909 354.831 −20.8028 20.8937 −0.39078
ETS −6402.64 6769.273 6402.639 −365.768 365.7678 0.550292
MEAN −260.063 287.3403 263.7344 −15.588 15.77136 0.232705
NAÏVE −4147.75 4149.55 4147.75 −241.594 241.5938 0.232705
SNAÏVE −475.75 1221.797 544.5 −26.5977 30.84144 −0.00337
RW-DRIFT −4270.1 4273.105 4270.103 −248.811 248.8107 0.476336
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The visual analysis as in Figure 18 suggests that the ARIMA model has robustness
for petroleum liquid consumption forecasting. The residuals exhibit a normal distribution
in the histogram, a minimal significant autocorrelation in the ACF plot, and random
fluctuation.
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The forecasting models utilized in this study were selected for their statistical ro-
bustness and based on established scientific methodologies. The Mean, Naïve, Drift, and
Seasonal Naïve methods are fundamental to time series forecasting, employing the princi-
ples of classical statistical theory that leverage historical data continuity to project future
values. These methods are well documented in seminal works, such as those by Box and
Jenkins (1976) [37], and their simplicity and interpretability allow them to endure bench-
marks in the field. The STL (Seasonal and Trend Decomposition using Loess) and ETS (Error
Trend Seasonal) models are advanced techniques that extend these classical approaches
to accommodate complex patterns in data. They are grounded in the research on STL by
Cleveland et al. (1990) [38] and in the research on ETS by Hyndman et al. (2002) [39],
reflecting the evolution of statistical learning where flexibility in model structure is critical
for capturing inherent data dynamics. The ARIMA model’s inclusion is predicated on its
comprehensive framework for addressing non-stationarity and is supported by extensive
works in the literature on its efficacy in energy consumption forecasting (Box and Jenkins,
1976; Pankratz, 1983) [40]. By integrating these diverse methodologies, this study harnesses
a spectrum of theoretical insights to provide a sophisticated analysis of fuel consumption
trends for electricity production. This multiplicity of approaches not only aligns with
the cross-disciplinary nature of energy forecasting but also embodies the convergence of
traditional statistical techniques with contemporary analytical advancements.

4. Result and Discussion
4.1. Analysis of Forecasting Trends for Different Energy Streams
4.1.1. Overall Trend of NG Consumption

As shown in Figure 19, the increase in natural gas (NG) consumption, particularly
during summer months, highlights its growing importance in the U.S. energy mix. Ac-
cording to the Energy Information Administration (EIA), NG consumption for electricity
generation in the U.S. reached a record high in 2020, with an average of about 31.54 billion
cubic feet per day [41]. This trend reflects NG’s role in meeting the peak electricity demand,
especially for air-conditioning. NG’s lower emissions profile compared to coal and oil,
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combined with its competitive pricing and increased production efficiency, supports its
continued growth. The projections suggest a 2% annual increase in NG consumption in the
power sector through 2050.
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Figure 19. Overall trend analysis of NG consumption for U.S. electricity generation.

4.1.2. Overall Trend of Coal Consumption

The forecast for coal consumption indicates a decreasing trend, raising questions about
the underlying reasons. Analyzing the historical trend from 2015 to 2022, as shown in
Figure 3, reveals a clear seasonality pattern. There is a noticeable peak in coal consumption
during the summer months of July and August, followed by a gradual decline in September
and October. Consumption reaches a low point in November and then starts to rise again
in December. This cyclic pattern suggests that there is a seasonal influence on coal con-
sumption, with similar patterns observed in the forecasted coal consumption (Figure 20).
The decreasing trend in coal consumption can be attributed to several factors [42]. Firstly,
there is a global shift towards cleaner and more sustainable energy sources, driven by envi-
ronmental concerns and efforts to reduce carbon emissions. Governments and industries
are increasingly adopting renewable energy sources and natural gas, which are considered
more environmentally friendly alternatives to coal.
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4.1.3. Overall Trend of Petroleum Coke Consumption

The data show that petroleum coke use slightly increases, especially in July and
August, and then it decreases in October. This has not only happened in the past but is
also expected to happen in the future (Figure 21). Petroleum coke comes from refining
oil and is used in different industries for different applications, like making cement and
producing power. The small increase might be because some industries need more of
it, or it could be occurring where economies are growing. Petroleum coke’s fluctuating
consumption patterns reflect its role in the U.S. energy landscape. As a byproduct of oil
refining, its use is closely tied to the refining industry’s operational dynamics and the
global oil market. The EIA reports minor increases in petroleum coke’s consumption within
certain industrial sectors, highlighting its dependence on sector-specific demands and
global economic factors. The anticipated stability in petroleum coke consumption suggests
a continued, albeit limited, role in the U.S. energy mix, with implications for environmental
policy and industrial energy strategies.
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4.1.4. Overall Trend of Petroleum Liquid Consumption

The monthly patterns and seasonality analysis of petroleum liquid consumption
between 2015 and 2022 reveal spikes in February 2015, January 2018, January 2022, and
December 2022. However, in the forecasted data, there are no unusual spikes. Instead, the
forecast predicts consistent and steady consumption (Figure 22). This lack of anomalies
in the forecast suggests that improved forecasting models have been employed. Despite
historical fluctuations, recent trends suggest a normalization of consumption patterns. This
stability may reflect the effective integration of petroleum liquids into specific industrial
and emergency backup applications. The Department of Energy’s 2020 report highlights the
critical role of petroleum liquids in ensuring grid reliability during peak demand periods,
underscoring the need for diversified energy sources to maintain system resilience. These
models take into account historical irregularities but anticipate a more stable trend for the
future.
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Figure 22. Overall trend analysis of petroleum liquid consumption for U.S. electricity generation.

In the discussion of our results, we highlight the importance of statistical significance
levels and confidence intervals in interpreting the forecasts. Statistical significance is
determined using p-values, with levels set at <0.05 to indicate meaningful deviations from
null hypotheses. Confidence intervals, particularly 95% confidence intervals, offer a range
within which we expect the true forecast values to lie, providing insights into the precision
and reliability of our predictions. For each fuel type forecasted, we present the models’
performance not just in terms of error metrics like ME, RMSE, MAE, MPE, MAPE, and
ACF1, but also in terms of their statistical significance and confidence intervals. This dual
approach underscores the robustness of our forecasting methodology and the credibility
of our findings, facilitating a deeper understanding of the models’ predictive power and
limitations.

4.2. Comparing the Forecasted Trends of Different Energy Streams in Electricity Generation

The graph shown in Figure 23 explains the projected consumption patterns for four key
energy streams used for electricity generation in the U.S., spanning from September 2023 to
December 2024. Over this period, natural gas consumption fluctuates, with notable peaks
in July and August 2024 at approximately 1,542,143 MMBTUs and 1,508,448 MMBTUs,
respectively. These surges are likely responses to heightened electricity demand for cooling
during the hotter months, which is a recurring trend that emphasizes the influence of
seasonal temperature variations on energy utilization.

Coal consumption, while demonstrating less volatility than natural gas, shows minor
variations that could be linked to industrial demand cycles, regulatory impacts, and market
pricing. For instance, coal consumption rises to 835,000 MMBTUs in December 2023, which
may reflect an increase in energy needs during the winter season. Meanwhile, coke, which
is used primarily in industrial processes like steel manufacturing, maintains a relatively flat
demand, with a minor peak at 7400 MMBTUs in December 2023, suggesting a consistent
industrial requirement with little seasonal impact.

Petroleum liquids display an unwavering consumption value of approximately
11,575.176 MMBTUs throughout the forecasted period. This consistency indicates that
petroleum liquids may have a set role in the energy mix for electricity generation, poten-
tially due to established supply chains and a stable market for petroleum products.
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The comprehensive analysis of fuel consumption trends in U.S. electricity generation,
as presented in this study, underscores the pivotal role of forecasting models in predicting
future energy needs. Our findings reveal that the exponential smoothing (ETS) model,
with its lowest Root Mean Squared Error (RMSE) for natural gas (NG) consumption,
coupled with the Seasonal and Trend Decomposition using Loess (STL) for coal, highlight
the understanding required for effective energy planning and policy formulation. These
models, together with the Seasonal Naïve (SNaïve) model’s performance on petroleum coke
forecasting, provide invaluable insights into the shifting dynamics of fuel consumption.

The forecast result suggests that, while natural gas and coal exhibit seasonality and
potential sensitivity to external market and policy conditions, the demand for coke and
petroleum liquids appears more stable and possibly insulated from such factors. This
stability could be due to long-term contracts, stockpiling strategies, or their specific usage
domains within the industry, which might be less susceptible to short-term changes. Hav-
ing said that, natural gas will still likely be the dominating factor used to generate electricity
in the near future as well for the United States. The transition towards cleaner energy
sources, as indicated by the increasing reliance on natural gas and renewables, presents
both challenges and opportunities for the U.S. energy sector. This shift, driven by environ-
mental considerations and technological advancements, necessitates a reevaluation of the
existing infrastructure and investment strategies to accommodate the growing demand for
sustainable energy solutions. Furthermore, the decline in coal consumption, underscored
by our analysis, aligns with global trends towards decarbonization but also signals the need
for policies that support economic diversification and workforce transition in traditional
coal regions. To ensure the reliability of these projections and facilitate strategic energy
planning, it is essential to corroborate these data with other sources in the literature, includ-
ing market analyses, industry reports, and regulatory policy documents. This approach
would provide a robust foundation for understanding the complex dynamics at play and
for preparing the energy sector to meet future demand effectively and sustainably.

This study’s reliance on historical consumption data and forecasting models introduces
limitations, including the potential for unforeseen economic, technological, and policy
changes to impact future energy trends. Additionally, the regional variability in energy
consumption and production capacities warrants further investigation to tailor energy
strategies more effectively to local needs. Future research should explore the integration of
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renewable energy sources into the grid, the implications of energy storage technologies,
and the potential for new policy initiatives to shape consumption patterns. Moreover,
comparative studies across different geographical regions could provide deeper insights
into the effectiveness of various energy transition strategies.

5. Conclusions

In this paper, our objective is to provide precise predictions for fuel consumption
in electricity generation using time series forecasting models, making a substantial con-
tribution to strategic planning and decision-making processes within the energy sector.
Developing accurate predictive models is geared towards forecasting future fuel consump-
tion, equipping stakeholders with valuable insights for well-informed decisions regarding
resource allocation and sector-specific strategies.

Our analysis aims to identify sectors undergoing declining or increasing trends in fuel
usage, enabling targeted interventions where necessary. This project seeks to deepen our
understanding of energy market dynamics, facilitating proactive measures to efficiently
meet future fuel demands. The insights derived from this work are poised to significantly
impact the formulation of sustainable energy policies and strategies, ensuring a stable and
reliable energy supply for the nation. The accurate forecasting of fuel consumption for elec-
tricity generation, as indicated by the forecasts for NG, coal, petroleum coke, and petroleum
liquids, holds paramount importance for policymakers. These forecasted trends provide
valuable insights that guide strategic decision making in the ever-evolving landscape of
the energy sector.

The expected rise in NG consumption suggests a need for increased infrastructure
investment to support its growing demand, aligning with environmental goals. Conversely,
the anticipated decline in coal usage will allow policymakers to plan for a transition to
cleaner alternatives, supporting affected communities. A slight increase in petroleum coke
usage signals specific industrial needs, prompting policymakers to create supportive regu-
lations. With a steady forecast for petroleum liquids, policymakers can plan infrastructure
development to match stable energy needs. These forecasts empower policymakers to
encourage sustainable energy practices, support economic growth, and ensure energy
security, fostering a resilient and cleaner future.
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Amsterdam, The Netherlands, 2020; pp. 1–49.

20. Wörz, S.; Bernhardt, H. A novel method for optimal fuel consumption estimation and planning for transportation systems. Energy
2017, 120, 565–572. [CrossRef]

21. Du, J.; Rakha, H.A.; Filali, F.; Eldardiry, H. COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions.
Int. J. Transp. Sci. Technol. 2021, 10, 184–196. [CrossRef]

22. United States Environmental Protection Agency-EPA. Climate Impacts on Energy. 2017. Available online: https://19january201
7snapshot.epa.gov/climate-impacts/climate-impacts-energy_.html (accessed on 19 January 2017).

23. U.S. Energy Information Administration—EIA. Today in Energy. 2020. Available online: https://www.eia.gov/todayinenergy/
detail.php?id=42815# (accessed on 13 February 2020).

24. Brockwell, P.; Davis, R. Introduction to Time Series and Forecasting, 2nd ed.; Springer: New York, NY, USA, 2002.
25. Ospina, R.; Gondim, J.A.M.; Leiva, V.; Castro, C. An Overview of Forecast Analysis with ARIMA Models during the COVID-19

Pandemic: Methodology and Case Study in Brazil. Mathematics 2023, 11, 3069. [CrossRef]
26. Park, R.-J.; Song, K.-B.; Kwon, B.-S. Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on

Reinforcement Learning. Energies 2020, 13, 2640. [CrossRef]
27. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; Otexts: Chula Vista, CA, USA, 2021.
28. Sousa, J.C.; Bernardo, H. Benchmarking of Load Forecasting Methods Using Residential Smart Meter Data. Appl. Sci. 2022, 12,

9844. [CrossRef]
29. Renani, E.T.; Elias, M.F.M.; Rahim, N.A. Using data-driven approach for wind power prediction: A comparative study. Energy

Convers. Manag. 2016, 118, 193–203. [CrossRef]
30. Kang, S.-E.; Park, C.; Lee, C.-K.; Lee, S. The Stress-Induced Impact of COVID-19 on Tourism and Hospitality Workers. Sustainability

2021, 13, 1327. [CrossRef]
31. Ouyang, Z.; Ravier, P.; Jabloun, M. STL Decomposition of Time Series Can Benefit Forecasting Done by Statistical Methods but

Not by Machine Learning Ones. Eng. Proc. 2021, 5, 42.
32. Eldali, F.A.; Hansen, T.M.; Suryanarayanan, S.; Chong, E.K. Employing ARIMA models to improve wind power forecasts: A case

study in ERCOT. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September
2016; IEEE: Piscataway, NJ, USA, 2016.

33. Sun, T.; Zhang, T.; Teng, Y.; Chen, Z.; Fang, J. Monthly Electricity Consumption Forecasting Method Based on X12 and STL
Decomposition Model in an Integrated Energy System. Math. Probl. Eng. 2019, 2019, 9012543. [CrossRef]

34. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 2014, 7, 1250.
35. Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022,

15, 5481–5487. [CrossRef]

https://doi.org/10.1016/j.renene.2020.07.093
https://doi.org/10.3390/su14084792
https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php
https://doi.org/10.1016/j.egyr.2020.07.020
https://doi.org/10.1016/j.rser.2019.109402
https://doi.org/10.3390/en14196021
https://doi.org/10.1016/j.egypro.2017.05.021
https://doi.org/10.1016/j.rser.2016.06.001
https://doi.org/10.1016/j.energy.2020.119720
https://doi.org/10.1016/j.jngse.2021.103930
https://doi.org/10.1016/j.rser.2011.08.014
https://www.eia.gov/electricity/monthly/
https://www.eia.gov/electricity/monthly/
https://doi.org/10.1016/j.apenergy.2023.121104
https://doi.org/10.1016/j.enpol.2019.02.011
https://doi.org/10.1016/j.energy.2016.11.110
https://doi.org/10.1016/j.ijtst.2020.11.003
https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-energy_.html
https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-energy_.html
https://www.eia.gov/todayinenergy/detail.php?id=42815#
https://www.eia.gov/todayinenergy/detail.php?id=42815#
https://doi.org/10.3390/math11143069
https://doi.org/10.3390/en13102640
https://doi.org/10.3390/app12199844
https://doi.org/10.1016/j.enconman.2016.03.078
https://doi.org/10.3390/su13031327
https://doi.org/10.1155/2019/9012543
https://doi.org/10.5194/gmd-15-5481-2022


Sustainability 2024, 16, 2388 30 of 30

36. Saigal, S.; Mehrotra, D. Performance comparison of time series data using predictive data mining techniques. Adv. Inf. Min. 2012,
4, 57–66.

37. Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; Holden-Day: San Francisco, CA, USA, 1976.
38. Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J.

Off. Stat. 1990, 6, 3–73.
39. Hyndman, R.J.; Koehler, A.B.; Snyder, R.D.; Grose, S. A state space framework for automatic forecasting using exponential

smoothing methods. Int. J. Forecast. 2002, 18, 439–454. [CrossRef]
40. Pankratz, A. Forecasting with Univariate Box—Jenkins Models: Concepts and Cases; Wiley: Hoboken, NJ, USA, 1983.
41. U.S. Energy Information Administration—EIA. Today in Energy. 2021. Available online: https://www.eia.gov/todayinenergy/

detail.php?id=46376 (accessed on 7 January 2021).
42. Ohlendorf, N.; Jakob, M.; Steckel, J.C. The political economy of coal phase-out: Exploring the actors, objectives, and contextual

factors shaping policies in eight major coal countries. Energy Res. Soc. Sci. 2022, 90, 102590. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0169-2070(01)00110-8
https://www.eia.gov/todayinenergy/detail.php?id=46376
https://www.eia.gov/todayinenergy/detail.php?id=46376
https://doi.org/10.1016/j.erss.2022.102590

	Introduction 
	Analytical Framework 
	Data Source and Collection 
	Statistical Methods 
	Forecasting Models 

	Data Analysis 
	Overall Trend Analysis of Fuel Consumption 
	Seasonality Analysis of Fuel Consumption 
	Seasonality Analysis of NG Consumption 
	Seasonality Analysis of Coal Consumption 
	Seasonality Analysis of Petroleum Coke Consumption 
	Seasonality Analysis of Petroleum Liquid Consumption 

	ACF and PACF Analyses of Consumption of Different Fuels 
	Autocorrelation Analysis of NG Consumption 
	Autocorrelation Analysis of Coal Consumption 
	Autocorrelation Analysis of Petroleum Coke Consumption 
	Autocorrelation Analysis of Petroleum Liquid Consumption 

	Forecasting Models for Consumption of Different Fuels 
	Benchmark Models 
	STL (Seasonal and Trend Decomposition Using Loess) 
	ETS (Error, Trend, Seasonality) 
	ARIMA (Autoregressive Integrated Moving Average) 
	An Analysis of the Consumption of Fuels Using Forecasted Methods 

	Model Comparison in Terms of Errors for Energy Streams 
	Natural Gas 
	Coal 
	Coak 
	Petroleum Liquid 


	Result and Discussion 
	Analysis of Forecasting Trends for Different Energy Streams 
	Overall Trend of NG Consumption 
	Overall Trend of Coal Consumption 
	Overall Trend of Petroleum Coke Consumption 
	Overall Trend of Petroleum Liquid Consumption 

	Comparing the Forecasted Trends of Different Energy Streams in Electricity Generation 

	Conclusions 
	References

