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Abstract: From 2008 to 2021, this study analyzed the spatial correlation characteristics between
provincial transportation carbon emission intensity and explored ways to reduce transportation
carbon emissions. This study used the modified gravity model, social network analysis (SNA) method,
and temporal exponential random graph model (TERGM) to analyze the spatial correlation network
evolution characteristics and driving mechanism of China’s transportation carbon emission intensity.
This study found that China’s transportation carbon emission intensity and spatial correlation
network have unbalanced characteristics. The spatial correlation network of transportation carbon
emission intensity revealed that Shanghai, Beijing, Tianjin, Guangdong, Fujian, and other provinces
were at the center of the network, with significant intermediary effects. The spatial correlation of
transportation carbon emission intensity was divided into four functional plates: “two-way spillover”,
“net benefit”, “broker”, and “net spillover”. The “net benefit” plate was mainly located in developed
regions, and the “net spillover” plate was primarily located in underdeveloped regions. Endogenous
structural and exogenous mechanism variables were the main factors affecting the evolution of the
spatial correlation network of provincial transportation carbon emission intensity.

Keywords: transportation carbon emission intensity; spatial correlation; gravity model; social
network analysis; TERGM

1. Introduction

Low-carbon development is a topic that has gained much attention both locally and
globally. Data show that in 2009, China’s carbon dioxide emissions surpassed those of the
United States, making it the largest carbon-emitting country worldwide [1]. To address
this issue, the Chinese government has developed a series of emission reduction plans. In
2009, during the Copenhagen Climate Conference, China committed to reducing its carbon
emissions per unit of GDP by 40% to 45% compared to the 2005 levels by 2020. In 2015,
China made another commitment to peak its carbon emissions around 2030 and strive for
a 60% to 65% reduction in carbon emissions per unit of GDP compared to 2005 levels by
2030 [2,3]. In September 2020, at the United Nations’ General Assembly, China pledged
to achieve carbon peaking by 2030 and strive for carbon neutrality by 2060. In September
2021, China reiterated its “dual-carbon” goals at the United Nations’ General Assembly.
This commitment has received significant international attention and positive evaluations
from the global community.

Transportation is a crucial sector of the economy and plays a leading role [4,5]. How-
ever, it also contributes to almost 25% of global carbon emissions [6,7]. This is a major
concern as it poses significant threats to human health and the environment [8]. In recogni-
tion of this, the Chinese government has included “ecological civilization construction” in
the “Five-sphere Integrated Plan” since the 18th National Congress. It has implemented

Sustainability 2024, 16, 3086. https://doi.org/10.3390/su16073086 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16073086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3298-5348
https://doi.org/10.3390/su16073086
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16073086?type=check_update&version=1


Sustainability 2024, 16, 3086 2 of 23

several policies to reduce carbon emissions in transportation, such as the “Green Transporta-
tion 14th Five-Year Development Plan” [9]. Despite these efforts, developing low-carbon
transportation in China needs to be accelerated to address the severe situation. China is
currently undergoing rapid development in “triple integration” (industrialization, urban-
ization, motorization) but has yet to undergo fundamental transformations in technological
levels and energy structures. Therefore, it is foreseeable that transportation carbon emis-
sions will continue to deteriorate in the future [10–12].

Transportation carbon emissions are unique as they are produced by mobile sources.
The inter-provincial flow of cars, trains, and airplanes will generate transportation carbon
emissions for the local area. As a result, there are spatial correlations among provinces in
terms of transportation carbon emissions. A correlation network has formed due to the
improved transportation infrastructure and increasing complexity of transportation flows,
such as people and goods moving between regions. However, this phenomenon has limited
our ability to develop targeted emission reduction measures due to significant provincial
differences in transportation scales across China. An in-depth analysis of transportation
carbon emission intensity, rather than just total quantity, is more reliable in understanding
provincial scale factors and formulating effective emission reduction strategies. Therefore,
it is crucial to understand and identify the spatial correlation characteristics and driving
mechanisms of transportation carbon emission intensity to promote carbon reduction in
transportation and develop regional collaborative emission reduction strategies [13].

This paper focuses on transportation carbon emission intensity. It analyzes inter-
provincial transportation carbon emission data from 2008 to 2021 to construct a spatial
correlation network. Social network analysis (SNA) is used to conduct a multi-faceted
analysis of the spatial correlation network characteristics [14,15]. The temporal exponential
random graph model (TERGM) is also incorporated to reveal the driving mechanisms of
the network structure’s evolution from both static cross-sections and dynamic correlation
changes [16]. The goal is to provide a reference basis for formulating differentiated policies
for carbon reduction in transportation and building cross-regional collaborative governance
mechanisms. The contributions of this paper are two-fold: (1) empirical analysis from the
perspective of transportation carbon emission intensity, which excludes the scale factors
of various provinces; and (2) the first application of the TERGM to analyze the driving
mechanisms of the spatial correlation network of transportation carbon emission intensity.
The TERGM can integrate endogenous structural variables and exogenous mechanism
variables into a unified framework for driving mechanism analysis, and provides a detailed
study of the dynamic change mechanisms of the network.

The remainder of this paper is organized as follows. Section 2 provides a review of the
relevant literature. Section 3 introduces and explains the research method and data source.
Section 4 presents empirical research and analysis of the results. Finally, Section 5 offers
conclusions and policy recommendations.

2. Literature Review

Many researchers have conducted extensive research on transportation carbon emis-
sions and analyzed various aspects such as estimating transportation carbon emissions
at different scales [17–19], predicting transportation carbon emissions [20], assessing the
potential for transportation carbon reduction [21], identifying factors influencing trans-
portation carbon emissions [22], and simulating policies and scenarios for transportation
emission reduction [23]. When analyzing the spatial structure of transportation carbon
emissions, scholars primarily focus on two aspects: the spatiotemporal characteristics of
transportation carbon emissions, and the network characteristics and influencing factors of
transportation carbon emissions.

2.1. The Spatiotemporal Characteristics of Transportation Carbon Emissions

In recent years, scholars have conducted extensive research on transportation carbon
emissions. They have realized the importance of adopting a spatial perspective to explore
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regional carbon reduction. This research mainly focuses on the spatiotemporal distribution
patterns of transportation carbon emissions at different scales and their spatial heterogeneity.
For instance, Koutrakis et al. [24] studied the spatial distribution of transportation carbon
emissions in the federal regions of Brazil using Moran’s index. Shu et al. [25] used a
multiple linear regression model and spatial decomposition methods to classify urban
transportation carbon emissions into regional categories. Huang et al. [26] analyzed the
spatial flow and characteristics of transportation carbon emissions caused by tourism in
Jiangsu Province by collecting transportation data from self-driving tourism. Li et al. [27]
analyzed the spatial pattern evolution of transportation carbon emissions in 341 cities
in China, revealing significant regional variations at the urban level. Yuan et al. [28]
quantitatively calculated the transportation carbon emission intensity of Chinese provinces
based on the IPCC method and analyzed its spatial characteristics. Fu et al. [29] analyzed
the spatial distribution characteristics of carbon emission efficiency in the transportation
industry in the Yangtze Economic Belt using Moran’s index.

2.2. The Network Characteristics and Influencing Factors of Transportation Carbon Emissions

Scholars have been using complex network techniques to analyze the global spatial
patterns of transportation carbon emissions. To construct carbon emission spatial networks,
different methods have been employed. Although some scholars have used regional
input–output models [30], this method takes a considerable amount of time to compile and
analyze, which affects the research’s timeliness. Therefore, many scholars have resorted
to using gravity models to construct transportation carbon emission spatial correlation
networks [31], which have proven to be a better solution for the timeliness issue and opened
up new ways of conducting research. On this basis, many scholars have identified critical
regions in the spatial correlation network of transportation carbon emissions by analyzing
the network’s overall characteristics, individual characteristics, spatial clustering, etc. [32].

Furthermore, some scholars have explored the factors that influence carbon emis-
sion spatial correlation networks. They have used panel models to analyze the impact of
network structural characteristics, population size, energy structure, and other attribute
variables on global carbon emissions [33]. They have also used a Qualified Allocation Plan
(QAP) to examine the formation mechanisms of carbon emission spatial correlation net-
works [34,35]. However, these models have limitations in examining the impact effects of
attribute and relational variables separately. The formation of carbon emission spatial corre-
lation relationships is often simultaneously influenced by endogenous structural variables,
exogenous, and other multidimensional attribute variables and relationship variables. To
overcome these limitations, some scholars have introduced the Exponential Random Graph
Model (ERGM) to study carbon emission spatial correlation networks [36]. The ERGM is
considered one of the most effective tools in social network analysis. It comprehensively
analyzes various related factors’ roles in forming spatial correlation networks [37–39]. The
ERGM estimates and tests the endogenous and exogenous mechanisms of network rela-
tionship formation. It is based on the dependence between variables and tests whether
the convergence of multiple local spatial networks can generate global network structural
characteristics [40–42]. This research provides valuable insights for exploring the formation
mechanisms of transportation carbon emission spatial correlation networks.

2.3. Literature Review

Transportation carbon emissions have been extensively studied by researchers world-
wide. According to the research conclusions of previous scholars, transportation carbon
emission reduction faces huge challenges because the location of transportation carbon
emissions is not fixed. The effect of relying solely on each province to implement trans-
portation carbon emission reduction policies is not ideal. Therefore, targeted transportation
carbon emission reduction policies should be formulated based on the characteristics of
its spatial correlation network, and regional coordinated transportation carbon emission
reduction across provinces and departments should be carried out [31,32].
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Most studies have focused on the spatiotemporal characteristics, spatial correlations,
and driving mechanisms of transportation carbon emissions in general and not specifically
on transportation carbon emission intensity. Studying the spatial correlation network
and the factors that drive transportation carbon emission intensity can help eliminate
differences caused by the varying scales of each province. This can lead to more accurate
research results and provide effective suggestions for reducing transportation carbon
emissions. In addition, previous studies on the factors influencing spatial correlation
networks have often used QAP methods or the ERGM. QAP methods only consider the
influence of exogenous “correlated data” such as population, industrial structure, and
technological level differences. However, in the case of spatial correlation networks of
transportation carbon emissions, the primary influencing factors are endogenous structural
variables, exogenous attributes, and relationship variables. Ignoring such factors can lead
to inaccurate estimation results. The traditional ERGM is a static network analysis method
that can only reveal the network formation mechanism at a specific time. It is unsuitable
for analyzing the dynamic mechanisms of network changes. The TERGM proposed by
Hanneke et al. can integrate endogenous structural and exogenous mechanism variables
into a unified framework for analyzing influencing factors and facilitates the study of
dynamic changes in the network [43]. Studying the network’s dynamic change mechanism
can help us understand the impact of various driving factors on the network, providing a
useful reference for nationwide coordinated transportation carbon emissions reduction.

After analyzing numerous papers related to the low-carbon field, we have noticed
that several policy recommendations have been made for reducing carbon emissions in the
transportation field. On the other hand, the building field has made remarkable progress in
low-carbon development, specifically in reducing carbon emissions in building operations.
This progress can provide useful insights for implementing more effective transportation
carbon emission reduction policies [44,45].

3. Methodology and Data Source
3.1. Transportation Carbon Emission Intensity Measurement

Transportation carbon emission intensity is a measure of the amount of carbon emis-
sions produced for each unit of transportation gross production. It helps to understand
the relationship between the transportation industry and the carbon emissions it produces.
This measure is an indirect way to consider the impact of the transportation industry on
economic development [28]. It is calculated as follows:

Qi =
Ci
Xi

(1)

where Qi represents the transportation carbon emission intensity of province i; Ci represents
the transportation carbon emissions of province i; and Xi represents the gross transportation
production value of province i.

3.2. Spatial Correlation Strength

Spatial correlation network construction and strength measurement are key com-
ponents of Social Network Analysis (SNA). To create a spatial correlation network of
provincial transportation carbon emission intensity, each province is represented as a node
in the network, and the spatial correlation of each province’s transportation carbon emis-
sion intensity is represented by a connection. The construction of the network is mainly
carried out using the VAR model [46] and the gravity model [47–49]. However, the VAR
model is too sensitive to the selection of lag order and cannot accurately depict the struc-
tural characteristics of the network. Therefore, this paper chooses the gravity model to
quantify the spatial correlation relationship of transportation carbon emission intensity,
which requires a modification of the basic formula [50,51]. The modified gravity model is
presented below:
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Yij = kij

3
√

PiQiGi × 3
√

PjQjGj( dij
gi−gj

)2 , kij =
Qi

Qi + Qj
(2)

where Yij is the correlation strength of transportation carbon emission intensity between
province i and province j; Pi is the end-of-year population of province i; Qi is the trans-
portation carbon emission intensity of province i; Gi is the deflated GDP of province i
with 2000 as the base period; kij is the contribution ratio of province i in the correlation of
transportation carbon emission intensity between province i and province j; and the ratio of
the geographical distance dij to the difference in per capita GDP gi − gj represents the influ-
ence of economic and geographical distance factors, where dij represents the straight-line
distance between province i and province j.

We can calculate the spatial correlation matrix of a province’s transportation carbon
emission strength using Formula (2). To create a threshold sparse network, we take the
average value of the correlation intensity data in each row of the matrix (excluding the
highest and lowest values). We assign a value of 1 to any data that are more elevated than
the threshold, and a value of 0 to any data below the threshold. This gives us a directed
0–1 network matrix.

3.3. Social Network Analysis

Social Network Analysis (SNA) is a sociological method used to analyze interpersonal
social relationship networks. It has been applied in various fields, including energy [52],
tourism [53], and economics [54]. In recent years, scholars have also used SNA to study the
spatial correlation of carbon emissions in the environmental field [55,56]. This paper draws
inspiration from those studies and uses UCINET 6.0 to analyze the correlation network
characteristics of interprovincial transportation carbon emission intensity. It examines the
network’s structure and attribute characteristics through network density, centrality, and
block model. The specific description is as follows.

3.3.1. Network Density Analysis

The degree of connection strength between transportation carbon emission intensity
among provinces is reflected by network density. The specific formula is as follows:

D = L/[N × (N − 1)] (3)

where D is the correlation network density of provincial transportation carbon emission
intensity. The closer the value is to 1, the closer the connection between provincial trans-
portation carbon emission intensity; N is the number of provinces; and L is the correlation
quantity of transportation carbon emission intensity between provinces.

3.3.2. Individual Network Analysis

Centrality is a concept in network analysis that refers to the importance of a node in
a network. There are three types of centrality: degree centrality, closeness centrality, and
betweenness centrality.

Degree centrality is further divided into two types in directed graphs: outdegree
centrality and indegree centrality. Outdegree centrality measures the number of connections
from a node to other nodes, while indegree centrality measures the number of connections
to a node from other nodes.

Closeness centrality is a measure of how close a node is to all other nodes in the
network. However, it is rarely used in practice due to the high requirements for network
completeness [32].

Betweenness centrality measures a node’s control over connecting other nodes in
the network. It calculates the number of shortest paths that pass through a node and is
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often used to identify critical nodes in a network. The calculation formula for betweenness
centrality is as follows:

BC(i) =

2
n
∑
j

n
∑
k

zjk(i)/zjk

3N2 − 3N + 2
(4)

where BC(i) represents the betweenness centrality of province i in the transportation carbon
emission intensity network; zjk represents the total number of connections involving the
transportation carbon emission intensity between province j and province k; and zjk(i)
represents the number of shortest paths between province j and province k that pass
through province I, where j ̸= k ̸= i, and j < k.

3.3.3. Block Model Analysis

The block model is a technique used to classify network nodes and identify their
specific roles based on the characteristics of the relationship network [57]. It involves
comparing the expected ratio of internal relationships with the actual ratio of internal
relationships. Each node can be classified into four plates: “two-way spillover”, “net
benefit”, “broker”, and “net spillover”. Among them, the “two-way spillover” plate means
that members of this plate have more spillover relationships to other plates and within
the plate; the “net benefit” plate means that the number of relationships that this plate
receives from other plates is much greater than the number of relationships that it has
spilled out of the plate; the “broker” plate means that members of this plate both receive
and send out more relationships to other plates, playing the role of intermediaries and
bridges in the network; and the “net spillover” plate means that members of this plate have
significantly more spillover relationships with other plate members than they receive from
different plates.

3.4. Temporal Exponential Random Graph Model
3.4.1. Construction of the TERGM

The TERGM is a statistical method used to analyze networks. It has many advantages,
such as being able to analyze the endogenous mechanism of network evolution, include
time trends, and analyze the dynamic evolution mechanism of the network from a more
comprehensive perspective. It has been widely used in recent years to explore the driving
mechanisms of spatial correlation networks [58]. This paper constructs the TERGM of the
spatial correlation network driving mechanisms of transportation carbon emission intensity
based on the assumption that the time interval is one year.

P(Yt
∣∣θt, Yt−1) = (1/c) exp(θ0edges + θ1mutual + θ2gwidegree
+θ3gwesp + θ4gwdsp + θ5stability + θ6variability + θs1lgPOP
+θs2lgGDP + θs3lgGT + θr1lgPOP + θr2lgGDP + θr3lgGT
+θsrdist)

(5)

where Yt and Yt−1 refer to the spatial correlation network of provincial transportation
carbon emission intensity in periods t and t − 1, respectively; 1/c is the normalization
constant; θ is the coefficient vector of the influencing factors of the observation network; and
the subscripts s and r refer to the network sending object and receiving object, respectively.
Among them, edges, mutual, gwidegree, gwesp, and gwdsp are network structure effects;
stability and variability are time-dependent items; POP, GDP, and GT are actor–attribute
effects; and dist represents dyadic predictors.

3.4.2. Variable Description in TERGM

(1) Network structure effects

The self-organization of a network shapes its unique spatial structural characteris-
tics [59]. In this context, we can describe the endogenous structure of the network through
various measures such as edges, mutual, gwidegree, gwesp, and gwdsp. The edges mea-
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sure is similar to the intercept in a classic regression model under non-networking. The
mutual measure describes the tendency of provinces to form mutual relationships. For
instance, if a spatial correlation network relationship of transportation carbon emission
intensity is issued in one direction in the current period, the possibility of the other party
returning a reciprocal relationship in the next period is higher. Gwidegree reflects the
tendency of province i to receive transportation carbon emission intensity relationships sent
by multiple other provinces. Gwesp, also known as edge-wise shared partners, examines
the possibility that two nodes in the network form a spatial correlation network of trans-
portation carbon emission intensity through a third-party province. Lastly, gwdsp reflects
whether there is a “multi-element 2-path” structure in the spatial correlation network of
transportation carbon emission intensity relationships between province i and province j.
In simpler terms, a 2-path structure in a directed network refers to two nodes transmitting
relationships through one or more intermediate nodes, and these intermediate nodes also
send or receive relationships from other nodes [60].

(2) Time-dependent items

Stability emphasizes the degree of stability in the spatial correlation network pat-
tern from period t to t + 1. Variability refers to whether there is a trend of change or
disappearance in the connectivity status of the spatial correlation network over time.

(3) Actor–attribute effects

Regarding the spatial correlation network of transportation carbon emission intensity,
this study is based on existing research settings and data and includes key factors that
may affect the province’s transportation carbon emission intensity such as provincial
population size (POP), GDP, and green technology level (GT). Given that the spatial
correlation network relationship of transportation carbon emission intensity is usually a
directed behavior formed by both participants, this paper will further conduct an empirical
analysis on the impact of “sending objects” and “receiving objects”.

(4) Dyadic predictor

To examine how geographical distance impacts the correlation between provinces,
this paper has developed a spatial adjacency matrix. This matrix is based on the distance
between 31 different provinces in the country, with a value of 1 indicating adjacency
and 0 indicating non-adjacency. The matrix is used as an exogenous network within
the TERGM. As geographical distance affects the socioeconomic connections between
provinces, provinces closer to proximity are more likely to establish or maintain a spatial
correlation network relationship in transportation carbon emission intensity.

3.5. Data Sources

For this research, 31 provinces in China have been selected as the research objects
due to the lack of data on Hong Kong, Macau, and Taiwan. The transportation carbon
emission data from 2008 to 2021 used in this paper has been obtained from the Multi-Scale
Emission Inventory Reanalysis and Data Sharing Platform of the MEIC Team of Tsinghua
University (http://meicmodel.org.cn/, accessed on 5 January 2024). The rest of the data
have been extracted from the “China Statistical Yearbook”. To account for the lack of
notable statistics on the gross transportation production value data and the small share of
the warehousing, postal, and telecommunications industries, the gross production value
data of “transportation, warehousing, postal, and telecommunications industries” has been
used as a data indicator. The GDP deflator has been used to convert the data into constant
prices in 2000 to eliminate the impact of price factors on GDP. The green patent data have
been obtained from the China Innovation Patent Research Database. The geographical
distance between different provinces has been calculated through ArcGIS 10.8 software
and reflected by the Euclidean distance between provincial capital cities.

http://meicmodel.org.cn/
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4. Results and Discussion
4.1. Transportation Carbon Emission Intensity Measurement Results

Based on Formula (1), this paper measured the transportation carbon emission inten-
sity of 31 provinces in China from 2008 to 2021. This study drew an evolution trend map
for the entire country, as well as for Northeast China, North China, East China, Central
China, South China, Southwest China, and Northwest China. Among them, based on the
division of topography and climate, Northeast includes Liaoning, Jilin, and Heilongjiang;
North China includes Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia; East China
includes Shanghai, Jiangsu, Zhejiang, Shandong, and Anhui; Central China including
Hunan, Hubei, Henan, and Jiangxi; South China includes Guangdong, Guangxi, Hainan,
and Fujian; Southwest China includes Sichuan, Chongqing, Guizhou, Yunnan, and Tibet;
and Northwest China includes Shaanxi, Gansu, Xinjiang, Qinghai, and Ningxia. Figure 1
shows that the national average transportation carbon emission intensity decreased from
416 tons/CNY million in 2008 to 336 tons/CNY million in 2015, and then to 232 tons/CNY
million in 2021. This suggests a year-over-year decrease in transportation carbon emission
intensity in China and a positive trend of transportation carbon emission reduction.
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Figure 1. Time evolution trend of transportation carbon emission intensity in Chinese provinces from
2008 to 2021.

Looking at the seven main regions, Northeast China had an average transportation
carbon emission intensity of 348 tons/CNY million, Southwest China had an average
transportation carbon emission intensity of 475 tons/CNY million, and Northwest China
had an average transportation carbon emission intensity of 407 tons/CNY million, which
is significantly higher than the national average. The remaining four regions exhibit a
decreasing gradient from South China to North China, then Central China and East China,
with average values lower than the national average. Transportation carbon emission
intensity in all regions, except Northeast China, showed a downward trend from 2017.
At the inter-provincial level, to better analyze the characteristics of transportation carbon
emission intensity in each province, the research period of 14 years was evenly decomposed.
As a result, 2008, 2015, and 2021 were chosen as the three characteristic years to examine
the characteristics of transportation carbon emission intensity before, during, and after the
sample period. Figure 2 shows that, except for the three provinces of Liaoning, Heilongjiang,
and Guizhou, which had significantly higher transportation carbon emission intensity in
2021 than in 2015, the transportation carbon emission intensity of other provinces showed
a downward trend. Additionally, the inter-provincial differences were relatively noticeable.
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Figure 2. Time evolution trend of transportation carbon emission intensity in Chinese provinces in
2008, 2015 and 2021.

This paper measures the Gini coefficient of national transportation carbon emission
intensity and shows that the transportation carbon emission intensity of various provinces
in the country has significant uneven characteristics. However, this difference has shown a
gradual decreasing trend over the study period, and the balance of spatial distribution has
improved. This suggests that there may be convergence properties. This study further uses
ArcGIS to draw the spatial distribution map of national transportation carbon emission
intensity in 2008, 2015, and 2021. Figures 3–5 show that the transportation carbon emission
intensity of China displays an overall trend of “low in the East and high in the West”. The
intensity of transportation carbon emission in Northeast China is generally higher than in
East and South China. Although each province’s overall transportation carbon emission
intensity has gradually declined over time, the three Northeastern provinces have shown
an upward trend. This may be due to the cold weather in the northeast, which makes it
challenging to apply new energy vehicles, and the applicability of electric cars is weak.
Additionally, there are issues such as slowing economic growth and brain drain in the
northeast, leading to a lower gross transportation production value. Furthermore, the
western provinces of Xinjiang, Tibet, Qinghai, Yunnan, and other provinces have higher
transportation carbon emission intensity all year round. This is because Tibet and Qinghai
are plateaus with inconvenient roads. Moreover, these provinces need more supporting
infrastructure such as charging piles, and new energy vehicles’ popularization is difficult.
However, the decrease in transportation carbon emission intensity in the Western region is
much more significant than in other regions over time. This indicates that China’s Western
development policy has strengthened exchanges and cooperation between the Eastern
and Western regions. The economic and technological levels of the Western region have
increased, and significant progress has been made in transportation energy-saving and
emission reduction technologies, transportation organization efficiency, and transportation
industry upgrading. The number of provinces in high-value regions with transportation
carbon emission intensity dropped from four in 2008 to one in 2021, and the number of
provinces in the low-value regions dropped from nine in 2008 to five in 2021, once again
confirming that spatial distribution gradually converges.
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4.2. Spatial Network Structural Characteristics of Transportation Carbon Emission Intensity
4.2.1. Network Density Characteristics

This study calculated the spatial network correlation number and density of trans-
portation carbon emission intensity. The results revealed that between 2008 and 2021,
the network correlation number of transportation carbon emission intensity showed a
trend of fluctuating evolution, with values of 249 in 2008, 265 in 2015, and 261 in 2021.
The network density also indicated a trend of fluctuation, with values of 0.2677 in 2008,
0.2849 in 2015, and 0.2816 in 2021. These values demonstrated a certain degree of stability.
However, when looking at the correlation strength, the national average transportation
carbon emission intensity correlation strength was 35.81 in 2008, 195.62 in 2015, and 495.19
in 2021. This indicates that China’s spatial correlation network of transportation carbon
emission intensity is becoming more and more closely connected.

This paper aimed to visually depict the spatial characteristics of China’s transporta-
tion carbon emission intensity’s spatial correlation network. This study visualized the
spatial network correlation strength of transportation carbon emission intensity in Chinese
provinces in 2008, 2015, and 2021 (Figures 6–8). This study’s findings indicate that the spa-
tial correlation network of transportation carbon emission intensity in Chinese provinces
shows the characteristics of uneven interweaving and high complexity, with prominent
spatial non-equilibrium and a spatial distribution pattern of “dense in the East and sparse
in the West”.

During the study period, none of the provinces were isolated in the network structure.
Furthermore, the transportation carbon emission intensity of the provinces had a cross-
regional correlation with non-adjacent provinces, exceeding the limitation of geographical
proximity. The spatial correlation network of provincial transportation carbon emission
intensity continues to strengthen, forming a spatial structure with Beijing–Tianjin–Hebei,
Yangtze River Delta, and Pearl River Delta as the center, and radiating to the surround-
ing provinces.

The spatial correlation strength of transportation carbon emission intensity in the
Eastern and central regions is significantly higher than in the Western and Northeastern
regions. The reason for this is that the transportation infrastructure in the Central and
Eastern regions is relatively sound, accelerating the flow of innovative resources such as tal-
ents, knowledge, and technology, causing the spatial correlation strength of transportation
carbon emission intensity in each region to continue to increase.
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Although the correlation strength of transportation carbon emission intensity between
the Western region and other provinces across the country grows yearly, the overall correla-
tion strength with other provinces is still relatively small. Therefore, it is necessary to further
deepen cross-regional low-carbon transportation collaboration, optimize the transportation
industry’s spatial layout planning in different regions, and gradually establish and improve
transportation carbon emission reduction collaborative governance mechanisms.

4.2.2. Individual Network Characteristics

To analyze the influence and status of various provinces in the spatial correlation
network of transportation carbon emission intensity, we calculated each province’s degree
of centrality and betweenness centrality. Table 1 shows the calculation results. Concerning
degree centrality, the average indegree values for 2008, 2015, and 2021 were 8.032, 8.548, and
8.419, respectively, and the average outdegree values for each year were the same. On the
other hand, the average betweenness centrality values for 2008, 2015, and 2021 were 15.457,
20.581, and 18.419, respectively. Notably, the indegree and outdegree of each province
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during the three-time spans remained stable, with a slight variation. Betweenness centrality
exhibited a trend of initially increasing and then decreasing in 13 provinces, including
Beijing. At the same time, five provinces, including Guangdong provinces, exhibited a trend
of first reducing and then rising. The remaining 13 provinces remained stable. Moreover,
compared to 2015, the average indegree, outdegree, and betweenness centrality decreased
in 2021. This may be due to the significant impact on the transportation industry caused by
the 2019 epidemic, which reduced the correlation between transportation carbon emission
intensity among provinces.

Table 1. Centrality analysis results of inter-provincial transportation carbon emission correlation
network in 2008, 2015 and 2021.

Province

Degree Centrality Betweenness Centrality

Indegree Outdegree
2008 2015 2021

2008 2015 2021 2008 2015 2021

Beijing 23 26 26 7 5 6 32.486 62.764 46.167
Tianjin 19 11 10 7 5 6 32.428 61.324 40.423
Hebei 9 10 10 7 8 7 5.536 35.470 31.798
Shanxi 6 7 7 8 8 7 5.356 25.272 13.853

Inner Mongolia 6 9 8 7 6 6 2.983 20.646 9.283
Liaoning 7 11 2 9 8 8 14.450 6.292 3.387

Jilin 2 2 2 8 7 8 0.397 0.936 3.786
Heilongjiang 2 2 1 8 7 8 0.397 0.668 0.819

Shanghai 28 29 29 10 10 10 77.044 87.501 82.850
Jiangsu 24 25 26 6 8 8 26.761 39.243 31.427

Zhejiang 22 19 18 6 6 6 22.805 33.425 24.545
Anhui 10 7 10 4 7 7 19.225 24.094 19.016
Fujian 12 16 18 8 10 9 46.834 38.841 69.236
Jiangxi 6 6 6 7 8 8 8.373 6.423 7.753

Shandong 24 21 21 8 7 7 30.637 26.446 22.062
Henan 10 12 13 7 7 7 39.530 32.321 25.182
Hubei 8 14 14 9 10 8 10.529 35.521 9.585
Hunan 6 7 7 8 8 8 10.757 6.423 7.753

Guangdong 16 16 17 9 10 10 84.062 65.848 83.595
Guangxi 3 2 2 7 8 8 2.059 0.822 1.119
Hainan 0 0 0 8 7 8 0.000 0.000 0.000

Chongqing 1 2 2 9 9 10 0.000 0.200 7.855
Sichuan 1 4 3 8 11 9 1.380 11.303 0.560
Guizhou 3 5 4 10 11 11 4.828 9.900 5.868
Yunnan 0 0 2 8 10 10 0.000 0.000 16.094

Tibet 0 0 0 9 11 10 0.000 0.000 0.000
Shaanxi 0 1 2 8 11 10 0.000 6.067 6.984
Gansu 1 1 1 10 11 10 0.143 0.250 0.000

Qinghai 0 0 0 10 11 11 0.000 0.000 0.000
Ningxia 0 0 0 10 10 10 0.000 0.000 0.000
Xinjiang 0 0 0 9 10 10 0.000 0.000 0.000

Average 8.032 8.548 8.419 8.03 8.548 8.419 15.457 20.581 18.419

The comparison of the average indegree and outdegree in various Chinese provinces
over many years showed that Beijing, Jiangsu, Zhejiang, Tianjin, Shandong, and some other
provinces had higher indegrees than the average in most years. These provinces are among
the top-ranked ones with solid economic strength, human resources, and a relatively com-
plete transportation network. They are also subject to higher “spatial spillover effects” from
other provinces in the transportation carbon emission intensity spatial correlation network.
These provinces have long-term strategic emerging industries and close cooperation with
surrounding provinces. On the other hand, provinces such as Hainan, Tibet, Ningxia,
Heilongjiang, Yunnan, Qinghai, and Xinjiang have lower indegrees. They are ranked
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lower, indicating they need closer correlation with transportation carbon emission intensity
among other provinces. These provinces are on the edge of the correlation network and
need to catch up in economic development and improve their transportation and logistics
network. More cooperation and exchanges with other provinces are required to promote
low-carbon undertakings. The outdegree is the opposite of indegree. Unlike developed
provinces such as Shanghai, Guangdong, and Fujian, which have higher outdegrees and
indegrees, most other provinces with high outdegrees are those with low indegrees.

From the comparison of the average betweenness centrality, Shanghai, Beijing, Tianjin,
Guangdong, Fujian, and some other provinces have relatively high betweenness central-
ity. This indicates that these provinces serve as “intermediaries” and “bridges” in the
transportation carbon emission intensity spatial correlation network. They are essential in
supporting and controlling cooperation with other provinces in low-carbon transportation
development and have a crucial position in the correlation network. It is worth noting that
the betweenness centrality of Qinghai, Tibet, Hainan, Ningxia, and Xinjiang provinces is 0,
indicating that they are in a “passive” and “marginalized” position in the spatial correlation
network of transportation carbon emission intensity. The role of controlling and influencing
network correlation has yet to be exerted. Therefore, the spatial correlation of China’s
transportation carbon emission intensity has unbalanced characteristics among various
node provinces and mainly depends on economically developed central provinces such as
Shanghai, Beijing, Tianjin, Guangdong, and Fujian.

4.2.3. Block Model Characteristics

The CONCOR method is a technique that examines the regional differences and spatial
correlation network of China’s transportation carbon emission intensity. It uses 2 as the
maximum segmentation depth and 0.2 as the convergence standard. With this method,
each province in China can be divided into four plates, as shown in Table 2.

Table 2. Inter-provincial transportation carbon emission intensity block model results in 2008, 2015
and 2021.

Year Plate I Plate II Plate III Plate IV

2008 Beijing, Tianjin,
Liaoning, Shandong

Shanghai, Jiangsu,
Zhejiang, Fujian,

Guangdong

Hubei, Guangxi,
Hunan, Guizhou,

Jiangxi, Anhui, Henan

Jilin, Inner Mongolia, Hebei, Shanxi,
Heilongjiang, Hainan, Chongqing,

Sichuan, Yunnan, Tibet, Shaanxi, Gansu,
Qinghai, Ningxia, Xinjiang

2015
Beijing, Tianjin,

Liaoning, Shandong,
Inner Mongolia

Shanghai, Jiangsu,
Zhejiang, Fujian,

Guangdong

Shanxi, Jilin, Hebei,
Heilongjiang, Henan

Hebei, Hainan, Chongqing, Sichuan,
Yunnan, Tibet, Shaanxi, Gansu, Qinghai,

Ningxia, Xinjiang, Hubei, Guangxi,
Hunan, Guizhou, Jiangxi, Anhui

2021

Beijing, Tianjin,
Liaoning, Inner
Mongolia, Jilin,
Heilongjiang

Shanghai, Jiangsu,
Zhejiang, Fujian,

Guangdong, Shandong

Anhui, Henan, Shanxi,
Hebei, Hubei

Hainan, Chongqing, Sichuan, Yunnan,
Tibet, Shaanxi, Gansu, Qinghai, Ningxia,

Xinjiang, Guangxi, Hunan,
Guizhou, Jiangxi

China’s transportation carbon emission intensity is divided into four plates based on a
three-year division. The provinces within each plate show little change, and the four plates
play the same role each year. For instance, in 2021, each plate was analyzed using the block
model, and the results are shown in Figure 9.

Plate I is a “two-way spillover plate” comprising six provinces: Beijing, Tianjin, Inner
Mongolia, Liaoning, Heilongjiang, and Jilin. The spillover relationship number of this
plate is 31, and the receiving relationship number is 38. The expected internal relationship
ratio is 16.67%, but the actual internal relationship ratio is 26.19%. Plate I has many spatial
correlations internally and externally, making it a “two-way spillover plate”.
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Plate II includes six provinces: Guangdong, Jiangsu, Fujian, Zhejiang, Shanghai,
and Shandong. The spillover relationship number of this plate is 35, and the receiving
relationship number is 111. The internal relationship number of the plate is only 15. The
expected internal relationship ratio is 16.67%. but the actual internal relationship ratio
is 30.00%. Plate II is classified as a “net benefit plate” because the number of receiving
relationships is much greater than the number of spillover relationships, indicating that the
spatial spillover effect of this plate is small, and the economies of the provinces within the
plate are relatively developed, which has a siphon effect on surrounding provinces.

The members of Plate III include the five provinces of Hebei, Anhui, Henan, Shanxi,
and Hubei. The number of spillover relationships in this plate is 30, and the number of
receiving relationships is 51. The expected internal relationship ratio is 13.33%, and the
actual internal relationship ratio is 16.67%. Plate III plays a “connecting link” in the spatial
correlation network and geographical location of China’s transportation carbon emission
intensity. Therefore, it is classified as the “broker plate”.

Plate IV includes a total of 14 provinces, including Jiangxi and Hunan. The spillover
relationship number of this plate is 122, and the receiving relationship number is 18. The
expected internal relationship ratio is 43.33%, and the actual internal relationship ratio
is 8.27%. Plate IV has a significant spatial spillover effect, and because the economy is
relatively backward, it not only transports transportation energy to the outside world but
also loses labor. Hence, Plate IV should be classified as a “net spillover plate”.

In summary, the spatial correlation of China’s transportation carbon emission intensity
mainly occurs between plates, and the correlation between provinces within plates needs
to be strengthened. There is heterogeneity in the role of each plate in the network, with the
“net benefit” plates primarily located in developed regions and the “net spillover” plate
primarily located in less developed regions.

4.3. Driving Mechanism
4.3.1. Baseline Regression Analysis

ThIS study used the TERGM to determine the parameters of the spatial correlation
network of transportation carbon emission intensity in Chinese provinces from 2008 to
2021. The findings are presented in Table 3. Model 1 is the standard model, and Models
2, 3, and 4 were developed by adding mutual variables, three structural variables, and
two-time variables in sequence. Model 4 includes both exogenous mechanism variables
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and endogenous structural variables. The results show that the addition of endogenous
structural variables has a significant impact on the network. However, the impact of
exogenous mechanism variables on the overall network has been reduced. The endogenous
structural variables have a more substantial effect on the changes in the overall network.
Therefore, the regression analysis results of Model 4 were used to analyze the impact of
various indicators on the spatial correlation network of provincial transportation carbon
emission intensity.

Table 3. Empirical results of TERGM, a spatial correlation network of transportation carbon emission
intensity in Chinese provinces.

Variables Model 1 Model 2 Model 3 Model 4

edges −13.88 * −13.99 * −6.71 * −4.10 *
[−15.67; −12.63] [−15.03; −12.60] [−10.65; −5.71] [−12.81; −2.65]

mutual
4.98 * 5.48 * 3.67 *

[4.35; 6.45] [5.15; 6.10] [2.97; 4.46]

gwidegree −1.92 * −0.77 *
[−2.99; −1.04] [−3.37; −0.22]

gwesp 0.75 * 0.82 *
[0.59; 1.04] [0.54; 0.99]

gwdsp −0.26 * −0.24 *
[−0.34; −0.04] [−0.32; −0.22]

stability 1.67 *
[0.82; 2.58]

variability −0.06
[−0.17; 0.00]

S POP
1.14 * 4.17 * 2.43 * 0.03 *

[0.80; 1.50] [3.60; 5.65] [1.52; 4.62] [0.01; 3.57]

S GDP
−2.57 * −2.62 * −1.55 * −0.09 *

[−3.15; −2.55] [−3.09; −2.12] [−2.47; −1.07] [−1.22; −0.04]

S GT
−0.58 * −0.73 * −0.71 * −0.08 *

[−0.91; −0.08] [−1.13; −0.63] [−1.00;−0.66] [−0.81; −0.05]

R POP
−2.34 * −4.59 * −5.81 * −4.57 *

[−3.05; −1.87] [−6.60; −4.22] [−6.72; −5.28] [−5.44; −3.76]

R GDP
4.01 * 6.10 * 6.20 * 4.58 *

[3.27; 4.95] [5.63; 6.62] [5.33; 7.10] [2.88; 6.33]

R GT
0.13 * 0.13 * 0.27 * 0.23 *

[0.10; 0.15] [0.10; 0.15] [0.15; 0.27] [0.20; 0.28]

dist
0.32 *

[0.05; 0.38]
Note: * indicates that 0 is not in the confidence interval, and the brackets are the confidence interval at the 5%
confidence level. If the confidence interval does not include 0, it means that the estimate is significant.

Our study on the correlation network of transportation carbon emission intensity in
Chinese provinces, based on Model 4, takes into account the impact of both endogenous
structural and exogenous mechanism variables. The following is a detailed analysis:

(1) Network structure effects

The spatial correlation network of provincial transportation carbon emission intensity
is not random, as indicated by the edge coefficient of −4.10, which passes the significance
test. Similarly, the mutual coefficient of 3.67, which also passes the significance test, shows
that transportation carbon emission intensity in different provinces promotes the formation
of the spatial correlation network. The gwidegree coefficient, which is negative and passes
the significance test, suggests that the convergence characteristics of China’s transportation
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carbon emission intensity correlation network are not conducive to the formation and
maintenance of dependence relationships, but the preference for dependence is more
obvious. Additionally, the gwdsp coefficient of −0.24, which is significant, indicates that
the transmission of the transportation carbon emission intensity relationship between the
two provinces in the country is relatively limited by relying on multiple intermediate
provinces, and gwdsp is not conducive to the formation of network relationships. Finally,
Models 3 and 4 demonstrate that the gwesp coefficient is significantly positive, suggesting
that it is more likely for two provinces to form a spatial correlation network of transportation
carbon emission intensity through the third province.

(2) Time-dependent items

The stability coefficient of China’s transportation carbon emission intensity is 1.67,
and it passes the significance test. This indicates that there is a relatively stable relationship
in the spatial correlation of China’s transportation carbon emission intensity, which is
gradually strengthening over time. The coefficient of variability is negative and small,
which means that the spatial correlation network of China’s transportation carbon emission
intensity has a suppressed mutual influence during the process of changing over time.
However, its performance is insignificant.

(3) Actor–attribute effects

The analysis of Model 4 in Table 3 indicates that the estimated coefficients for pop-
ulation size, GDP, and green technology level of the sending effect have all passed the
significance test. The coefficient of population size is positive, while the coefficients of
GDP and green technology level are negative. This suggests that provinces with larger
populations, lower GDP, and lower levels of green technology have a higher tendency to
send spatial correlation network relationships of transportation carbon emission intensity.
The reason may be that the population tends to gather in developed provinces and cities,
and less developed provinces strive to seek exchanges and cooperation with developed
provinces and cities in low-carbon related fields to acquire emission reduction technical
knowledge and reduce the transportation carbon emission intensity in the region. Guizhou,
Qinghai, Tibet, Gansu, Xinjiang, and other provinces have a very high outdegree, which
belongs to the “net spillover” plate and has more outward connections—ranking higher
among provinces across the country.

Regarding the receiver effect, the estimated coefficients of population size, GDP, and
green technology level are all significant. The coefficients of GDP and green technology
level are significantly positive, indicating that the more developed the economy, the higher
the level of green technology in provinces, and the higher the probability of receiving
the spatial correlation network relationship of transportation carbon emission intensity.
The population size level coefficient is negative, indicating that the larger the regional
population, the lower the tendency of receiving the spatial correlation network relationship
of transportation carbon emission intensity. As shown in the centrality analysis above, al-
though cities such as Shanghai, Beijing, and Tianjin have small populations, their indegrees
are very high, and they receive many relationships from other provinces.

(4) Dyadic predictor

The positive and significant coefficient of geographical distance suggests that the
adjacent provinces have a higher spatial correlation of transportation carbon emission
intensity. The coordination among the adjacent or similar provinces is less complicated, and
the level of transportation interconnection is higher. This can effectively promote the for-
mation of a spatial correlation network of transportation carbon emission intensity, which
establishes a mechanism for coordinating cross-regional transportation carbon emission
reduction efforts.

The spatial correlation network of China’s transportation carbon emission intensity is
influenced by both an endogenous structure and exogenous variables. As more variables
such as mutual, gwidegree, gwesp, gwdsp, stability, and variability are added, the impact of
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exogenous variables on the network decreases. Examining only one dimension of factors to
explore the formation of the spatial correlation network of transportation carbon emission
intensity may lead to deviations. Therefore, it is important to analyze and discuss the joint
action of endogenous and exogenous mechanism factors to better understand the formation
and evolution of the network.

4.3.2. Robustness Test

This study aims to test the reliability of the TERGM fitting method. It uses the TERGM
to re-estimate the spatial correlation network of China’s transportation carbon emission
intensity. This study uses different estimation methods and adjusts the time window of the
data to obtain accurate results. The specific methods used are as follows: (1) replacing the
original model with Markov Chain Monte Carlo (MCMC) to conduct a robustness test on
the estimation results of the TERGM; and (2) re-selecting two years as the time window
and using Maximum Likelihood Estimation (MLE) to estimate the spatial correlation
network of transportation carbon emission intensity in Chinese provinces. The correlation
regression results show that the estimated coefficients of the endogenous structure and
exogenous mechanism’s influencing factors are almost consistent in influence direction
and significance. This reinforces the relevant conclusions mentioned above and proves the
stability and reliability of the results.

4.3.3. Goodness-of-Fit Test

To check the accuracy of Model 4, a simulated network that has the same statistical
characteristics as the actual network is commonly used. This process involves creating
multiple simulated networks with similar structural characteristics and comparing them to
the actual network’s structural characteristics to determine the effectiveness of the method.
The characteristic estimates of the simulated network are then used to create a box plot. A
good model-fitting effect is indicated when the median value is closer to the characteristic
estimates obtained from the actual network.

To evaluate the effectiveness of the fitting of a network, it is important to observe
certain statistics. Figure 10 displays the results of observing three crucial statistics. The
black line in the diagram represents the actual network, while the box plot depicts a random
network. Upon analyzing the fitting graph of edge-wise shared partners, it is evident that
the black line is mostly positioned close to the middle of the box diagram, indicating
satisfactory fitting results. Similarly, the fitting of geodesic distances and degree also prove
to be ideal.
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4.3.4. Heterogeneity Test

The spatial correlation network of transportation carbon emission intensity is divided
into three stages according to time nodes, namely 2008–2012, 2013–2017, and 2018–2021, to
explore the network time heterogeneity in three different periods of social development.
According to the results, it can be seen that the direction and significance of the estimated
coefficients of the endogenous structure and exogenous mechanism driving factors in the
three stages are consistent with Model 4. What is slightly different is that the variability
coefficient changed from insignificant to significant from 2018 to 2021. This shows that
under the impact of external factors such as the deepening of transportation carbon emission
reduction policies, the transportation carbon emission intensity preference relationship
tends to disappear in the next period, and the network may become sparse.

5. Conclusions and Policy Recommendations
5.1. Conclusions

This study analyzes China’s provincial transportation carbon emission data from
2008 to 2021. It uses a modified gravity model to develop a spatial correlation network
of transportation carbon emission intensity. This study then employs the SNA method to
conduct a detailed analysis of its structural characteristics. Using the TERGM, this study
empirically examines the evolution mechanism of its spatial correlation network. This
research shows that:

(1) The carbon emission intensity of transportation in China’s provinces is unbalanced. In
terms of time series, except for Northeast China, other regions generally demonstrate
a decreasing trend year by year, and there are significant differences between different
provinces. The increase in transportation carbon emission intensity in Northeast
China after 2017 may be closely related to the adjustment of its economic structure,
as the region shifted from heavy industry to high technology and service industries.
This change led to a decrease in the gross value of transportation production and an
increase in transportation carbon emission intensity. Regarding spatial distribution,
emissions tend to be lower in the East and higher in the West. The Gini coefficient,
which measures inequality, has generally decreased. The transportation carbon emis-
sion intensity in Northeast China is generally higher than that in East and South China.
The spatial distribution of transportation carbon emission intensity in Northeast China
has obvious stage characteristics in its changes over time.

(2) The intensity of carbon emissions from transportation is becoming increasingly in-
terconnected between provinces, with a complex spatial correlation network. The
national average transportation carbon emission intensity correlation strength in-
creased from 35.81 in 2008 to 495.19 in 2021, showing a distribution pattern of “denser
in the East and sparser in the West”. There are no isolated provinces in this network
structure, and the transportation carbon emission intensity of provincial nodes has
broken through the limitations of geographical proximity. Spatial structure character-
istics have emerged around the Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl
River Delta areas. At the same time, there is heterogeneity in the spatial correlation
network of transportation carbon emission intensity, and there are obvious differences
in the centrality of different provinces.

(3) The intensity of carbon emissions from transportation in different Chinese provinces is
unevenly distributed. This disparity is mainly due to the influence of central provinces
such as Shanghai, Beijing, Tianjin, Guangdong, and Fujian. These provinces play a
vital role in collaborating with other regions to develop low-carbon transportation.
They strengthen the interconnections between other provinces through the role of
“intermediaries” and “bridges” in the network and occupy a key position in the
related network.

(4) Due to the gap in resource endowment and economic development among Chinese
provinces, the spatial correlation network of transportation carbon emission inten-
sity shows an obvious clustering phenomenon; that is, there are dense connections
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between some nodes, while the connections between other nodes are sparse. This
clustering characteristic leads to the existence of four major plates in the network:
“two-way spillover”, “net benefit”, “broker”, and “net spillover”. This network rela-
tionship mainly represents the interactive correlation between plates. The “net benefit”
plate primarily includes developed regions, whereas the “net spillover” plate mainly
includes less developed regions.

(5) According to the results of the TERGM analysis, the mutual and gwesp indicators in
the endogenous structural variables significantly positively impact the formation of
the spatial correlation network of transportation carbon emission intensity in Chinese
provinces. However, population size, GDP, and green technology level also play an
essential role in developing this network. The network exhibits a certain degree of
stability and displays a significant stability trend over time.

5.2. Policy Recommendations

Based on the conclusions drawn, the following suggestions should be implemented:

(1) Collaborate on cross-regional and cross-departmental transportation carbon emission
reduction strategies and gradually reduce the transportation carbon emission intensity
of all provinces across the country. The country must rely on multiple provinces to
achieve emission reduction targets. It also needs to explore further paths for emis-
sion reduction implementation and safeguard measures based on each province’s
population exchanges, economic connections, green technology levels, geographical
location, etc. Moreover, it is important to establish a mechanism for cross-regional
and cross-departmental transportation carbon emission reduction collaboration gov-
ernance for healthy development.

(2) We need to use the central provinces’ leading role in the network structure to reduce
transportation carbon emissions effectively. Therefore, we should prioritize the imple-
mentation of transportation energy-saving and carbon emission reduction technolo-
gies in provinces such as Shanghai, Beijing, Tianjin, Guangdong, and Fujian, which
are at the center of the network. This will help to maximize their radiation-driving
effect. Additionally, we must take active measures to strengthen the interconnec-
tion of low-carbon transportation exchanges with the Western region. This will help
reduce the transportation carbon emission intensity of provinces on the network’s
edge, thus breaking the “Matthew Effect” situation of transportation carbon emission
intensity. Ultimately, this will enable a balanced and coordinated development of
China’s low-carbon transportation.

(3) According to the spatial correlation characteristics of the plate in which the province is
located, targeted measures should be further formulated to promote the connections
between and within the plates, focusing on the input of low-carbon transportation
resource elements in the provinces within the “net spillover” plate, to fully utilize the
resource endowments and socio-economic potential of each province while weaken-
ing the gradient differentiation of the network and achieving transportation carbon
emission reduction goals in different regions.
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