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Abstract: Precooling agricultural produce is an intensive, energy-consuming process. To improve the
efficiency of forced-air precooling and ultimately contribute to energy sustainability for postharvest
storage of fresh produce, we designed three alternative air supply systems, simulated their cooling
performances over a 96 h precooling process in a cold storage facility storing Chinese cabbages,
and then compared their performances with a conventional design. All models were developed
on a large scale on the basis of validated computational fluid dynamics models. The horizontal air
supply scheme shortened the seven-eighths cooling time by 18.8%, and its maximum cooling rate
increased by 19.7% compared to the conventional air supply scheme. The seven-eighths cooling
time under another alternative design, the vertical air supply scheme, was 9.4% lower than the
conventional, with the maximum cooling rate increasing by 10.5%. However, the maximum cooling
rate of the last alternative design, the perforated ceiling air supply system, was 6.6% less than the
conventional scheme, resulting in a 6.3% longer seven-eighths cooling time. The heterogeneity index
of temperature implied that the horizontal air supply offered better overall cooling uniformity than
the other designs, which can be attributed to its evenly distributed airflows and well-organized air
movement paths, based on the combined analysis of temperature contours and air velocity contours
at selected planes. Our findings are expected to provide practical guidelines for the refinement of the
air supply system to improve its energy sustainability in forced-air precooling.

Keywords: forced-air precooling; cold storage; computational fluid dynamics modeling; air supply

1. Introduction

Sustainability is one of the biggest challenges facing the agriculture and food sec-
tors [1]. Energy is required at every stage of the food value chain, from production in the
field to marketing and consumption. One of the most energy-intensive processes is precool-
ing, which removes field heat from agricultural products immediately after harvest [2,3].
Rapidly cooling fresh produce to an optimal temperature is crucial for long-term storage
and cold chain transportation, even though it costs considerable energy to accomplish.
Low temperatures can effectively prevent the deterioration of produce by slowing down
physiological and metabolic activities, such as respiration rate, which has a significant
impact on maintaining product quality, extending shelf life, and reducing weight loss [3,4].

Although various techniques are available for precooling, forced-air cooling is more
widely used than any other precooling technique since it is more versatile and efficient to
cool palletized produce on a large scale [5–7]. Forced-air cooling is facilitated by evaporators
and fans to remove heat through convective heat transfer between ambient air and produce.
A driving force is generated by the pressure difference across packaging so that cooling
air can be drawn, forming internal air circulations. The packaging of produce plays
an impactful role in precooling performance. Therefore, many studies have focused on
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optimizing vented packaging for specific agricultural products [5,6,8,9]. However, the
efficiency of forced-air precooling is determined by not only the design of packages but
also how the cooling air is supplied and distributed.

The air supply system lacks recognition, even though it is an indispensable component
for the forced-air precooling process. In fact, indoor airflow patterns have a huge impact
on cooling performance, which determines the efficiency of cooling and energy use. An
optimal air supply scheme maximizes the field heat removal rate and plays a pivotal role
in creating efficient cooling airflows [10]. Furthermore, cooling uniformity is always highly
required as a critical parameter to assess pre-cooling performance [2,6]. In addition, cooling
air speeds should fall within a desired range to avoid unnecessary weight loss of products
during precooling [11,12]. Hence, optimizing air supplies to provide accurate and sufficient
airflows for forced-air precooling is of great significance to improving cooling performance.
This optimization also benefits the saving of capital costs, such as possible equipment
downsizing, as well as reducing total energy consumption to enhance sustainability during
the post-harvest processing of agricultural produce.

Common air supply designs used in cold storage are simple ventilation features that
are inexpensive and easy to install [13–15]. For example, separate diffusers (inlets and
outlets) or inlets of evaporator units can almost meet the regular demand for precooling.
However, one of the biggest drawbacks of conventional air supply systems is a severe
lack of airflow accuracy. As a result, unevenly distributed temperatures, air stratification,
and excessive air movements in partial areas may occur and cause unsustainable energy
consumption [14,16–18].

Precise and efficient air supply designs are necessary to improve the performance of
the forced-air precooling process and eventually improve sustainable energy use [4,7]. Re-
cently, air ducting has been widely used as air supplies in HVAC applications, particularly
in controlled environment agriculture, livestock farming, and food processing [17,19–22].
Compared to conventional air supplies, air ducts are more manageable in precisely dis-
tributing airflows [23]. Because air ducts are very versatile in terms of materials and types
and have relatively low costs, they can be manufactured according to specific applications
and are handy for installation, replacement, and maintenance [24]. For precooling, a duct-
based air supply system does not need extra space to install and can be directly connected
to existing inlets. Paths of air ducting can be planned based on the layout of cargo, and
vice versa. Note that air ducts made of fabric and polyvinyl chloride are usually prevalent
in environments with low temperatures and high humidity.

In addition to air ducts, Guo et al. compared the precooling performance of three air
supply schemes: single inlets, double inlets, and a perforated ceiling [25]. The embedded
attic space above the ceiling contains incoming cooling air and creates a pressure difference
that drives the cold air to enter the space underneath, where fresh produce is placed
through small holes in the ceiling. Their results suggested that the perforated ceiling air
supply had the most uniform temperature distribution compared to the other two designs
due to finely directed top-to-bottom cooling airflows, while the comparisons of precooling
rates were not disclosed.

To assess indoor environmental conditions and ventilation system performance, in-
vestigators usually combine computer modeling with field tests [2,4]. Computational
fluid dynamics (CFD) is a sophisticated modeling method that is widely used in many
fields [26,27]. The number of CFD studies addressing agricultural issues has grown vastly
during the past three decades [26]. Using CFD simulations to study postharvest storage
problems of horticultural produce has been demonstrated as an efficient and accurate
approach [4]. Hoang et al. employed CFD modeling to simulate airflows in a cold storage
room to investigate indoor climate and its relationship with evaporator positioning [28].
Later, they used transient simulations to characterize temperature and airflow distributions
with and without produce [29]. A similar study was conducted to compare airflow patterns
and temperature distribution uniformity in cold storage with a slot-ventilated ceiling both
before and after loading produce [30,31].
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Several previous studies have adopted CFD simulations to investigate air supply
designs for precooling. Shen et al. simulated the indoor environment of an empty cold
storage with a perforated ceiling [32]. Their findings revealed the uniformity of internal
airflows was significantly improved compared to the conventional air supply, while chang-
ing the inlet velocity did not show much impact on indoor airflows. Moureh and the
group simulated airflow patterns and temperature distributions in a loaded refrigeration
truck [33,34]. Their later results implied that using air ducts could increase the efficiency of
cooling and reduce stagnant zones by improving airflow uniformity, which is beneficial for
maintaining produce quality during transportation [34]. Another CFD study conducted
by Liu and Nan investigated air ducting in a commercial cold storage facility loaded with
apples [10]. In their study, a 16.1 m air duct with 50 round symmetrical perforations on both
sides was designed. To ensure uniform air speed at each individual perforation, the duct
size decreased gradually from the evaporator-proximal end to the far end. Based on their
conclusions, the non-uniformity coefficient of temperature and relative humidity were both
decreased by about 20%, while the air diffusion performance index (ADPI) was increased
by 11.1% using air ducts compared to the control. There are some other studies using CFD
modeling to evaluate and compare the performance of air ducting systems with specific
applications [17,24,35], although scarce investigations were performed to systematically
compare the precooling performance between multiple air supply schemes.

This study aims to investigate air supply options for a typical precooling facility to
optimize its cooling performance via CFD simulations. Based on a validated CFD model,
the control-type and three alternative air supply systems were modeled accordingly. We
compared the simulation results of three alternative air supply systems to the control
model by analyzing key parameters, including cooling time, cooling rate, and cooling
uniformity within the same storage room. Our goal is to explain the different performances
of air supply options based on their indoor airflow patterns and provide recommendations
for the refinement of precooling air supply designs. Therefore, an optimized air supply
system should work concurrently with other factors, like packaging designs, to achieve an
improved energy-sustainable solution for postharvest produce precooling.

2. Materials and Methods

One typical forced-air precooling cold storage system with a conventional air supply
scheme and three alternative air supply systems were investigated, with corresponding
CFD models developed. The CFD model representing conventional air supply was ap-
pointed as the control type and validated with experimental measurements, which were
subsequently adopted for the development of the three alternative models to compare
precooling performance. Two of the three alternatives are air duct-based, while the third
one has air supplies facilitated by a perforated ceiling.

2.1. The Study of Cold Storage Facilities

This study was conducted at a cold storage facility located at the National Engineering
Research Center for Preservation of Agricultural Products in Tianjin, China. The cold
storage room had an asymmetric layout and a concrete floor and was 696 cm long, 446 cm
wide, and 268 cm high, with a total volume of 66 m3 and a total floor area of approximately
28.8 m2 (Figure 1A). Fresh produce was stocked on shelves that had wire-mesh surfaces
that allowed airflow to go through vertically. All the walls and the flat ceiling were all
made of aluminum.

The study cold storage room was equipped with an evaporator mounted 214 cm above
the floor and 50 cm away from the back wall, which is commonly used in cold storage
facilities, namely, the control type (Figure 1B). The dimension of the evaporator unit was
150 × 50 × 30 cm, with its top surface attached to the ceiling. The distance between the
evaporator and two sidewalls was 267 cm to the left and 280 cm to the right, respectively.
Two identical fans, each with a diameter of 40 cm, were responsible for introducing cooling
air at the front, while the entire back of the evaporator unit was used as return vents



Sustainability 2024, 16, 3119 4 of 23

connected to exhaust ducts. The operation of the evaporator was automatically regulated
by a control panel based on settings and instantaneous readings of the indoor temperature.
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Figure 1. Dimensions of the study cold storage room with the control-type air supply system (unit:
cm). (A) Isometric view. (B) Front view.

2.2. Alternative Air Supply Systems

Two air ducting systems were designed to refine the conventional air supply system,
namely, the horizontal air supply (HAS) and vertical air supply (VAS) systems. Both
designs had two 260 cm long air ducts that were directly connected to the fans at one end
and fully sealed at the other end. The diameters of the air ducts were the same as those of
the connected fans, and the distance between the two ducts was 15 cm. In addition, four
identical holes with 10 cm diameters were created at each duct every 50 cm to introduce
cooling air, and each hole had the same opening size of 78.50 cm2. The only difference
between HAS and VAS was the location of air holes, which led to horizontal and vertical
incoming airflows.

The third alternative was designed to represent a perforated ceiling air supply (PCAS)
system. Inspired by previous investigations, we added an extra ceiling to the study cold
storage, which also had a vertical board connected to the front surface, and its bottom was
aligned with the bottom of the evaporator unit. Thus, an enclosed attic area was formed,
which allowed the incoming cooling air to be mixed prior to entering the underneath space.
In total, 30 perforations with 10 cm diameters were created as air supply holes on the
additive ceiling that were evenly distributed. The distance between those holes in the same
row was 50 cm, while two adjacent rows of holes had a gap of 120 cm.
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2.3. Development of the CFD Model

Indoor environmental conditions were simulated using the commercial software
package FLUENT [36] by developing four three-dimensional models that were correlated
to the four air supply schemes (control, HAS, VAS, and PCAS). With the simulation outputs,
precooling performances were evaluated using criteria accordingly.

2.3.1. Computational Domains

All CFD models have similar computational domains that were developed based on
the actual geometry of the study cold storage room. All four models were constructed
on a large-scale to represent the same facility with different air supply systems (Figure 2).
To assess their precooling performances, 60 corrugated fiberboard boxes full of Chinese
cabbage were modeled, each with dimensions of 60 × 60 × 50 cm. In addition, two hand
holes were created for each box on two sides, with an opening size of 44.5 cm2 each.
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2.3.2. Preconditions and Assumptions

The cold storage was considered ideally insulated, assuming no infiltration. Indoor
gases were modeled as a mixture of air and water vapor, which were presumed to be
incompressible ideal gases. The temperature and humidity of the initial cooling air were
assumed to be constant. In addition, no chemical reaction or phase change was included in
the simulations, as the cooling process was mainly dependent on convective heat transfer.
Due to negligible effects on airflows, the body of shelves was not modeled as another
simplification. Four boxes at the same level of one shelf were assumed to be tightly placed
with no space between them. All boxes were modeled as solids, assuming they were full
of Chinese cabbages with zero spare space. Note that sensible or latent heat generated
by Chinese cabbage was not modeled in this study, while its thermal conductivity was
assumed to be constant.

2.3.3. Model Configurations

The geometry drawing and three-dimensional domain construction were performed
using commercial codes embedded in ANSYS packages. Unstructured mesh was generated
for all four models using ANSYS-Meshing. Grid skewness was chosen as a critical index to
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assess the meshing quality prior to simulations. Additionally, a standard mesh convergence
study was performed to verify meshing integrity and sufficiency of mesh refinement using
the Grid Convergence Index (GCI) [37]. Three mesh scales of the control model were
created, including 830,150, 1,469,272, and 4,005,975 cells. The GCI value was analyzed and
compared at three selected points, which turned out to be declining when the meshing
scale increased, indicating the grid was successfully refined (Supplementary Materials).
However, the largest size of meshing was not computationally efficient considering the
refinement it provided versus the more computing time it demanded. Therefore, the
median meshing scale was adopted to continue subsequent model development. The
final mesh sizes of control, HAS, VAS, and PCAS were 1,469,272, 1,583,385, 1,582,310, and
1,568,130, respectively. For all four models, the minimum cell generated in mesh varied
between 7.2 × 10−7 and 1.8 × 10−6 m3, while the maximum cell size was around 0.02 m3.

The Reynolds-averaged Navier-Stokers (RANS) equations were solved in each cell
using FLUENT solver, incorporating the enhanced wall functions. The standard k-e tur-
bulence model was adopted to scrutinize turbulence-induced instability [38]. A transient
mode calculation was performed using a time step of 7200 s to simulate indoor environ-
mental conditions during the precooling process. The convergence criteria were set as
1 × 10−6 for energy and 1 × 10−4 for other variables. The indoor airflows were considered
stable when air speeds at selected points fluctuated within 1% between time steps. A total
of 48 time steps were computed in 2400 iterations. Note that the initial temperature of all
cell zones, including the Chinese cabbages, was set at 25 ◦C prior to the commencement of
the precooling process.

2.3.4. Boundary Conditions

The same boundary conditions were applied in four CFD models. The faces of dual
evaporator fans were modeled as inlets with a constant mass flow rate of 2.4 kg/s each,
serving incoming air at 0.5 ◦C with a constant mass fraction of 0.006. The entire back of the
evaporator unit was defined as a pressure outlet through which indoor air exits into the
atmosphere. All boxes of produce were modeled as solid blocks, whereas the interior of
each box was defined as solid cell zones to represent Chinese cabbages. The density, specific
heat, and thermal conductivity of Chinese cabbage used in modeling were referenced and
estimated, as shown in Table 1 [39–41]. The surface of each box was assigned the thermal
parameters of corrugated fiberboard and was modeled as non-slip walls. In addition, the
surrounding walls, floor, ceiling of the storage room, air ducts, and perforated ceiling were
all modeled as no-slip aluminum walls without roughness (Table 1).

Table 1. Geometric features and materials with corresponding thermal properties.

Geometric Feature Material Density
kg/m3

Cp
j/(kg·K)

Thermal Conductivity
W/(m·K)

Surrounding walls, floor, ceiling of the
storage room, air ducts, and

perforated ceiling
Aluminum 2719 871 202.4

Surface of individual produce blocks Corrugated paper box 1201 1400 0.05
Produce blocks Chinese cabbage 714 4020 0.6

2.3.5. Simulation Data Post-Processing and Evaluation

Three two-dimensional planes, namely Plane-F, Plane-M, and Plane-B, were created to
represent the produce locations at the front, middle, and back, respectively. These selected
planes were lined up parallelly with 1 m between each other along the z-axis (Figure 3A).
Note that Plan-F and Plane-M do not cross any air holes in alternative models, but Plane-B
crosses the evaporator unit in all four models due to its designate position. Contours of
temperature and air velocity vectors were created using these planes to illustrate indoor
environmental conditions and evaluate cooling performances. On each plane, a cross-
section of all 15 rows of produce was examined to monitor the temperature variations of the
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internal Chinese cabbages at different timestamps. The produce was labeled alphabetically
from left to right across five stacks (Figure 3B). Within each stack of boxes, the produce was
further annotated with numbers 1 to 3 to indicate increasing heights (Figure 3B).
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The precooling performances of four air supply systems were evaluated using three
criteria: cooling time, cooling rate, and cooling uniformity. The half cooling time (HCT) and
seven-eighths cooling time (SECT) serve as two critical indices for assessing the cooling
time in commercial forced-air facilities. Both values are derived from the temperature
profiles, as explained by the following equation:

Y = (TP − Ta)/(TP,int. − Ta), (1)

where the dimensionless temperature change fraction (Y) represents the ratio of unaccom-
plished temperature change to the anticipated total temperature change at a given time,
which is calculated using Ta (K) the cooling air temperature, TP,int. (K) is the temperature
of the initial produce temperature, and TP is the produce temperature [3]. In this study,
TP was calculated as the volume-weighted average temperature of the Chinese cabbage
(Equation (2)).

TP =
1
V ∑n

i=1 Ti|Vi|, (2)
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Thereby, HCT and SECT stood for the time needed to complete a temperature change
by half (Y = 0.5) and seven-eighths (Y = 0.125) of the anticipated total temperature
change, respectively.

During the precooling process, the rate of cooling decreases as the temperature of the
produce approaches the cooling air temperature (Ta). To quantify the cooling rate at time
t= ti, an instantaneous cooling rate Rti was adopted, which is defined as follows [3,4,42]:

Rti = C
(
TP,ti − Ta

)
, (3)

where C is the cooling coefficient (h−1) that equals the magnitude of the slope of ln(Y) ver-
sus t, and TP,ti indicates the instantaneous produce temperature at ti that is also calculated
using Equation (2).

To quantitatively evaluate the cooling uniformity, the heterogeneity index (HI) of
temperature was adopted as an indicator of the instantaneous cooling disparities among
the produce at various locations [43]. The HI of temperature is defined as follows:

HI =

√(
TP − TP

)2

TP
× 100, (4)

where TP is the average temperature of all produce at a specific timestamp, and TP repre-
sents the instantaneous temperature of a specific row calculated by the volume-weighted
average temperature.

2.3.6. Field Measurement

Measurements of air temperature, relative humidity, and air velocity were taken at
16 sampling locations within the study cold storage without loading produce for two days
(24 June 2023 and 27 June 2023). The evaporator was turned on in the early morning while
the measurements were conducted in the afternoon to make sure the indoor environment
had reached a steady state prior to data recording. Air temperature and relative humidity
were measured and recorded using a Testo 480 digital meter with an IAQ probe (Testo,
Lenzkirch, Germany) with a sampling rate of one reading per second. The accuracy of
the IAQ probe is ±0.3 ◦C for temperature and ±2% for relative humidity. When the
readings of temperature and relative humidity reached a plateau, the indoor climate was
considered stable. The indoor air velocity was measured at each sampling location using
a Testo 0635-1543 hot wire anemometer (Testo, Lenzkirch, Germany) that has an accuracy
of ±4% of reading and ±0.03 m/s. The anemometer was placed vertically to capture the
predominant horizontal air movement. When the evaporator is operating, the reading of air
velocity at a location usually fluctuates more or less. Therefore, an average of 30 consecutive
readings was calculated at a certain sampling location with three repeated measurements
for the same spot.

2.3.7. Model Validation

To validate model accuracy, an electric heater (SINFUN, Ningbo, China) was deployed
and modeled as the sole heating source in the cold storage, which allowed us to compare
prediction results with field measurements using corresponding simulation data in terms
of temperature, relative humidity, and air velocity. Note that the measured air velocity was
compared with simulated air velocity along the z-axis since the anemometer only captured
the horizontal air velocities. Details of field measurement and validation data analysis can
be found in the Supplementary Materials.

Several statistical parameters were used as indicators to assess the CFD model per-
formance, including fractional bias (FB), geometric mean bias (MG), geometric mean-
variance (VG), fraction within a factor of two (FAC2), and normalized mean square error
(NMSE) [44–46]. All equations used to calculate those parameters were listed and described
in the Supplementary Materials. Each parameter must fall within a specific range to be
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deemed acceptable: |FB| < 0.3, 0.7 < MG < 1.3, VG < 4.0, 0.5 < FAC2 < 2.0, and NMSE < 0.25.
A model has to meet more than half of the criteria for those parameters to be considered
sufficiently accurate.

3. Results
3.1. Model Validation

In general, the CFD model can provide accurate predictions, as evidenced by adequate
agreements between field measurements and simulation results in terms of temperature, air
velocity, and relative humidity data (Figure 4). At 16 locations, the simulated results for tem-
perature and relative humidity demonstrated superior alignment with field measurements
compared to the air velocity data, with relative errors of 8% and 5% on average, respectively.
However, the predicted air velocity had an average relative error of 20%, with the highest
value around 58%. The discrepancy in air velocity data could be attributed to the fact that
only horizontal air velocity was measured and had a relatively small magnitude.
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Figure 4. Comparisons between field measurements and predicted results of temperature, air velocity,
and relative humidity represented by circles, squares and triangles, respectively. The dashed lines
represent the ideal scenario when predictions made by simulations are exactly the same as field
measurements. The vertical error bars stand for the standard deviation of replicates of corresponding
field measurements at each location.

In addition, the developed CFD model has been proven to meet the evaluation criteria
using the five statistical parameters mentioned earlier (Table 2). All the statistical indices fell
within the desired range, indicating that the model could accurately predict key indoor envi-
ronmental parameters. Therefore, the validated model is suitable for modification to investigate
multiple air supply systems and their corresponding indoor environmental parameters.

Table 2. Summary of statistical parameters for model validation performance assessment.

Air Velocity Temperature Relative Humidity

|FB| (<0.3) 0.01 0.2 0.01
MG (0.7–1.3) 1.0 0.9 1.0

VG (<4) 1.0 0.8 1.0
FAC2 (0.5–2.0) 1.0 1.2 1.0
NMSE (<0.25) 0.01 0.1 0.0

Note: the criteria in parenthesis indicate adequate model performance.

3.2. Precooling Performance Comparison

To thoroughly compare the precooling performance between the four air supply
schemes, we evaluated the cooling time for each model to figure out the potential refinement
of air supply systems to fulfill the goal of sustainable precooling methods. According to the
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simulation results of the volume-weighted average temperature of all produce over time,
the HAS model showed superior cooling performance, with the temperature dropping
much quicker than the others (Figure 5). After 14 h of precooling with HAS, the average
temperature of the Chinese cabbages was reduced to 13 ◦C, nearly achieving half of the
anticipated total temperature drop. Furthermore, the mean temperature of all produce
reached 3.5 ◦C after 52 h, according to the prediction of the HAS model, while the control,
VAS, and PCAS models had average temperatures of 4.9, 4.0, and 5.3 ◦C, respectively.
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weighted average temperature of Chinese cabbages under each air supply scheme for 96 h based on
simulation results. The dash lines indicate anticipated temperatures at HCT and SECT, respectively.
Note that the time interval for each data point was 2 h.

The VAS model exhibited the second-best performance with respect to cooling time,
as it took slightly more time for all produce to cool down to an average temperature of
12.8 ◦C. The VAS model needed an additional 6 h to reach 3.6 ◦C compared to HAS. The
control model had a slightly shorter HCT than that of the PCAS model, which reduced the
average temperature of all produce below 3.6 ◦C after 64 h of cooling, and was about 4 h
ahead of the PCAS model.

The cooling rate for each design was calculated using Equation (3) and compared
to the instantaneous cooling rates at every timestamp (Figure 6). Note that the cooling
coefficient for each air supply system was derived from the corresponding simulation data,
resulting in a series of constant values of 0.03, 0.04, 0.03, and 0.03 h−1 for the control, HAS,
VAS, and PCAS models, respectively. The HAS model possessed the maximum initial
cooling rate of 0.9 K/h, followed by the VAS model with an initial cooling rate of 0.8 K/h.
The control-type air supply system had an initial cooling rate of 0.8 K/h, which was 7%
slightly higher than that of the PCAS model. It is worth noting that the initial cooling rate
is directly related to the cooling coefficient.

As the cooling process went on, the instantaneous cooling rates of all models gradually
declined (Figure 6). The control model exhibited the maximum instantaneous cooling rate
after 22 h, while the cooling rate of the HAS model became the minimum from the 26th
hour onwards. Interestingly, all four models had similar instantaneous cooling rates of
around 0.3 K/h at the 28th hour of cooling. After 42 h, the PCAS model started to lead to
instantaneous cooling rates at each timestamp until the end of the cooling process. By the
end of 96 h, the cooling rates of four models had diminished to extremely low levels, with
values of 0.04, 0.04, 0.03, and 0.02 for the PCAS, control, VAS, and HAS models, respectively.
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Figure 6. Comparison of cooling rate changes between four air supply systems for 96 h based on
corresponding simulation outputs. Diamonds with different colors represent the instantaneous
cooling rate values of each model that were calculated every 2 h using spontaneous predictions.

Cooling uniformity is another crucial parameter to assess the precooling performance
of air supply systems. The instantaneous temperature of Chinese cabbages was compared
at various locations with the average temperature during the 96 h precooling process, as
well as the dynamic of temperature heterogeneity using HI values (Figure 7). In general,
the HI value of the produce at each location increased drastically in the initial hours of
cooling and then declined moderately after reaching its peak. Only the produce from
the PCAS model presented a moderately fluctuating behavior at the A1 location with a
relatively small scale of HI. The maximum instantaneous HI (0.7) was observed at C3 from
the simulation results of the VAS model at the 10th hour of precooling, with the minimum
HI values observed at several locations for multiple models. For instance, the control model
had HI values close to zero at C1, C3, and E3 for most of the precooling process. In addition,
the HAS model also displayed nearly flat curves in rows D2 and D3.

The VAS and PCAS models exhibited extraordinary heterogeneity in terms of instan-
taneous temperature at multiple locations compared to the control and HAS models. In
lower and middle rows like B1, C1, E1, and E2, the VAS model showed higher HI values
than any other model from the start of cooling (Figure 8). Oppositely, the PCAS model
had one row, D3 (the highest level vertically), that consistently showed a higher HI than
the others. In addition, the control model also exhibited overall maximal heterogeneity at
locations A1, B2, and D1. However, the rise in HI values for the control model was less
abrupt compared to the alternative models. For instance, the control model started leading
in the instantaneous HI value of B2 at the 16th hour. Interestingly, the control also exhibited
the smallest heterogeneity of temperature at the locations of C1, C3, and E3 among all
models. Additionally, the HI value of the HAS model tended to start at a high value when
cooling started at most rows and decreased quickly as the precooling process continued,
ultimately ending very low. For rows B3 and D2, the HAS model maintained the lowest HI
value among all four models for the entire 96 h cooling process.

The instantaneous Y value of 15 rows was subtracted from the overall average Y value
(denoted as Y_avg) to further analyze the uniformity of cooling across different stacks of
produce. We then computed the mean value of these differences for each stack, represented
as ∆Y_avg, at specific timestamps. The variation of ∆Y_avg relative to Y_avg during the
cooling process was subsequently examined across five stacks within each air supply
system, as illustrated in Figure 7.
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Figure 7. Plots of heterogeneity index (HI) of average temperature for 15 locations of Chinese
cabbages, which were labeled with corresponding row numbers upper right. The x-axis represents
cooling time from 0 to 96 h, while the y-axis indicates instantaneous HI values calculated using
volume-weighted average temperature at each location. Note that the time interval for each data
point was 2 h.
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As the cooling process progressed, all four models displayed converging ∆Y_avg values
across all five stacks, while the dynamics of temperature change with the same stack varied
strongly between different models (Figure 8). In general, the VAS model exhibited the
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greatest heterogeneity among all models, whereas the PCAS model presented the most
uniform ∆Y_avg behavior, with values ranging between −0.01 and 0.01. Following the
PCAS model, the HAS model demonstrated the second-best uniformity across the stacks.
Interestingly, the control model’s fastest cooling stack was Stack A, while Stack B was the
slowest. Under the HAS scheme, Stack E cooled the fastest, with Stack C being the slowest.
Contrary to the HAS model results, the VAS model’s fastest cooling stack was Stack C, and
the slowest was Stack E. The PCAS model initially showed the fastest cooling in Stack D,
until Stack B overtook it midway during the cooling process. However, towards the end,
Stack E became the fastest, while Stack D replaced Stack A as the slowest stack (Figure 8).

Similarly, the heterogeneity of temperature change among produce at different heights
was characterized by analyzing the instantaneous ∆Y_avg value of three levels over Y_avg
(Figure 8). Three levels, namely, Level 1, Level 2, and Level 3, denote increasing heights. For
each level, data from five rows of produce were used to calculate the corresponding ∆Y_avg.

Generally, three of the four models exhibited a more uniform cooling performance
across three levels compared to the five stacks, particularly for the VAS model (Figure 9).
The PCAS model displayed the widest range of ∆Y_avg values from −0.04 to 0.04, with
the fastest cooling observed at Level 3 (the highest). In contrast, the HAS model showed
the most uniform cooling behavior across the three heights, with ∆Y_avg values ranging
between −0.01 and 0.01, approximately. The fastest cooling in the HAS model was detected
at Level 1, while the produce at Level 3 cooled slightly slower than Level 2. The control
model’s results suggested that the produce at the lowest level cooled the fastest, with the
slowest cooling observed at the middle level, which was similar to the observations in the
VAS and PCAS results. Both models showed the slowest cooling performance at Level 2
among the three levels.
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Figure 9. Plots of ∆Y_avg of three levels versus Y_avg for four models during the entire cooling process.
The x-axis indicates the average instantaneous temperature change fraction of all produce, and the
y-axis stands for the means of differences between the instantaneous temperature change fraction of
produce on each level and the average temperature change fraction of all produce.

Additionally, the cooling uniformity at different locations of the room under each air
supply scheme was analyzed by visualizing the indoor temperature distribution. Indoor
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temperature contours were created at 6, 12, 24, and 48 h of precooling to compare the
temperature distribution between each row of Chinese cabbages at three selected cross-
sectional planes (Figures 10–12).
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the same plane, as indicated at the bottom.
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For the control model, the cooling of produce at Plane-B commenced relatively slower
compared to the other two locations after 6 h of cooling (Figure 10). Although the ambi-
ent air temperature at Plane-B was lower than the others at the 6th hour of precooling,
particularly at both middle aisles, noticeable light blue areas were visualized at Plane-F
and Plane-M. However, the decrease in produce temperatures at Plane-M appeared to be
the slowest one at 12, 24, and 48 h of precooling, suggesting that the field heat was more
difficult to remove for produce at Plane-M compared to the other two locations. By the end
of 48 h of precooling, temperatures of produce at Plane-F and Plane-B dropped roughly
to 7 ◦C and below, with some boxes of produce nearing the target cooling temperature at
certain rows. At Plane-F, produce in stacks B and C exhibited higher temperatures than
the other stacks, although such an obvious difference was not observed at Plane-M and
Plane-B.

The indoor temperature distribution of the HAS model showed strong symmetry
(Figure 11), with the temperature of produce at Plane-F and Plane-B expressing almost
identical patterns at all timestamps. However, it took longer to cool down the produce on
Plane-M than on the other planes. Based on the temperature contours at the 48th hour of
cooling, most of the outer portions inside each box at Plane-F and Plane-B blended into the
background and became invisible as the temperature reached the target. At Plane-M, there
were still some light blue areas, indicating that the produce required additional cooling
time. One note is that the ambient air under the HAS scheme exhibited an almost evenly
distributed temperature regardless of location at each contour.

The other air-ducting system, VAS, displayed a distinct pattern of temperature distri-
bution compared to HAS (Figure 12). The temperature of the produce showed a consistent
trend despite the cooling time: the produce at Plane-F cooled down the fastest, followed by
those at Plane-B, while Plane-M was the slowest to cool down. The variations in tempera-
ture distributions between the three planes were not substantial. Moreover, the produce on
Stack C constantly possessed the lowest temperature since cooling air was directly injected
above it. Additionally, the temperature distribution of the ambient air at the 6th and 12th
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hour under the VAS scheme was slightly less uniform than that of the HAS model but was
still more even compared to the control model.

A pattern similar to the VAS model was observed in the PCAS model in terms of
having a faster cooling performance at Plane-F among the three selected planes at all
timestamps, with the produce at Plane-B displaying a slightly lower temperature than
Plane-M in general (Figure 13). Moreover, the produce at the same plane indicated excellent
temperature uniformity, regardless of the locations. The temperature distribution of the
ambient air at Plane-F and Plane-M was not able to provide comparable uniformity as
models HAS or VAS presented, particularly at the 6th and 12th hours of cooling. However,
the target cooling temperature was consistently maintained in the attic area under the
PCAS scheme at all timestamps.
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Figure 13. Temperature contours at three selected planes for the PCAS model. Each row represents
temperature contours at 6, 12, 24, and 48 h of precooling. Contours within the same column belong to
the same plane, as indicated.

3.3. Airflow Patterns under Four Air Supply Systems

Four air supply schemes presented varying cooling effectiveness based on the compar-
ison of temperature contours at critical timestamps. This comparison provided valuable
insights into the relationship between these differences and the indoor airflow patterns
within each system. Air velocity contours on selected planes were created using data
from a 96 h simulation for each model to facilitate a visual comparison of the airflows
(Figures 14–16).

At Plane-F, the control model revealed a general airflow pattern where air movement
was predominantly from top to bottom. Intense airflows were detected moving from the
upper right towards the central aisle between stacks C and D, with speeds around 1 m/s.
Vertical airflows of significant magnitude were observed descending to the ground on
both sides of the room. Note that upward airflows were also detected near the ground,
particularly on the left side of the room and in the aisles between stacks A and B and stacks
D and E. These upward airflows then encountered nearby downward airflows, resulting in
the formation of some swirls at these locations (Figure 14). At Plane-M, additional swirls
were observed in the aisles between stacks, as well as in areas close to both sides of the
room (Figure 15). Substantial air velocities were observed traveling along the positive z-axis
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on the right side of Plane-M, as indicated by small arrowheads, creating a relatively blank
area compared to the contour at Plane-F. The airflow patterns appeared more refined and
generally shifted to an upward orientation at Plane-B (Figure 16). Numerous air velocities
close to the upper-middle region were directed towards the outlet. Only a few small swirls
with slow speeds were observed. Moreover, the average air speed of the three planes for
the control model was very similar to each other.
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Figure 15. Indoor air velocity contours Plane-M (the middle cross-section of produce) from a 96-h
simulation for each model. A legend of colors ranging from 0 to 5 m/s illustrates the magnitude of
the air velocity. The average air speed is displayed upright for each contour. Note that velocities
exceeding 5 m/s are represented in red.
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simulation for each model. A legend of colors ranging from 0 to 5 m/s illustrates the magnitude of
the air velocity. The average air speed is displayed upright for each contour. Note that velocities
exceeding 5 m/s are represented in red.

The airflow patterns of the HAS model displayed lucid air movement paths with
remarkable symmetry, especially at Plane-F and Plane-M (Figures 14–16). The incoming
cooling air from the air ducts formed robust injection air streams that traveled to both
sidewalls along the ceiling in a flat trajectory. Upon hitting the sidewall, most of the airflows
turned downward until they reached the floor at the corner, then penetrated underneath the
boxes of produce towards the center of the room without losing much of their magnitude.
Within each aisle between stacks, airflows ascended and utilized the space between boxes
and upper spaces to form air circulations. Thus, symmetrical air circulation was generally
noticed on both sides of the cold storage room for the HAS model. Additionally, strong air
moments with some speeds exceeding 3 m/s around boxes were depicted in the contours
on all three planes. The difference between airflows at Plane-F and Plane-M could be the
influence of incoming cooling air, as the trajectory of injecting air was more rigorous and
extensive at Plane-F than at Plane-M. However, stronger air circulations were detected at
two middle aisles and the very right aisle between Stack E and the sidewall at Plane-M,
which may be more beneficial for field heat removal. In fact, the average air speed of
Plane-M was slightly higher than that of Plane-F. At Plane-B, the airflow patterns under
HAS tended to vary, with symmetry still existing in terms of indoor air movement paths,
although it may not be as clear as that observed from Plane-F or Plane-M (Figures 14–16).
In addition, the air speed decreased by 15% and 22.7% on average compared to Plane-F and
Plane-M, respectively. Two noticeable air circulations were visualized near both sidewalls.
Moreover, due to the influence of the outlet, most upward airflows on the right side moved
towards the middle, although some air circulations were formed close to the ceiling on the
left side.

Unlike the nearly symmetrical air movement paths of the HAS model, the VAS model
presented distinct airflow patterns based on its simulation results. Since the cooling air
was introduced vertically through air ducts, airflow initially traveled downward from both
ducts at high speeds. The cooling air from the left air duct was able to maintain a long
trajectory until it hit the ground at a high speed of up to 5 m/s and above, then proceeded
underneath boxes to both sides (Figures 14–16). However, the cooling air injected from
the air duct on the right-side air duct directly impinged on the top boxes of Stack C, then
rebounded and dispersed in various directions. At Plane-F, most of the right-side incoming
air was deflected back and ascended towards the ceiling, partially lifted by the upward
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airflow from the bottom. Meanwhile, at Plane-M, the incoming air from the right side
circled back to the middle right after hitting the boxes, merging with the drifts of horizontal
airflows from right to left at the upper portion of the room (Figure 15). As a result, the
produce on Stack C received considerable airflow around them, particularly those at the
top level. The average air speed was the same at 1.9 m/s for both Plane-F and Plane-
B, yet it decreased to 0.8 m/s on Plane-B. Indoor air generally exhibited less vigorous
movement at Plane-B for VAS, although some upward airflows along the left sidewall were
conspicuous with relatively fast speeds and became more pronounced approaching the
outlet area (Figure 16). Note that the aisle between Stacks B and C possessed far more
robust airflows than the others. Spaces between boxes in the right portion of the cold room
showed stagnant air movement compared to the left portion. Also, some airflows moving
along the z-axis were observed at the right portion.

Due to the presence of an enclosed attic area housing the incoming cooling air, the
PCAS model exhibited unique airflow patterns compared to the other three models. Vigor-
ous air movements were observed inside the attic at both Plane-F and Plane-M, though
the airflow patterns varied, with more cross-traveling airflows at the middle cross-section
of the room compared to the front. The average air speed was similar for Plane-F and
Plane-M, which was approximately 1 m/s. However, the space underneath the perforated
ceiling showed relatively stagnant air movements (Figures 14–16). Air velocities above 1
m/s were scarcely observed at the three selected planes, with most detected either near the
ceiling or the ground. In addition, several swirls were noted between stacks of produce at
Plane-F and Plane-M, yet not at Plane-B. In fact, based on the air velocity contours of the
simulation results from PCAS, Plane-B possessed the least active air movements among the
three planes, with an average air speed of 0.4 m/s. All those findings suggested a relatively
weaker indoor air movement and unsustainable cooling efficacy under the PCAS scheme
compared to the others, which could be the reason why the PCAS model possessed the
lowest cooling rate in general.

4. Discussion

The air supply system of the HAS model demonstrated superior precooling per-
formance compared to the others according to simulation output, presenting the most
promising energy sustainability. The HCT of the HAS model is approximately 16 h, which
is 4 h less than the control model. Furthermore, by using the HAS air supply scheme,
about 12 h can be saved in terms of SECT compared to the control model, which equals
a reduction of 18.8%. Although the VAS model shows a similar HCT to the HAS model,
its SECT is around 58 h, which is still 6 h more than the HAS model. Hence, by using the
HAS and VAS systems instead of the control type, the operating time could be reduced
by about 12 and 6 h, respectively, to achieve the 7/8 target cooling temperature with the
same evaporator unit, which can be a significant improvement in energy savings. However,
the PCAS displayed a slower overall cooling time compared to the control model, with a
similar HCT yet a 4 h delayed SECT.

Our combined analysis of airflow patterns and temperature distribution underscores
the significant role that air supply systems play in precooling performance. A vigorous
and well-organized airflow pattern has been demonstrated to enhance cooling efficacy
and uniformity, as evidenced by the simulation results of the four models. Airflows in
the HAS model generally present a symmetrical movement pattern, with robust air move-
ments in open spaces, forming effective air circulations to remove field heat from produce
(Figures 14–16). Given that most airflows travel consistently and are well organized, a few
unnecessary and adverse swirls are generated because of the confrontation of opposing
airflows. In addition, it is critical to introduce cooling air horizontally in both directions, as
in the HAS model, to fully utilize the width of the storage room. This allows high-speed
incoming air to obtain sufficient space to develop a complete trajectory that maintains
its momentum, rather than being deflected by obstacles or blocked by walls at an early
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stage. A complete air trajectory can maintain a consistent movement orientation as much
as possible without losing the magnitude of air velocity.

Conversely, based on the layout of the cold storage room, a short distance between the
front and back forced the incoming air from the evaporator to directly hit the front wall
in the control model. The air speeds of the incoming cold air reduce considerably after
hitting the front wall, then disperse in random order, mixing with the indoor warm air.
As a result, more chaotic air movements were observed in the cross-sectional air velocity
contours from the control model (Figures 14–16). The slow cooling of produce at Plane-M
and the central stacks of the control model (Figure 10) suggest that it is challenging for
the cooling air to penetrate the space between the produce with slow and weak airflows.
As previously reported, under these regular air supply schemes, some of the incoming
cooling airflows may not be capable of developing paths to travel across stacks of produce
before being exhausted from the outlet due to the misplacement of the location of inlets
and outlets [17,47].

The airflow in the VAS model encounters a similar issue to the control model, as the in-
coming airstream from the right air duct is severely deflected by the produce. Consequently,
the air movement on the right side is not as organized as on the left side (Figures 14–16),
which display small swirls and a number of tiny cross-traveling air velocities. Although the
strong injection of cooling air from the left air duct promotes a robust descending airstream
down to the ground before splitting in both directions, the air speeds on the right side
are generally slower than those on the left. Another critical issue for the VAS model is
the inefficient path of air movement. Most of its strong and consistent air movements are
nearing the sidewall, while the airflows circulating around the produce are slower and less
uniform compared to the HAS model, except for the two stacks beneath the left air duct.
As a result, the primary challenge for the VAS system is the lack of cooling uniformity.

The PCAS model has not exhibited as competitive a cooling performance as the other
two alternative systems and has even been outperformed by the control model. This is
attributed to a significant lack of robust air movements around the produce. Although the
perforated ceiling is capable of providing top-to-bottom airflows in a relatively uniform
manner, as previously investigated, the corresponding cooling rate and cooling time have
not been assessed [25,48]. According to our results, the cooling rate of the PCAS model is
not optimal for precooling purposes. While the incoming air from the evaporator provides
fast air speeds inside the attic, most of these speeds cannot be maintained when traveling
through the vertical holes to the lower area. In addition, the indoor air movement of the
PCAS model is spotty, with a few small swirls formed, which also hinders the cooling
performance compared to the other models (Figures 14–16). However, the PCAS model
does have merits in cooling uniformity, particularly for the produce at the same level across
stacks (Figure 13), which surpasses the other air supply systems.

All our findings demonstrate that CFD modeling is a powerful tool to investigate the
refinement of air supply systems and examine the indoor environment via pertinent simu-
lations. Further research may focus on optimizing these air supply systems by leveraging
their airflow features and integrating other factors, such as the arrangement of produce and
the layout of the storage room. In this study, the HAS model showed the most competitive
cooling performance due to its relatively uniform airflows that effectively covered most of
the space. Within the HAS scheme, the produce can be placed in a manner that may not
coincide with the airflows.

However, the placement of produce should take the indoor airflow patterns into
account due to the heterogeneity of cooling. For example, within the VAS model, the
central region is supposed to cool more rapidly than other parts of the storage. Hence,
making use of this disparity may also be worth investigating in practical applications,
as some previous research has claimed that an unevenly distributed climate may have
advantageous effects for certain specific applications [17].

Various air supply systems may be utilized in some specific scenarios. Herein, the
PCAS scheme might not be ideal for forced-air precooling, but it can still be used for
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long-term cold storage after the produce has already been cooled down due to its steady
and accountable cooling uniformity. Also, the PCAS model is the only scheme that shows
faster cooling at a high level among the four models. In addition, the relatively low air
speeds provided by the PCAS model may be more energy-sustainable, reducing the weight
loss of some produce during long-term storage.

5. Conclusions

In conclusion, out of three alternative air supply systems, HAS and VAS demonstrated
competitive precooling performances. Our analysis revealed that the HAS model’s SECT
decreased by 18.8% and its maximum cooling rate rose by 19.7% in comparison to the
control model. The VAS model’s SECT was 9.4% lower than the control model, and its
maximum cooling rate increased by 10.5%.

Four models displayed varying degrees of cooling heterogeneity due to their unique
air movement patterns. The HAS model exhibited the best overall cooling uniformity,
attributed to its well-organized airflows. The VAS model displayed exceptionally robust
cooling performances in the center region of the storage room.

Although the PCAS model presented the best cooling uniformity across five stacks, it
possessed the highest cooling heterogeneity at different heights among all models. Further-
more, the maximum cooling rate of the PCAS model was 6.6% less than the control model,
leading to a 6.3% longer SECT. This indicates that the precooling performance under the
PCAS scheme may not be as effective as the others, and it was even slightly outperformed
by the control model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su16083119/s1, Figure S1: Computational domain of the CFD model
for validation; Table S1: GCI values calculated by corresponding mesh refinement ratios using the
second-order scheme; Table S2: Field measurement versus prediction data at 16 locations.

Author Contributions: Conceptualization, L.C. and J.L.; methodology, L.C.; software, L.C.; val-
idation, L.C. and W.W.; formal analysis, L.C.; investigation, L.C.; resources, Z.Z.; data curation,
L.C.; writing—original draft preparation, L.C.; writing—review and editing, L.C.; visualization, L.C.;
supervision, J.L. and Z.Z.; project administration, J.L.; funding acquisition, L.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Key Laboratory of Storage of Agricultural Products,
Ministry of Agriculture and Rural Affairs, China (Grant No. Kf2021009).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge Tianjin Technology of Mushroom Engineering Center
for the support of equipment and instruments to conduct this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. FAO. Energy-Smart Food for People and Climate; FAO: Rome, Italy, 2011; p. 66.
2. Duan, Y.; Wang, G.B.; Fawole, O.A.; Verboven, P.; Zhang, X.R.; Wu, D.; Opara, U.L.; Nicolai, B.; Chen, K. Postharvest precooling

of fruit and vegetables: A review. Trends Food Sci. Technol. 2020, 100, 278–291. [CrossRef]
3. Brosnan, T.; Sun, D.W. Precooling techniques and applications for horticultural products—A review. Int. J. Refrig. 2001, 24,

154–170. [CrossRef]
4. Zhao, C.J.; Han, J.W.; Yang, X.T.; Qian, J.P.; Fan, B.L. A review of computational fluid dynamics for forced-air cooling process.

Appl. Energy 2016, 168, 314–331. [CrossRef]
5. Wang, D.; Lai, Y.; Jia, B.; Chen, R.; Hui, X.; Duan, Y.; Wang, G.B.; Fawole, O.A.; Verboven, P.; Zhang, X.R.; et al. The optimal design

and energy consumption analysis of forced air pre-cooling packaging system. Appl. Therm. Eng. 2020, 165, 278–291. [CrossRef]
6. Han, J.W.; Zhao, C.J.; Yang, X.T.; Qian, J.P.; Fan, B.L. Computational modeling of airflow and heat transfer in a vented box during

cooling: Optimal package design. Appl. Therm. Eng. 2015, 91, 883–893. [CrossRef]
7. Wang, G.; Zhang, X. Evaluation and optimization of air-based precooling for higher postharvest quality: Literature review and

interdisciplinary perspective. Food Qual. Saf. 2020, 4, 59–68. [CrossRef]

https://www.mdpi.com/article/10.3390/su16083119/s1
https://www.mdpi.com/article/10.3390/su16083119/s1
https://doi.org/10.1016/j.tifs.2020.04.027
https://doi.org/10.1016/S0140-7007(00)00017-7
https://doi.org/10.1016/j.apenergy.2016.01.101
https://doi.org/10.1016/j.applthermaleng.2019.114592
https://doi.org/10.1016/j.applthermaleng.2015.08.060
https://doi.org/10.1093/fqsafe/fyaa012


Sustainability 2024, 16, 3119 22 of 23

8. Delele, M.A.; Tijskens, E.; Atalay, Y.T.; Ho, Q.T.; Ramon, H.; Nicolaï, B.M.; Verboven, P. Combined discrete element and CFD
modelling of airflow through random stacking of horticultural products in vented boxes. J. Food Eng. 2008, 89, 33–41. [CrossRef]

9. Cao, Y.; Gong, Y.F.; Zhang, X.R. Impact of ventilation design on the precooling effectiveness of horticultural produce-a review.
Food Qual. Saf. 2020, 4, 29–40. [CrossRef]

10. Liu, X.; Nan, X. Improvement on characteristics of air flow field in cold storage with uniform air supply duct. Trans. Chin. Soc.
Agric. Eng. 2016, 32, 91–96. (In Chinese)

11. Chourasia, M.K.; Goswami, T.K. Three dimensional modeling on airflow, heat and mass transfer in partially impermeable
enclosure containing agricultural produce during natural convective cooling. Energy Convers. Manag. 2007, 48, 2136–2149.
[CrossRef]

12. Mirade, P.S.; Kondjoyan, A.; Daudin, J.D. Three-dimensional CFD calculations for designing large food chillerq s. Comput.
Electron. Agric. 2002, 34, 67–88. [CrossRef]

13. Mulobe, N.J.; Huan, Z. Energy efficient technologies and energy saving potential for cold rooms. In Proceedings of the 2012
Proceedings of the 9th Industrial and Commercial Use of Energy Conference, Cape Town, South Africa, 15–16 August 2012; pp.
157–163.

14. Praeger, U.; Jedermann, R.; Sellwig, M.; Neuwald, D.A.; Hartgenbusch, N.; Borysov, M.; Truppel, I.; Scaar, H.; Geyer, M. Airflow
distribution in an apple storage room. J. Food Eng. 2020, 269, 109746. [CrossRef]

15. Ghiloufi, Z.; Khir, T. CFD modeling and optimization of pre-cooling conditions in a cold room located in the South of Tunisia and
filled with dates. J. Food Sci. Technol. 2019, 56, 3668–3676. [CrossRef]

16. Mostafa, E.; Lee, I.B.; Song, S.H.; Kwon, K.S.; Seo, I.H.; Hong, S.W.; Hwang, H.S.; Bitog, J.P.; Han, H.T. Computational fluid
dynamics simulation of air temperature distribution inside broiler building fitted with duct ventilation system. Biosyst. Eng. 2012,
112, 293–303. [CrossRef]

17. Parpas, D.; Amaris, C.; Tassou, S.A. Investigation into air distribution systems and thermal environment control in chilled food
processing facilities. Int. J. Refrig. 2018, 87, 47–64. [CrossRef]

18. Wang, X.F.; Fan, Z.Y.; Li, B.G.; Liu, E.H. Variable air supply velocity of forced-air precooling of iceberg lettuces: Optimal cooling
strategies. Appl. Therm. Eng. 2021, 187, 116484. [CrossRef]

19. Wells, C.M.; Amos, N.D. Design of air distribution systems for closed greenhouses. In Acta Horticulturae 361: International
Symposium on New Cultivation Systems in Greenhouse; ISHS: Leuven, Belgium, 1994; pp. 93–104.

20. Weigand, B.; Spring, S. Multiple Jet Impingement—A Review. In TURBINE-09. Proceedings of International Symposium on Heat
Transfer in Gas Turbine Systems; Begel House Inc.: Danbury, CT, USA, 2011; pp. 1–36.

21. Xie, L.N.; Wang, C.Y.; Ding, L.Y.; Gui, Z.Y.; Zhang, L.; Shi, Z.X.; Li, B.; Chuntao, J. Heat stress alleviation for dairy cows housed in
an open-sided barn by cooling fan and perforated air ducting (PAD) system. Int. J. Agric. Biol. Eng. 2017, 10, 1–10. [CrossRef]

22. Wu, C.; Cheng, R.; Fang, H.; Yang, Q.; Zhang, C. Simulation and optimization of air tube ventilation in plant factory based on
CFD. J. China Agric. Univ. 2021, 26, 78–87. (In Chinese)

23. Gladyszewska-Fiedoruk, K.; Demianiuk, A.B.; Gajewski, A.; Olow, A. Measurement of velocity distribution for air flow through
perforated plastic foil ducts. Energy Build. 2011, 43, 374–378. [CrossRef]

24. Parpas, D.; Amaris, C.; Tassou, S.A. Experimental investigation and modelling of thermal environment control of air distribution
systems for chilled food manufacturing facilities. Appl. Therm. Eng. 2017, 127, 1326–1339. [CrossRef]

25. Guo, Y.; Liu, B.; Shen, S. Study on pre-cooling of fruit and vegetable in mini-cold storage. J. Therm. Sci. Technol. 2005, 4, 118–121.
(In Chinese)

26. Norton, T.; Sun, D.-W.; Grant, J.; Fallon, R.; Dodd, V. Applications of computational fluid dynamics (CFD) in the modelling and
design of ventilation systems in the agricultural industry: A review. Bioresour. Technol. 2007, 98, 2386–2414. [CrossRef]

27. Li, Y.; Nielsen, P.V. Commemorating 20 years of Indoor Air: CFD and ventilation research. Indoor Air 2011, 21, 442–453. [CrossRef]
[PubMed]

28. Hoang, M.L.; Verboven, P.; De Baerdemaeker, J.; Nicolaï, B.M. Analysis of the air flow in a cold store by means of computational
fluid dynamics. Int. J. Refrig. 2000, 23, 127–140. [CrossRef]

29. Nahor, H.B.; Hoang, M.L.; Verboven, P.; Baelmans, M.; Nicolaï, B.M. CFD model of the airflow, heat and mass transfer in cool
stores. Int. J. Refrig. 2005, 28, 368–380. [CrossRef]

30. Moureh, J.; Tapsoba, M.; Flick, D. Airflow in a slot-ventilated enclosure partially filled with porous boxes: Part I—Measurements
and simulations in the clear region. Comput. Fluids 2009, 38, 194–205. [CrossRef]

31. Moureh, J.; Tapsoba, M.; Flick, D. Airflow in a slot-ventilated enclosure partially filled with porous boxes: Part II—Measurements
and simulations within porous boxes. Comput. Fluids 2009, 38, 206–220. [CrossRef]

32. Shen, J.; Liu, X.; Wang, X.; Qi, H. Numerical simulation on flow field in jacketed ice—Temperature storage. Refrigeration 2009, 37,
49–53, 57.

33. Moureh, J.; Flick, D. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets.
Int. J. Refrig. 2004, 27, 464–474. [CrossRef]

34. Moureh, J.; Tapsoba, S.; Derens, E.; Flick, D. Air velocity characteristics within vented pallets loaded in a refrigerated vehicle with
and without air ducts. Int. J. Refrig. 2009, 32, 220–234. [CrossRef]

35. Zhang, Y.; Kacira, M.; An, L. A CFD study on improving air flow uniformity in indoor plant factory system. Biosyst. Eng. 2016,
147, 193–205. [CrossRef]

https://doi.org/10.1016/j.jfoodeng.2008.03.026
https://doi.org/10.1093/fqsafe/fyaa004
https://doi.org/10.1016/j.enconman.2006.12.018
https://doi.org/10.1016/S0168-1699(01)00180-6
https://doi.org/10.1016/j.jfoodeng.2019.109746
https://doi.org/10.1007/s13197-019-03812-8
https://doi.org/10.1016/j.biosystemseng.2012.05.001
https://doi.org/10.1016/j.ijrefrig.2017.10.019
https://doi.org/10.1016/j.applthermaleng.2020.116484
https://doi.org/10.25165/j.ijabe.20171006.3135
https://doi.org/10.1016/j.enbuild.2010.09.029
https://doi.org/10.1016/j.applthermaleng.2017.08.134
https://doi.org/10.1016/j.biortech.2006.11.025
https://doi.org/10.1111/j.1600-0668.2011.00723.x
https://www.ncbi.nlm.nih.gov/pubmed/21585552
https://doi.org/10.1016/S0140-7007(99)00043-2
https://doi.org/10.1016/j.ijrefrig.2004.08.014
https://doi.org/10.1016/j.compfluid.2008.02.006
https://doi.org/10.1016/j.compfluid.2008.02.007
https://doi.org/10.1016/j.ijrefrig.2004.03.003
https://doi.org/10.1016/j.ijrefrig.2008.06.006
https://doi.org/10.1016/j.biosystemseng.2016.04.012


Sustainability 2024, 16, 3119 23 of 23

36. ANSYS. User Guide; Release 12; ANSYS: Lebanon, NH, USA, 2009.
37. Kim, J.-B.; Lee, D.-S.; Choin, D.-W.; Pyun, Y.-R. Thermal Conductivity of Petiole Tissue of Chinese Cabbage. Korean J. Food Sci.

Technol. 1991, 23, 325–329.
38. Becker, B.R.; Misra, A.; Fricke, B.A. Bulk refrigeration of fruits and vegetables part I: Theoretical considerations of heat and mass

transfer. HVAC R Res. 1996, 2, 122–134. [CrossRef]
39. WFLO. WFLO Commodity Storage Manual Cabbage; WFLO: Farmville, VA, USA, 2018.
40. Roache, P.J. Perspective: A method for uniform reporting of grid refinement studies. J. Fluids Eng. Trans. ASME 1994, 116, 405–413.

[CrossRef]
41. Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289.

[CrossRef]
42. Thompson, J.F.; Mitchell, F.G.; Rumsey, R.T.; Kasmire, R.F.; Crisosto, C.H. Commercial Cooling of Fruits, Vegetables, and Flowers,

Revised ed.; Regents of the University of California: Oakland, CA, USA, 2008.
43. Dehghannya, J.; Ngadi, M.; Vigneault, C. Mathematical modeling of airflow and heat transfer during forced convection cooling of

produce considering various package vent areas. Food Control 2011, 22, 1393–1399. [CrossRef]
44. Chang, J.C.; Hanna, S.R. Air quality model performance evaluation. Meteorol. Atmos. Phys. 2004, 87, 167–196. [CrossRef]
45. Tong, X.; Hong, S.W.; Zhao, L. CFD modelling of airflow pattern and thermal environment in a commercial manure-belt layer

house with tunnel ventilation. Biosyst. Eng. 2019, 178, 275–293. [CrossRef]
46. Küçüktopcu, E.; Cemek, B.; Simsek, H.; Ni, J.Q. Computational Fluid Dynamics Modeling of a Broiler House Microclimate in

Summer and Winter. Animals 2022, 12, 867. [CrossRef]
47. Parpas, D.; Amaris, C.; Sun, J.; Tsamos, K.M.; Tassou, S.A. Numerical study of air temperature distribution and refrigeration

systems coupling for chilled food processing facilities. Energy Procedia 2017, 123, 156–163. [CrossRef]
48. Liu, B.; Yang, Z.; Li, X.; Tan, J. Experiment on Air Distribution and Storage Effects. J. Tianjin Univ. 2005, 38, 897–900.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10789669.1996.10391338
https://doi.org/10.1115/1.2910291
https://doi.org/10.1016/0045-7825(74)90029-2
https://doi.org/10.1016/j.foodcont.2011.02.019
https://doi.org/10.1007/s00703-003-0070-7
https://doi.org/10.1016/j.biosystemseng.2018.08.008
https://doi.org/10.3390/ani12070867
https://doi.org/10.1016/j.egypro.2017.07.247

	Introduction 
	Materials and Methods 
	The Study of Cold Storage Facilities 
	Alternative Air Supply Systems 
	Development of the CFD Model 
	Computational Domains 
	Preconditions and Assumptions 
	Model Configurations 
	Boundary Conditions 
	Simulation Data Post-Processing and Evaluation 
	Field Measurement 
	Model Validation 


	Results 
	Model Validation 
	Precooling Performance Comparison 
	Airflow Patterns under Four Air Supply Systems 

	Discussion 
	Conclusions 
	References

