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Abstract: In South Africa, the agricultural sector is a crucial pillar of the economy, with the livestock
and grain industries playing significant roles in ensuring food security, fostering economic growth,
and providing employment opportunities, particularly in rural areas. This research addresses the
relatively unexplored relationship between the livestock and grain industries in South Africa. This
study employs a comprehensive approach using a VAR/VECM framework alongside VECM Granger
causality tests, Toda Yamamoto causality tests, impulse response functions, and variance decom-
position analysis. The main findings of this study demonstrate a long-run relationship among the
study variables, with consistently low error correction terms indicating slow short-term adjustments.
Significant long-run relationships were observed between grain feed prices and livestock prices,
where yellow maize and soybean prices affect live weaner prices, while beef carcass prices influence
yellow maize prices. Overall, the results highlight the pivotal role that yellow maize plays as a link
between the South African livestock and grain markets. The study concluded that policy formulation
for the South African agricultural sector must consider the interconnected nature of the grain and
livestock markets to achieve sustainable and effective outcomes.

Keywords: econometric analysis; Toda–Yamamoto causality; South Africa; food security; grain
market; livestock market; price transmission

1. Introduction

The South African agricultural sector, while modest in its overall contribution to the
national economy, plays a pivotal role in ensuring accessible food and fostering economic
growth, and serves as a significant employment source, particularly in rural areas [1].
The sector’s diversity, encompassing field crops, horticulture, and animal production,
significantly shapes the nation’s food security landscape. According to DALRRD [1], the
livestock industry is a dominant contributor, constituting 41.7% of South Africa’s total
agricultural gross value, followed closely by field crops and horticulture, which contribute
31.5% and 26.8%, respectively.

The interconnections between livestock and field crops in South Africa are notable,
with ties established through supply and demand dynamics in feed-related channels. Field
crops like maize and soybeans are essential feed sources for the livestock industry. Ac-
cording to AFMA [2], livestock feeds in South Africa mainly consist of maize (51.22%) and
various oilcake (20.63%), with soybean oilcake contributing around 71% to the total oilcake
percentage. Furthermore, NAMC [3] indicated that approximately 70% of South Africa’s
yellow maize demand during the 2022–2023 marketing year was attributed to the livestock
industry. In the same marketing year, 9% of the total demand for soybeans in South Africa
was attributed to full-fat soybeans, while 77% was attributed to soybean oilcake, both es-
sential components in livestock feed. The statistics presented strongly suggest a significant
interdependence between the grain and livestock industries in South Africa, indicating a
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noteworthy relationship that is still relatively unexplored in the literature. According to
Gardebroek et al. [4], the close interconnection among agricultural commodities stems from
their roles as substitutes in demand, common input costs, competition for limited natural
resources, and access to shared market information. Understanding the livestock and grain
industry relationship is crucial for ensuring food security, supporting economic growth,
and promoting sustainable agricultural and food systems.

One crucial dimension in considering the various aspects of food security involves
examining the inter-price relations within commodity markets [5]. Surging price spillovers
have the potential to lead to high inflation rates, large trade deficits, and unfavorable
macroeconomic environments, especially in developing economies [6]. A thorough un-
derstanding of commodity price spillovers is essential for navigating global markets [7],
predicting trends [8], managing financial risks [9,10], and fostering sustainable agricultural
practices [11] to enhance economic resilience and food security overall. The importance of
investigating price and volatility transmission dynamics across diverse commodity markets
is evident based on the attention it has consistently received in the literature over time.

However recent black swan events such as the COVID-19 pandemic and the Russia–
Ukraine invasion have renewed interest in commodity price volatility and dynamic
spillovers [10–17]. This renewed interest underscores the importance of further inves-
tigating price and volatility transmission dynamics across diverse commodity markets.
Notably, studies in South Africa have examined various aspects of price transmissions
over time, encompassing both vertical and horizontal price spillover dynamics within the
agricultural sector.

Moreover, complementary to this broader examination, studies have specifically
explored vertical price transmissions within South African value chains. For instance,
Alemu [18] examined the relationship between producer and retail markets within South
Africa’s food market. Similarly, research has investigated vertical transmission within key
sectors such as the South African poultry industry [19], providing valuable insights into
the interactions between different stages of production and distribution. Additionally, a
study conducted by Lombaard [20] explored the South African beef value chain, offering
further understanding of the vertical transmission mechanisms within the beef sector. In
addition, Mosese [21] specifically examined vertical transmission in the South African
potato value chain, while Louw [22] investigated price transmission in wheat-to-bread and
maize-to-maize meal value chains.

In contrast, other studies have focused on horizontal price spillovers, exploring how
price changes among related products influence one another within the same level of
the supply chain. Kirsten [23] examined how international commodity markets impact
local prices in South Africa, specifically investigating the dynamic relationships between
global maize and wheat prices and their counterparts in South Africa. Abidoye and
Labuschagne [24] studied the transmission of world maize prices to South African maize
prices. Pierre and Kaminski [25] focused on price transmission in South Africa’s maize
markets and those of other African countries. Mokumako and Baliyan [26] investigated
the price dynamics between the South African and Botswanan maize markets. Myers [27]
studied maize price transmission between South Africa and Zambia. Mphateng [28]
assessed the transmission prices between world wheat prices and South African wheat
prices. Ramoroka [29] investigated inter-commodity producers’ price transmission between
wheat and maize in South Africa. Pierre and Kaminski [25] explored short-run price shock
propagation among Sub-Saharan African maize markets, of which South Africa formed
a part.

Despite the aforementioned research efforts directed at understanding the various
dimensions of price transmissions within South Africa’s agricultural sector, a significant
gap in the literature is evident. There remains a significant gap regarding the dynamics of
important grain feed prices and their impact on the livestock market in South Africa. Given
the interconnected nature of South Africa’s livestock and grain industry and the possible
consequences of significant price spillovers, it is essential to develop a comprehensive
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understanding of the inter-price dynamics of these markets. Failure to understand the rela-
tionship between South Africa’s grain and livestock markets hinders effective policymaking,
strategic planning by industry stakeholders, and academic advancements within the South
African agricultural context. Therefore, considering this gap, the objective of this study is
to provide a comprehensive understanding of the interdependence and dynamics between
the livestock and grain markets in South Africa. The primary research question guiding our
investigation is: What are the dynamics of price transmissions between these two markets,
and how can understanding these dynamics contribute to enhancing market efficiency
and stability within the South African agricultural context? The findings obtained from
our research are anticipated to be valuable for informing decision-making and enhancing
understanding of the dynamics within the South African agricultural sector. Specifically, by
investigating the dynamics of price transmissions between these key markets, our research
not only addresses a critical knowledge gap but also provides valuable insights that directly
contribute to improving South Africa’s food security landscape. Understanding price
dynamics in these sectors helps identify potential disruptions or vulnerabilities that could
affect food availability and affordability, ultimately impacting food security.

The paper is structured as follows: Section 2 presents the methods and data utilized in
the study. Section 3 discusses the empirical results. In Section 4, the findings are analyzed
and discussed. Finally, Section 5 provides the concluding remarks.

2. Materials and Methods
2.1. Data

This study utilized secondary data comprising six distinct time series of weekly prices.
The data include weekly spot prices (R/Kg) for live weaners and carcass prices for A2/A3
lamb and beef obtained from the Red Meat Producers Organization (RPO). Additionally,
daily spot prices (R/ton) for maize and soybeans were sourced from the Johannesburg Stock
Exchange (JSE) and the South African Grain Information Services (SAGIS). In order to ensure
that the livestock and grain prices were in the same interval, daily grain prices were aggregated
into weekly prices. The datasets cover the period from January 2018 to October 2023.

2.2. Methods

The data collected for this research were analyzed in the STATA version 15 econometric
package [30]. To achieve the objectives of this study, a multivariate time series approach was
applied to the model to explain the interactions among the variables. Given the time-dependent
nature of the data and the need to capture both short-term dynamics and long-run equilibrium
relationships, we employed a vector autoregressive (VAR) and vector error correction model
(VECM) framework. An overview of the complete methodology is presented in Figure 1.
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2.3. Unit Root Test

This study applied the augmented Dickey–Fuller (ADF) test to assess the stationarity
properties of the time series under investigation. Dickey and Fuller [32] proposed the
ADF test as an extension of the original standard Dickey and Fuller (DF) test [33]. The
standard DF test assumes that the errors in the model are serially uncorrelated. However,
in the presence of autocorrelation, the DF test could lead to incorrect conclusions. The ADF
test addresses autocorrelation by assuming the series will follow an AR(p) process. The
ADF test extends the standard DF test by introducing p-lagged-difference terms of the
dependent variable. The ADF test is based on ordinary least squares (OLS) and estimated
by Equation (1):

∆Xt = β0 + δXt−1 + β2T + ∑k
i=1 γi∆Xt−i + et (1)

where ∆Xt is the first difference of the variable X at time t, T is the linear deterministic time
trend, β2 is the coefficient associated with time trend t, k is the order of augmentation of
the test, et is the white noise error term, β0 is the intercept term, and γi is the coefficients
associated with each lagged difference. The null hypothesis implies the presence of a unit
root or non-stationarity in the time series (δ = 0), while the alternative hypothesis (δ < 0)
suggests the absence of a unit root. The rejection of the null hypothesis indicates that the
series is non-stationary, and vice-versa.

2.4. Cointegration Test

If a unit root is confirmed in the variables, then the next step is to determine whether
there is a long-run equilibrium association among the variables. Cointegration is a key
concept when dealing with non-stationary time series. If variables are cointegrated, they
share a long-term relationship despite exhibiting short-term fluctuations, even if each
variable is considered non-stationary. The implementation of the Engle–Granger cointegra-
tion test [34] is relatively straightforward. However, it is not well suited for assessing the
presence of more than one cointegrating vector. If the data involve multiple cointegrating
relationships, relying solely on the Engle–Granger test may yield inaccurate results. Given
the limitations of the Engle–Granger cointegration test, particularly its suitability for ex-
amining multiple cointegrating vectors, this study employed the Johansen multivariate
cointegration test [34,35]. The Johansen cointegration test allows for the identification of
multiple cointegrating vectors in a multivariate system. The Johansen cointegration test
begins with the estimation of a VAR model. Consider the matrix form of a VAR(p) model
in Equation (2):


Yt
Xt
...

Zt


︸ ︷︷ ︸

Yt

=


u
u
...
u


︸︷︷︸

u

+


β
(1)
11 β

(1)
12 · · · β

(1)
1K

β
(1)
21 β

(1)
22 · · · β

(1)
1K

...
...

. . .
...

β
(1)
K1 β

(1)
K2 · · · β

(1)
KK


︸ ︷︷ ︸

β1

+


Yt−1
Xt−1

...
Zt−1


︸ ︷︷ ︸

Yt−1

+ · · ·+


β
(p)
11 β

(p)
12 · · · β

(p)
1K

β
(p)
21 β

(p)
22 · · · β

(p)
1K

...
...

. . .
...

β
(p)
K1 β

(p)
K2 · · · β

(p)
KK


︸ ︷︷ ︸

βp


Yt−p
Xt−p

...
Zt−p


︸ ︷︷ ︸

Yt−p

+


eY,t
eX,t

...
eZ,t


︸ ︷︷ ︸

et

(2)

In Equation (2), accents have been added beneath each matrix component to signify specific
elements in the system. This visual notation aids clarity, distinguishing variables, coeffi-
cients, and lagged terms. To facilitate a clear understanding of the Johansen cointegration
test derivation, Equation (2) can be rewritten in the matrix equation format:

Yt = u + β1Yt−1 + · · ·+ βpYt−p + et (3)

where Yt is an n× 1 vector of variables that are integrated from order one (denoted as I(1)),
t is the time index, et is an n× 1 vector of innovations, βp is the coefficient matrix associated
with the maximum lag order p, and u is an n× 1 vector of constant terms. Yt−1. . ., Yt−p
are an n× 1 vector representing the lagged endogenous variables at times t− 1, . . ., t− p.
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According to the Engle–Granger representation theorem [36], if the variables in Equation
(3) are cointegrated, Equation (3) can be rewritten as a VECM in the form of:

∆Yt = u + ∏ Yt−1 + · · ·+ ∑p−1
i=1 Γi∆Yt−p + et (4)

where ∏ =∑
p
i=1 Ai − 1 and Γi = ∑

p
j=i+1 Aj. Furthermore, ∏ represents the matrix of

cointegrating vectors. Johansen’s cointegration test estimates the cointegration rank (∏),
indicating the number of cointegrating vectors in the system. The cointegration rank
matrix (∏) can be decomposed into ∏ = αβ, where α measures the speed at which the
variables adjust to their equilibrium (adjustment parameter) and β represents the long-
run cointegration relationships between variables. Furthermore, the matrices Γi are the
coefficients associated with the lagged differences (∆Yt−p) and represent the short-run
adjustment parameters. Johansen’s test employs a maximum likelihood procedure and
uses the trace (Jtrace) and maximum eigenvalue (Jmax) statistics to draw inferences about
the existence and quantity of cointegrating vectors within a system, which is expressed as:

Jtrace = −T∑n
i=r+1 ln

(
1− λ̂i

)
(5)

Jmax = −Tln
(
1− λ̂i

)
(6)

where r is the number of cointegrated vectors, λ̂i is the estimated value for the ith-order
eigenvalue from the ∏ matrix, T is the total sample size, and n is the total number of
variables in the system. The trace test statistic tests the null hypothesis that the rank (∏) = r
versus the alternative that the rank (∏) > r. The trace statistic test is a sequential test that
starts with the null hypothesis of r = 0 against the alternative hypothesis that the rank is
greater than zero. The process is repeated, updating the null hypothesis to higher ranks
until it can no longer be rejected. The maximum eigenvalue test, on the other hand, tests
the null hypothesis that the rank (∏) = r versus the alternative that the rank (∏) = r + 1.
The maximum eigenvalue test is also a step-by-step procedure, where the null hypothesis
starts with r = 0 against the alternative that r = 1. Similar to the trace statistic, this process
is repeated, increasing r by one at each step until the null hypothesis cannot be rejected. In
both tests, the critical values are compared to the calculated test statistics to make decisions
about the presence and number of cointegrating relationships.

2.5. Vector Error Correction Model (VECM)

The results from the Johansen cointegration test provide insights into the cointegration
structure of the variables in the system and whether to fit a VAR or VECM model. If
cointegration is present, indicating a long-term equilibrium, a VECM is employed since
a VECM captures both short-term dynamics and long-term equilibrium equations. If no
cointegration is detected, it suggests no stable long-term relationship among variables in
the system. In such a case, a VAR model in first differences is a suitable choice since VAR
models capture the short-term dynamics and interactions among variables. In the absence
of cointegration, the matrix form a VAR(p) for the study variables can be presented as:

∆BEEF
∆LAMB

∆WEANER
∆WMAIZE
∆YMAIZE

∆SOYA

 =



C1
C2
C3
C4
C5
C6

+
p

∑
i=1

∆



β1 1,i β1 2,i β1 3,i β1 4,i β1 5,i β1 6,i
β2 1,i β2 2,i β2 3,i β2 4,i β2 5,i β2 6,i
β3 1,i β3 2,i β3 3,i β3 4,i β3 5,i β3 6,i
β4 1,i β4 2,i β4 3,i β4 4,i β4 5,i β4 6,i
β5 1,i β5 2,i β5 3,i β5 4,i β5 5,i β5 6,i
β6 1,i β6 2,i β6 3,i β6 4,i β6 5,i β6 6,i

×


BEEFt−i
LAMBt−i

WEANERt−i
WMAIZEt−i
YMAIZEt−i

SOYAt−i

+



ϑ1
ϑ2
ϑ3
ϑ4
ϑ5
ϑ6

 (7)

where ∆ is the difference operator; C1, C2. . ..C6 are constant values associated with each
study variable; p indicates the optimal lag length; and ϑ1, ϑ2, . . . ϑ6 are the random error
terms. The confirmation of cointegration among a system of variables indicates a long-term
relationship among them. In such a case, the VECM is estimated due to its capabilities
in estimating the short- and long-run coefficients. Essentially, the VECM can assist in
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analyzing long-run equilibrium relationships among variables and the short-run deviations
from this equilibrium. According to Levendis [37], one key strength of a VECM is that
it is convenient to combine the short-term predictive power of VARs with the long-term
predictive power of ECMs. The VECM specification for the study variables is structured
as follows:

∆BEEF
∆LAMB

∆WEANER
∆WMAIZE
∆YMAIZE

∆SOYA

 =



C1
C2
C3
C4
C5
C6

+
p
∑

i=1
∆



β1 1,i β1 2,i β1 3,i β1 4,i β1 5,i β1 6,i
β2 1,i β2 2,i β2 3,i β2 4,i β2 5,i β2 6,i
β3 1,i β3 2,i β3 3,i β3 4,i β3 5,i β3 6,i
β4 1,i β4 2,i β4 3,i β4 4,i β4 5,i β4 6,i
β5 1,i β5 2,i β5 3,i β5 4,i β5 5,i β5 6,i
β6 1,i β6 2,i β6 3,i β6 4,i β6 5,i β6 6,i

×


BEEFt−i
LAMBt−i

WEANERt−i
WMAIZEt−i
YMAIZEt−i

SOYAt−i

+



γ1
γ2
γ3
γ4
γ5
γ6

× [ECTt−1] +



ϑ1
ϑ2
ϑ3
ϑ4
ϑ5
ϑ6



(8)

Here, ECTt−1 represents the error correction term lagged by one period, and γ1, γ2,
. . .. γ6 are the coefficients of the error term specifying the tendency for the endogenous
variables to return to long-run equilibrium. It is crucial for the error correction term
(ECTt−1) to be negative and significant, as it signifies the presence of a dynamic adjustment
mechanism that effectively restores equilibrium following short-term deviations.

2.6. Causality Tests

After determining the cointegration relationship between variables, a Granger causal-
ity test was conducted to establish the causal relationships between the study variables.
The Granger causality test [38] has been widely applied to assess whether past values of
one variable contribute useful information to predicting another variable. According to
Johansen [36], if the Granger causality test is conducted on a VAR model in first differ-
ences while the considered variables are cointegrated, then the inferences drawn from the
causality test might be inaccurate. Therefore, in the presence of cointegration, the Granger
causality test is applied to the VECM framework described in the previous section. From
Equation (8), long-run causality is indicated by the significance of the one-period lagged
error correction term, while the significance of a joint F-test on the sum of the lagged
explanatory variables represents the short-run causality.

Toda and Yamamoto [39] recommended against applying the Granger causality test to
a VECM model because it might give incorrect results due to biases in preliminary tests, es-
pecially related to stationarity and cointegration. In response to these limitations, Toda and
Yamamoto [39] proposed a causality test that is robust to the integration and cointegration
properties of any or all of the variables in a given system. This study therefore first applied
the standard Granger causality test on the VECM and subsequently incorporated the Toda
and Yamamoto [39] causality test as a complementary assessment test.

The Toda and Yamamoto [39] procedure entails estimating an augmented VAR model.
The augmentation is achieved by extending the VAR model’s lag order by adding extra
lag(s). The additional lags to be added are determined by the maximum order of integration
(dmax) among the variables considered within the system. The augmented lags (dmax) are
then combined with the optimal lag order (h) identified for the variables in the VAR system.
The Toda and Yamamoto [39] causality test for a bivariate (Y, X) relationship is presented
as follows:

Yt = µ + ∑h
i=1 β1iYt−i + ∑h+dmax

i=h+1 β2iYt−i + ∑h
i=1 ∁1iXt−i + ∑h+dmax

i=h+1 ∁2iXt−i + ε1t (9)

Xt = µ + ∑h
i=1 α1iXt−1 + ∑h+dmax

i=h+1 α2iXt−1 ++∑h
i=1 σ1iYt−1 + ∑h+dmax

i=h+1 σ2iYt−1 + ε2t (10)
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where dmax is the maximum order of integration of the variables in the system. For example,
if Yt is integrated of order zero (I(0)) and Xt Is integrated of order 2 (I(2)), then the maximum
order is 2, denoted as dmax = 2. h is the optimal lag length of the variables, with ε1t and
ε2t representing the white noise error terms. A modified Wald test is then applied to
the first h VAR coefficient matrix using the standard chi-square (χ2) statistics to test for
restrictions on the parameters of the VAR(h) model, whereas the coefficient matrices for
the last dmax lagged vectors in the model are ignored. The null hypothesis assumes no
Granger causality, whereas the alternative hypothesis suggests the presence of Granger
causality. For Equation (9), the null hypothesis H0 posits that Xt does not Granger cause
Yt, expressed as ∑h

i=1 ∁1i = 0. Conversely, the alternative hypothesis H1 suggests that Xt

Granger causes Yt if ∑h
i=1 ∁1i ̸= 0. Similarly, for Equation (10), the null hypothesis (H0)

asserts that Yt does not Granger cause Xt, stated as ∑h
i=1 σ1i = 0, whereas the alternative

hypothesis (H1) asserts that Yt granger causes Xt if ∑h
i=1 σ1i ̸= 0. Specifying the Toda and

Yamamoto [39] causality test for our study variables, the augmented VAR model takes the
following structure:

BEEF
LAMB

WEANER
WMAIZE
YMAIZE

SOYA

 =



C1
C2
C3
C4
C5
C6

+ ∑
p
i=1



β1 1,i β1 2,i β1 3,i β1 4,i β1 5,i β1 6,i
β2 1,i β2 2,i β2 3,i β2 4,i β2 5,i β2 6,i
β3 1,i β3 2,i β3 3,i β3 4,i β3 5,i β3 6,i
β4 1,i β4 2,i β4 3,i β4 4,i β4 5,i β4 6,i
β5 1,i β5 2,i β5 3,i β5 4,i β5 5,i β5 6,i
β6 1,i β6 2,i β6 3,i β6 4,i β6 5,i β6 6,i

×


BEEFt−i
LAMBt−i

WEANERt−i
WMAIZEt−i
YMAIZEt−i

SOYAt−i

+

∑
p+dmax
i=p+1



∅1 1,i ∅1 2,i ∅1 3,i ∅1 4,i ∅1 5,i ∅1 6,i
∅2 1,i ∅2 2,i ∅2 3,i ∅2 4,i ∅2 5,i ∅2 6,i
∅3 1,i ∅3 2,i ∅3 3,i ∅3 4,i ∅3 5,i ∅3 6,i
∅4 1,i ∅4 2,i ∅4 3,i ∅4 4,i ∅4 5,i ∅4 6,i
∅5 1,i ∅5 2,i ∅5 3,i ∅5 4,i ∅5 5,i ∅5 6,i
∅6 1,i ∅6 2,i ∅6 3,i ∅6 4,i ∅6 5,i ∅6 6,i

×


BEEFt−i
LAMBt−i

WEANERt−i
WMAIZEt−i
YMAIZEt−i

SOYAt−i

+



ε1t
ε2t
ε3t
ε4t
ε5t
ε6t



(11)

In order to assess the causal relationships between the study variables, we imposed a
set of restrictions on the augmented VAR model, shown in Equation (11). Table 1 presents
the specifications for both the null and alternative hypotheses, outlining the constraints
imposed on the matrix coefficients as defined in Equation (11).

Table 1. Toda and Yamamoto causality test hypotheses for the study variables.

Direction of
Causality Tested Null Hypothesis (H0) Alternative Hypothesis

(H1)

BEEF = f(LAMB, WEANER, WMAIZE, YMAIZE, SOYA)

BEEF ← LAMB β1 2,i = 0 for all i ≤ p β1 2,i ̸= 0 for all i ≤ p

BEEF ← WEANER β1 3,i = 0 for all i ≤ p β1 3,i ̸= 0 for all i ≤ p

BEEF ← WMAIZE β1 4,i = 0 for all i ≤ p β1 4,i ̸= 0 for all i ≤ p

BEEF ← YMAIZE β1 5,i = 0 for all i ≤ p β1 5,i ̸= 0 for all i ≤ p

BEEF ← SOYA β1 6,i = 0 for all i ≤ p β1 6,i ̸= 0 for all i ≤ p

LAMB = f(BEEF, WEANER, WMAIZE, YMAIZE, SOYA)

LAMB← BEEF β2 1,i = 0 for all i ≤ p β2 1,i ̸= 0 for all i ≤ p

LAMB← WEANER β2 3,i = 0 for all i ≤ p β2 3,i ̸= 0 for all i ≤ p

LAMB← WMAIZE β2 4,i = 0 for all i ≤ p β2 4,i ̸= 0 for all i ≤ p

LAMB← YMAIZE β2 5,i = 0 for all i ≤ p β2 5,i ̸= 0 for all i ≤ p

LAMB← SOYA β2 6,i = 0 for all i ≤ p β2 6,i ̸= 0 for all i ≤ p

WEANER = f(BEEF, LAMB, WMAIZE, YMAIZE, SOYA)

WEANER← BEEF β3 1,i = 0 for all i ≤ p β3 1,i ̸= 0 for all i ≤ p

WEANER← LAMB β3 2,i = 0 for all i ≤ p β3 2,i ̸= 0 for all i ≤ p

WEANER← WMAIZE β3 4,i = 0 for all i ≤ p β3 4,i ̸= 0 for all i ≤ p

WEANER← YMAIZE β3 5,i = 0 for all i ≤ p β3 5,i ̸= 0 for all i ≤ p

WEANER← SOYA β3 6,i = 0 for all i ≤ p β3 6,i ̸= 0 for all i ≤ p
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Table 1. Cont.

Direction of
Causality Tested Null Hypothesis (H0) Alternative Hypothesis

(H1)

WMAIZE = f(BEEF, LAMB, WEANER, YMAIZE, SOYA)

WMAIZE← BEEF β4 1,i = 0 for all i ≤ p β4 1,i ̸= 0 for all i ≤ p

WMAIZE← LAMB β4 2,i = 0 for all i ≤ p β4 2,i ̸= 0 for all i ≤ p

WMAIZE← WEANER β4 3,i = 0 for all i ≤ p β4 3,i ̸= 0 for all i ≤ p

WMAIZE← YMAIZE β4 5,i = 0 for all i ≤ p β4 5,i ̸= 0 for all i ≤ p

WMAIZE← SOYA β4 6,i = 0 for all i ≤ p β4 6,i ̸= 0 for all i ≤ p

YMAIZE = f(BEEF, LAMB, WEANER, WMAIZE, SOYA)

WMAIZE← BEEF β5 1,i = 0 for all i ≤ p β5 1,i ̸= 0 for all i ≤ p

WMAIZE← LAMB β5 2,i = 0 for all i ≤ p β5 2,i ̸= 0 for all i ≤ p

WMAIZE← WEANER β5 3,i = 0 for all i ≤ p β5 3,i ̸= 0 for all i ≤ p

WMAIZE← YMAIZE β5 4,i = 0 for all i ≤ p β5 4,i ̸= 0 for all i ≤ p

WMAIZE← SOYA β5 6,i = 0 for all i ≤ p β5 6,i ̸= 0 for all i ≤ p

SOYA = f(BEEF, LAMB, WEANER, WMAIZE, YMAZ)

SOYA← BEEF β6 1,i = 0 for all i ≤ p β6 1,i ̸= 0 for all i ≤ p

SOYA← LAMB β6 2,i = 0 for all i ≤ p β6 2,i ̸= 0 for all i ≤ p

SOYA← WEANER β6 3,i = 0 for all i ≤ p β6 3,i ̸= 0 for all i ≤ p

SOYA← WMAIZE β6 4,i = 0 for all i ≤ p β6 4,i ̸= 0 for all i ≤ p

SOYA← YMAIZE β6 5,i = 0 for all i ≤ p β6 5,i ̸= 0 for all i ≤ p

Source: authors’ compilation.

2.7. Impulse Response Function

The Toda causality test only provided the direction of causality for the study period.
However, causality tests do not illustrate how each variable responds to a one-unit shock
in itself or in another variable in the system. Therefore, impulse response functions were
employed to obtain insights into the temporal patterns of responses and the persistence of
shocks in the system. Variance decomposition was be employed, as it focuses on quantifying
the relative contributions of different variables (including their past values) to the overall
variability of each variable in the system. Employing impulse response functions and
variance decomposition provides valuable information about the dynamic relationships
among the prices of BEEF, LAMB, WEANER, YMAIZE, SOYA, andWMAIZE.

3. Results
3.1. Unit Root Test

Table 2 displays the ADF tests’ outcomes on variables in their original levels and first
differences. The ADF test aims to assess the stationarity properties of time series data, a
crucial step in time series analysis. In applying the ADF test, we included four lags in our
model. In Table 2, the ADF test statistics for variables in levels (BEEF, WMAIZE, YMAIZE,
SOYA, WEANER, and LAMB) suggest non-stationarity, as their test statistic in absolute
values are below the critical values at the 1%, 5%, and 10% levels. Notably, the first
differences (∆) of all variables exhibit highly negative ADF test statistics, which are well
above the critical values in absolute values, providing strong evidence against the presence
of unit roots (all p-values = 0.0000). The results in Table 2 suggest that the first differencing
process successfully induced stationarity in the variables, suggesting that all the variables
in the study were integrated in the order of one (I(1)).

Table 2. Augmented Dickey–Fuller test results for stationarity.

Variable Test Statistics 1% Critical 5% Critical 10% Critical MacKinnon p-Value for Z(t)

V
ar

ia
bl

es
in

Le
ve

ls

BEEF −1.320 −3.456 −2.878 −2.570 0.6199

WMAIZE −1.695 −3.456 −2.878 −2.570 0.4337

YMAIZE −1.576 −3.456 −2.878 −2.570 0.4955

SOYA −1.537 −3.456 −2.878 −2.570 0.5150
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Table 2. Cont.

Variable Test Statistics 1% Critical 5% Critical 10% Critical MacKinnon p-Value for Z(t)

WEANER −2.174 −3.456 −2.878 −2.570 0.2158

LAMB −1.971 −3.456 −2.878 −2.570 0.2994

V
ar

ia
bl

es
in

1s
t

in
D

if
fe

re
nc

es

∆BEEF −7.163 −3.456 −2.878 −2.570 0.0000

∆WMAIZE −7.450 −3.456 −2.878 −2.570 0.0000

∆YMAIZE −7.813 −3.456 −2.878 −2.570 0.0000

∆SOYA −6.954 −3.456 −2.878 −2.570 0.0000

∆WEANER −8.556 −3.456 −2.878 −2.570 0.0000

∆LAMB −7.112 −3.456 −2.878 −2.570 0.0000

Source: authors’ compilation.

3.2. VAR Lag Order Selection

In order to identify the most suitable lag order for our analysis, an optimal lag selection
was performed using multiple information criteria. The utilized information criteria encom-
pass the log-likelihood (LL), likelihood ratio (LR), degrees of freedom (df), p-value, final
prediction error (FPE), Akaike information criterion (AIC), Hannan–Quinn information
criterion (HQIC), and Schwarz Bayesian information criterion (SBIC). The outcomes of the
lag selection process are summarized in Table 3.

Table 3. Results of optimal lag selection.

Lag LL LR df p FPE AIC HQIC SBIC

0 −9011.02 1.2 × 1019 60.9258 60.9558 61.0006

1 −6953.59 4114.9 36 0 1.4 × 1013 47.2675 47.5702 47.7911 *

2 −6904.77 97.643 36 0 1.2 × 1013 47.1809 * 47.4772 * 48.1533

3 −6886.23 37.074 36 0.419 1.4 × 1013 47.2989 47.8679 48.7202

4 −6854.85 62.765 36 0.004 1.5 × 1013 47.3301 48.0788 49.2002

5 −6816.54 76.627 * 36 0 1.4 × 1013 47.3144 48.2429 49.6334

6 −6791.16 50.762 36 0.052 1.5 × 1013 47.3862 48.4943 50.154

Source: authors’ compilation. Note: * denotes the lag length that is selected as optimal according to the specified
information criterion.

Table 3 shows that lag orders 1, 2, and 5 are marked with asterisks, indicating that
these lag orders were optimal based on various information criteria. This study’s identified
optimal lag length was 2, based on the HQIC and the AIC. The robustness of the lag
selection process was ensured by examining the residuals obtained from fitting a VAR(2)
model and testing for autocorrelation using the Lagrange multiplier test. The results of
the Lagrange multiplier test in Table 4 further validate the appropriateness of the chosen
lag length.

Table 4. Lagrange multiplier test results for autocorrelation in residuals.

Lag Chi2 df Prob > Chi2

1 37.0546 36 0.42013

2 39.7888 36 0.30511
Source: authors’ compilation.
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3.3. Cointegration Test

Based on the ADF test results, all the variables were considered integrated in the order
of one (I(1)). Therefore, the next step was to test whether a long-term relationship existed
among the study variables. Based on the results in Tables 5 and 6, the Johansen cointegra-
tion test suggested a long-term relationship among the variables. However, there was a
discrepancy between the results of the trace statistic (Table 5) and the maximum eigenvalue
(Table 6) regarding the order of the cointegrating rank. The trace statistic suggested an
identified rank of 2, indicating the presence of at least two cointegrating vectors.

Table 5. Results of the Johansen cointegration test (trace).

Rank Test (Jtrace)

Hypothesized
No. of CE(s) LL Eigenvalue Trace Statistic 5% Critical Value

None −7047.4469 109.1172 94.15

At most 1 −7027.4062 0.12506 69.0357 68.52

At most 2 −7013.2121 0.09029 40.6476 * 47.21

At most 3 −7003.7265 0.06128 21.6765 29.68
Source: authors’ compilation. Note: * indicates that the trace statistic exceeds the critical value at the 5%
significance level, suggesting evidence of cointegration.

Table 6. Results of the Johansen cointegration test (maximum eigenvalue).

Rank Test (Jmax)

Hypothesized
No. of CE(s) LL Eigenvalue Max Statistic 0.05 Critical Value

None −7047.45 40.0815 39.37

At most 1 −7027.41 0.12506 28.3881 * 33.46

At most 2 −7013.21 0.09029 18.9712 27.07

At most 3 −7003.73 0.06128 11.2568 20.97
Source: authors’ compilation. Note: * indicates that the maximum statistic exceeds the critical value at the 5%
significance level, suggesting evidence of cointegration.

On the other hand, the maximum eigenvalue statistic pointed to an identified rank
of 1, implying the presence of at least one cointegrating vector. Despite the discrepancy
between the trace statistic and maximum eigenvalue discrepancy, this study relied on the
trace statistic test. The decision to rely on the trace statistic is supported by the findings of
Lüutkepohl et al. [40], who demonstrated that the trace test exhibits superior performance
and less distortion in situations with multiple cointegrating relations.

3.4. Vector Error Correction Model (VECM) Estimation

The confirmation of cointegration from the Johansen cointegration test suggests that
the variables in the system shared a long-run relationship. Therefore, the VECM was
suitable for modelling the relationship among live weaner prices, lamb and beef carcass
prices, and prices of white maize, yellow maize, and soybeans. The estimates derived from
the VECM served as an initial basis for understanding the causality among the variables,
encompassing both short-term and long-term dynamics. The estimates of the VECM are
presented in Table 7.

The VECM estimates in Table 7 indicate that the first lagged error correction term
(ECT1) in the beef (∆BEEF), lamb (∆LAMB), weaner (∆WEANER), and white maize
(∆WMAIZE) equation was negative and significant at a 1% level. The negative significant
ECT1 term implies that in the equations of beef carcass prices (∆BEEF), lamb carcass prices
(∆LAMB), live weaner prices (∆WEANER), and white maize prices (∆WMAIZE), the
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system corrected its previous week’s disequilibrium, indicating a gradual correction toward
the long-run equilibrium within the weekly time frame of the data. The magnitude of the
significant first-lagged error correction term (ECT1) coefficients varied across equations.
In the beef equation (∆BEEF), ECT1 was −0.02, implying that the system corrected the
previous week’s disequilibrium at a speed of 2% per week. Similarly, in the lamb equation
(∆LAMB), an adjustment speed of 13% per week was observed, with an ECT1 coefficient
of −0.13. Weaner (∆WEANER) demonstrated a correction speed of 7% per week, as
indicated by the significant ECT1 coefficient of −0.07. White maize (∆WMAIZE) showed
a significant ECT1 coefficient of −0.1162, suggesting a rapid adjustment of 11.62% per
week. In contrast, the yellow maize equation (∆YMAIZE) showed a non-negative and
non-statistically significant ECT1 coefficient. However, ECT2 was found to be significant
at the 1% level, with a coefficient of −0.088, implying a speed of adjustment of 8.8% per
week. In contrast, soybean (∆SOYA) did not reveal a significant adjustment in either ECT1
or ECT2.

Table 7. Summary of results of VECM in the short run.

Dependent Variables

∆BEEF ∆LAMB ∆WEANER ∆WMAIZE ∆YMAIZE ∆SOYA

In
de

pe
nd

en
tV

ar
ia

bl
es

ECT1(−1) −0.02 *** −0.13 *** −0.07 *** −0.1162 *** 2.57 3.66

ECT2(−1) 0.0007 0.001 *** 0.0004 0.006 −0.088 *** −0.07

∆BEEF(−1) −0.13 *** 0.06 0.04 1.14 11.22 −5.25

∆LAMB(−1) 0.08 *** 0.08 0.02 6.00 −0.73 −1.45

∆WEANER(−1) 0.03 −0.02 0.03 −4.86 −1.20 −8.83

∆WMAIZE(−1) 0.0003 0.001 0.0003 −0.003 0.22 *** −0.06

∆YMAIZE(−1) 0.00009 −0.003 *** −0.0002 −0.01 −0.32 *** −0.030

∆SOYA(−1) −0.00036 0.0005 0.0001 0.09 *** 0.10 *** 0.29 ***

C 0.10 0.11 0.0003 0.65 −3.66 4.66

Note: *** denote the significance at the 1% levels. Source: authors’ compilation.

Since the Johansen cointegration test indicated that two cointegrating relationships
existed among the study variables, two cointegrating relationships were specified. Table 8
shows that the Johansen identification placed four constraints. In the first cointegrating
equation (ECT1), the coefficient of live weaner prices (WEANER) was normalized to one
and lamb carcass prices were set equal to zero (dropped). The restrictions were based on
the fact that live weaners are often fed with grains such as yellow and white maize and
soybeans. The omission of lamb carcass prices aimed to narrow the focus to the relationship
between live weaner prices (WEANER) and grain prices. It is important to note that this
normalization scheme was not based on a specific economic theory but rather on a general
understanding of the feeding practices for live weaners in South Africa.

In the second cointegrating equation (ECT2), yellow maize (YMAZ) was set to unitary,
and white maize (WMAZ) was dropped (set to zero). The restrictions imposed for ECT2
were guided by AFMA [2] statistics, which indicate that roughly 50% of livestock feeds
consist of yellow maize. Additionally, the decision to drop white maize from the second
cointegrating equation was based on the higher usage of yellow maize and soybean in
livestock feeds than white maize. In the long run, elasticities were exactly identified,
and the Johansen normalization restrictions were imposed. The normalized cointegration
coefficients are shown in Table 8.

The first normalized cointegration (ECT1) equation from Table 8 can be mathematically
expressed as:

WEANER = 4.2297 + 0.820BEEF− 0.0163WMAIZE + 0.0012SOYA + 0.0106YMAIZE (12)
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Table 8. Johansen normalized cointegrating coefficients for equations ECT1 and ECT2.

Coefficient Standard Error z p > |z|

Coefficient matrix for the first lag of the error correction term (ECT1)

WEANER 1

YMAIZE −0.0106 0.0030336 −3.46 0.001

SOYA −0.0012 −2.23 0.026

WMAIZE 0.0163 0.0024367 6.72 0.000

LAMB 0 dropped

BEEF −0.8202 0.1729132 −4.74 0.000

Constant −4.22997

Coefficient matrix for the first lag of the error correction term (ECT2)

YMAIZE 1

SOYA −0.10216 0.0495584 −2.06 0.039

WMAIZE 0 dropped

LAMB −8.987657 6.306931 −1.43 0.154

BEEF −141.0689 17.73326 −7.96 0.000

WEANER 94.22544 13.88697 6.79 0.000

Constant 1938.67

Source: authors’ compilation.

Equation (12) shows that in the long run, live weaner prices (WEANER) displayed a
positive and statistically significant association with beef carcass prices (BEEF), soybean
prices (SOYA), and yellow maize prices (YMAIZE), with coefficients of 0.820, 0.0012, and
0.0106, respectively. This suggests that increased beef carcass, soybean, or yellow maize
prices positively impact live weaner prices. Conversely, the coefficient of −0.0163 for white
maize prices (WMAIZE) indicated a negative and statistically significant effect, signifying
that an increase in white maize prices is linked to a decrease in live weaner prices in the
long run. The second cointegrating (ECT2) equation derived from Table 8 is expressed as:

YMAIZE = −1938.67 + 141.0689BEEF + 8.987657LAMB + 0.10216SOYA− 94.22544WEANER (13)

The normalized cointegrating equation for yellow maize revealed that its prices were
positively and significantly related to beef carcass prices (BEEF), soybean prices (SOYA),
and live weaner prices (WEANER), denoted by the coefficients 141.0689, 0.10216, and
−94.22544, respectively. Therefore, increases in beef carcass, soybean, and live weaner
prices are associated with corresponding positive movements in yellow maize prices.
Additionally, lamb carcass prices (LAMB) had a positive but non-significant impact on
yellow maize prices in the long run.

3.5. Post-Estimation Stability Checks

In this study, we conducted a comprehensive evaluation of the fitted VECM model
by examining the serial correlation (LM test), normality test (Jarque–Bera test), and model
stability (eigenvalue stability) to ensure the validity of the statistical inferences. The
residuals were normally distributed, based on the Jarque–Bera test result in Table 9.

The Lagrange multiplier test in Table 10 shows that at the 5% level, we cannot reject
the null hypothesis that no autocorrelation existed in the residuals for any of the orders
tested. Thus, the findings suggest that there is no evidence of model misspecification.
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Table 9. Jarque–Bera test result.

H0 Chi2 p-Value

Jarque–Bera Errors are normally
distributed 105.917 0.6139

Source: authors’ compilation

Table 10. Lagrange multiplier test result.

Lag Chi2 df Prob > Chi2

1 36.4442 36 0.44800

2 37.0918 36 0.41845
Source: authors’ compilation.

To verify the stability of the specified VECM, we employed the inverse root of AR
polynomials. Figure 2 shows that the modulus of each eigenvalue was strictly less than
one, and therefore, the estimated VECM was stable.
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The Granger causality test was utilized to determine causal relationships between
variables, evaluating whether past values of one variable contained significant information
for predicting the current values of another. Table 11 displays the VECM Granger causality
results, highlighting several significant relationships among the variables. Notably, lamb
carcass prices predictively influenced beef carcass prices. Yellow maize prices Granger
caused lamb carcass prices and soybean prices Granger caused white and yellow maize
prices. Figure 3a visually summarizes the findings from Table 11.
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Table 11. VECM Granger causality test results.

Direction of Causality Tested Chi-Square Probability Causality Direction Decision Regarding H0

LAMB does not cause BEEF 8.89 0.0029 unidirectional reject

WEANER does not cause BEEF 0.45 0.5021 No causality Accept

WMAIZE does not cause BEEF 0.35 0.5536 No causality Accept

YMAIZE does not cause BEEF 0.02 0.8812 No causality Accept

SOYA does not cause BEEF 1.68 0.1944 No causality Accept

BEEF does not cause LAMB 0.28 0.5989 No causality Accept

WEANER does not cause LAMB 0.04 0.8421 No causality Accept

WMAIZE does not cause LAMB 2.12 0.1453 No causality Accept

YMAIZE does not cause LAMB 7.17 0.0074 Unidirectional reject

SOYA does not cause LAMB 0.70 0.4032 No causality Accept

BEEF does not cause WEANER 0.27 0.6036 No causality Accept

LAMB does not cause WEANER 0.53 0.4686 No causality Accept

WMAIZE does not cause WEANER 0.31 0.5806 No causality Accept

YMAIZE does not cause WEANER 0.10 0.7479 No causality Accept

SOYA does not cause WEANER 0.09 0.7648 No causality Accept

BEEF does not cause WMAIZE 0.02 0.8969 No causality Accept

LAMB does not cause WMAIZE 2.14 0.1430 No causality Accept

WEANER does not cause WMAIZE 0.37 0.5407 No causality Accept

YMAIZE does not cause WMAIZE 0.01 0.9261 No causality Accept

SOYA does not cause WMAIZE 4.62 0.0315 Unidirectional reject

BEEF does not cause YMAIZE 3.01 0.0829 Unidirectional reject

LAMB does not cause YMAIZE 0.05 0.8205 No causality Accept

WEANER does not cause YMAIZE 0.04 0.8478 No causality Accept

WMAIZE does not cause YMAIZE 12.20 0.0005 Unidirectional reject

SOYA does not cause YMAIZE 8.28 0.0040 Unidirectional reject

BEEF does not cause SOYA 0.17 0.6834 No causality Accept

LAMB does not cause SOYA 0.06 0.8078 No causality Accept

WEANER does not cause SOYA 0.58 0.4452 No causality Accept

WMAIZE does not cause SOYA 0.26 0.6078 No causality Accept

YMAIZE does not cause SOYA 0.05 0.8276 No causality Accept

Source: authors’ compilation.

Table 12. Granger causality test based on the Toda–Yamamoto procedure.

Direction of Causality Tested Chi-Square Probability Causality Direction Decision Regarding H0

LAMB does not cause BEEF 6.26 0.0436 Unidirectional reject

WEANER does not cause BEEF 5.26 0.0420 No causality Accept

WMAIZE does not cause BEEF 0.07 0.9677 No causality Accept

YMAIZE does not cause BEEF 0.92 0.6307 No causality Accept

SOYA does not cause BEEF 2.39 0.3023 No causality Accept

BEEF does not cause LAMB 0.96 0.6185 No causality Accept
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Table 12. Cont.

Direction of Causality Tested Chi-Square Probability Causality Direction Decision Regarding H0

WEANER does not cause LAMB 1.25 0.5343 No causality Accept

WMAIZE does not cause LAMB 0.60 0.7405 No causality Accept

YMAIZE does not cause LAMB 4.12 0.1277 No causality Accept

SOYA does not cause LAMB 3.22 0.1999 No causality Accept

BEEF does not cause WEANER 0.83 0.6618 No causality Accept

LAMB does not cause WEANER 0.16 0.9241 No causality Accept

WMAIZE does not cause WEANER 3.44 0.1789 No causality Accept

YMAIZE does not cause WEANER 5.85 0.0491 Unidirectional reject

SOYA does not cause WEANER 0.17 0.9165 No causality Accept

BEEF does not cause WMAIZE 4.10 0.1290 No causality Accept

LAMB does not cause WMAIZE 3.28 0.1939 No causality Accept

WEANER does not cause WMAIZE 3.44 0.17 No causality Accept

YMAIZE does not cause WMAIZE 0.85 0.6523 No causality Accept

SOYA does not cause WMAIZE 7.65 0.0218 Unidirectional reject

BEEF does not cause YMAIZE 10.10 0.0067 Unidirectional reject

LAMB does not cause YMAIZE 0.10 0.9491 No causality Accept

WEANER does not cause YMAIZE 1.76 0.4148 No causality Accept

WMAIZE does not cause YMAIZE 18.54 0.0001 Unidirectional reject

SOYA does not cause YMAIZE 12.39 0.0020 Unidirectional reject

BEEF does not cause SOYA 2.64 0.2671 No causality Accept

LAMB does not cause SOYA 1.23 0.5411 No causality Accept

WEANER does not cause SOYA 3.00 0.2227 No causality Accept

WMAIZE does not cause SOYA 0.39 0.8237 No causality Accept

YMAIZE does not cause SOYA 0.94 0.6257 No causality Accept

Source: authors’ compilation.

The Toda–Yamamoto causality test was also applied due to the test’s ability to enhance
the robustness of causality. The optimal lag order p was identified in Table 3 as 2, and
the maximum order of integration (dmax) was identified as I(1) for all the series. There-
fore, the augmented VAR(p+dmax) shown in Equation (11) was applied to perform the
Toda–Yamamoto causality test by fitting a VAR(3) model, and the results are displayed
in Table 12. Lamb carcass prices were identified as Granger causing beef carcass prices,
establishing a predictive influence. In turn, beef carcass prices were found to Granger cause
yellow maize prices. Additionally, yellow maize prices exhibited Granger causality with
live weaner prices, while soybean prices were observed to Granger cause both white and
yellow maize prices. Notably, live weaner prices Granger caused beef carcass prices. The
findings from Table 12 are summarized in Figure 3b.

Figure 3a,b summarize the VECM and Toda–Yamamoto Granger causality relation-
ships derived from Tables 11 and 12, respectively. Notably, both graphs revealed similarities
in identified causal links among the variables. However, the VECM Granger causality
results (Figure 3a) revealed that yellow maize Granger caused lamb carcass prices. In
contrast, the Toda–Yamamoto Granger test (Figure 3b) found that yellow maize Granger
caused live weaner prices. Furthermore, the Toda–Yamamoto test revealed a causal rela-
tionship between live weaner prices and beef carcass prices, whereas the VECM Granger
causality test did not find this relationship. Ref. [37] emphasized that relying on VECM
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for Granger causality tests may lead to biased results due to the pre-testing issues. Recog-
nizing the enhanced robustness of the Toda–Yamamoto procedure, this study emphasized
its outcomes.

3.6. Impulse Response Function Analysis

The impulse response analysis in Figure 4 shows a positive reaction of soybean, white
maize, and yellow maize prices to shocks in lamb (Figure 4a) and beef carcass prices
(Figure 4c), with a more substantial effect from beef carcass prices. Conversely, shocks to
live weaner prices (Figure 4b) resulted in a sustained negative influence on grain prices,
particularly affecting white maize, which significantly declined.
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Figure 5 illustrates the impact of standard shocks to key grain prices on livestock
markets. A shock to yellow maize prices (Figure 5a) triggered an immediate and sustained
increase in live weaner and beef carcass prices, while lamb carcass prices initially decreased
before increasing in subsequent weeks. Conversely, a shock to white maize prices (Figure 5b)
induced a simultaneous adverse reaction in all three livestock prices, with lamb carcass
prices experiencing a notable decline. A shock to soybean prices (Figure 5c) resulted in a
modest increase in weaner and lamb prices and a minor decrease in beef carcass prices.
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Figure 5. Impulse response analysis of the livestock industry on the grain industry. Source: authors’
compilation. Note: (a,b,c) represent the responses of lamb carcass, live weaner, and beef carcass
prices to shocks in white maize, soybean, and yellow prices, respectively.
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3.7. Forecast Error Variance Decomposition

Impulse response functions and forecast error variance decomposition (FEVD) are
complementary tools in VECM analysis. Impulse response functions assist in measur-
ing the dynamic response of variables due to shocks in the system. At the same time,
FEVD quantifies the contribution of these shocks to the overall variability in each variable.
Specifically, FEVD measures the fraction of the forecast error variance of an endogenous
variable attributed to shocks to itself or other endogenous variables. Table 13 shows the
FEVD results of yellow maize, white maize, and soybean prices, while Table 14 specifically
examines the FEVD of live weaner prices and carcass prices for lamb and beef.

Table 13. Variance decomposition of live weaner, beef, and lamb impulses on maize and soya prices.

Variance Decompositions YMAIZE Variance Decompositions WMAIZE Variance Decompositions SOYA

Period WEANER BEEF LAMB YMAIZE WEANER BEEF LAMB WMAIZE WEANER BEEF LAMB SOYA

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.077 0.000 0.000 99.924 1.185 0.000 0.000 52.868 1.443 0.000 0.000 82.845

2 0.290 1.720 0.030 92.341 2.523 0.199 0.306 46.773 0.902 0.002 0.002 85.374

3 0.679 2.165 0.073 91.001 3.773 0.540 0.289 43.044 0.675 0.013 0.001 86.451

4 1.109 3.153 0.182 88.669 5.062 1.028 0.234 40.298 0.545 0.040 0.004 86.995

5 1.590 4.082 0.329 86.764 6.373 1.612 0.195 38.011 0.458 0.078 0.011 87.297

6 2.091 5.102 0.508 84.790 7.675 2.263 0.181 36.030 0.394 0.124 0.020 87.464

7 2.600 6.112 0.704 82.905 8.945 2.952 0.193 34.272 0.344 0.174 0.031 87.553

8 3.105 7.114 0.911 81.072 10.165 3.655 0.225 32.698 0.305 0.228 0.044 87.595

9 3.598 8.084 1.122 79.321 11.324 4.355 0.273 31.279 0.273 0.283 0.057 87.606

10 4.073 9.016 1.332 77.655 12.417 5.040 0.333 29.998 0.246 0.337 0.071 87.599

11 4.527 9.901 1.537 76.082 13.440 5.702 0.399 28.839 0.223 0.390 0.084 87.579

12 4.957 10.737 1.735 74.601 14.394 6.335 0.470 27.787 0.205 0.442 0.098 87.553

13 5.363 11.524 1.925 73.214 15.281 6.937 0.543 26.832 0.189 0.492 0.111 87.522

14 5.744 12.261 2.106 71.917 16.104 7.505 0.617 25.964 0.175 0.539 0.124 87.490

15 6.101 12.950 2.277 70.707 16.867 8.040 0.690 25.172 0.163 0.584 0.136 87.457

16 6.435 13.593 2.439 69.578 17.574 8.542 0.761 24.449 0.152 0.626 0.148 87.424

17 6.748 14.194 2.591 68.527 18.229 9.013 0.829 23.788 0.143 0.666 0.159 87.392

18 7.039 14.753 2.734 67.548 18.836 9.453 0.895 23.182 0.135 0.704 0.170 87.362

19 7.312 15.275 2.868 66.636 19.399 9.865 0.958 22.625 0.128 0.740 0.180 87.333

20 7.566 15.761 2.994 65.786 19.922 10.251 1.018 22.112 0.122 0.773 0.189 87.306

Source: authors’ compilation.

In Table 13, the FEVD for yellow maize highlights a significant impact of its own
shocks, particularly in period 1 (99.924%), diminishing over the forecast horizon. Initially,
livestock variables minimally contributed to the FEVD of yellow maize, but by period 20,
beef carcass prices showed the highest contribution of 15.761%. White maize began with
a notable FEVD at period 1 (52.868%), indicating a substantial contribution from factors
outside the white maize market. Livestock variables exhibited minimal effects initially
but gradually impacted the FEVD of white maize, with contributions from live weaner,
lamb, and beef carcass prices at 19.922%, 10.251%, and 1.018%, respectively, in period 20.
Soybean prices exhibited increasing self-dependency (82.845% to 87% from periods 1 to 20),
contrasting with the decreasing FEVD values observed for white and yellow maize prices.
The livestock variables minimally impacted the FEVD of soybean prices.

Table 14 indicates high self-dependency in the forecast error variance decomposition
(FEVD) of live weaner prices, starting at 100% and gradually diminishing to 90.088% by
period 20. Grain variables had minimal impact, with white maize contributing the most
at 9.071% in period 20. For beef carcass prices, there was initial high self-dependency.
However, beef carcass prices’ contribution towards their own FEVD decreased to 50.714%
by period 20. Yellow maize prices had the highest contribution of the FEVD of lamb carcass
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prices, reaching 23.146% at period 20. Lamb carcass prices displayed a significant initial
self-dependency (98.666% in period 1), gradually decreasing to 83.510% by period 20. White
maize prices became more influential, contributing 13.084% in period 20 to the FEVD of
lamb carcass prices, while soybean had a minimal effect.

Table 14. Variance decomposition of maize and soybean impulses on live weaner, beef, and lamb prices.

Variance Decompositions WEANER Variance Decompositions BEEF Variance Decompositions LAMB

Period YMAIZE WMAIZE SOYA WEANER YMAIZE WMAIZE SOYA BEEF YMAIZE WMAIZE SOYA LAMB

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.000 0.000 100.000 0.714 0.274 0.210 94.862 0.295 0.313 0.029 98.666

2 0.070 0.208 0.027 99.559 1.750 0.173 1.006 88.167 0.761 0.426 0.062 98.119

3 0.127 0.702 0.056 98.938 2.669 0.124 1.182 85.216 0.644 1.474 0.091 97.101

4 0.162 1.330 0.084 98.227 4.028 0.149 1.263 82.291 0.529 2.458 0.130 96.111

5 0.190 2.037 0.107 97.458 5.488 0.208 1.268 79.532 0.427 3.562 0.167 94.957

6 0.211 2.760 0.128 96.686 7.053 0.313 1.243 76.775 0.353 4.627 0.206 93.807

7 0.228 3.470 0.146 95.935 8.631 0.435 1.202 74.092 0.303 5.650 0.242 92.669

8 0.243 4.146 0.161 95.223 10.188 0.569 1.154 71.500 0.272 6.601 0.277 91.585

9 0.255 4.780 0.175 94.558 11.694 0.705 1.105 69.029 0.256 7.477 0.310 90.565

10 0.266 5.368 0.187 93.944 13.129 0.837 1.056 66.695 0.252 8.275 0.340 89.617

11 0.276 5.908 0.198 93.380 14.484 0.963 1.009 64.506 0.255 8.999 0.367 88.742

12 0.284 6.402 0.208 92.865 15.754 1.081 0.965 62.464 0.264 9.654 0.393 87.937

13 0.291 6.853 0.216 92.395 16.939 1.190 0.924 60.567 0.278 10.245 0.416 87.200

14 0.298 7.264 0.224 91.968 18.041 1.291 0.885 58.809 0.293 10.780 0.437 86.525

15 0.304 7.638 0.231 91.578 19.063 1.382 0.850 57.183 0.311 11.263 0.457 85.907

16 0.309 7.979 0.237 91.224 20.010 1.466 0.818 55.679 0.329 11.700 0.475 85.341

17 0.314 8.289 0.243 90.900 20.886 1.542 0.788 54.289 0.348 12.097 0.491 84.823

18 0.318 8.573 0.248 90.605 21.698 1.611 0.760 53.003 0.366 12.457 0.507 84.348

19 0.322 8.833 0.253 90.336 22.450 1.674 0.735 51.815 0.384 12.785 0.521 83.912

20 0.326 9.071 0.257 90.088 23.146 1.732 0.711 50.714 0.402 13.084 0.534 83.510

Source: authors’ compilation.

4. Discussion

In this article, using the Johansen cointegration test, it was established that there is
a long-run relationship among the study variables. This contrasts with Musunuru’s [41]
findings, where the author observed no long-run relationship between grain and meat
prices, only identifying short-run relationships. This disparity underscores how commodity
market dynamics can vary across different countries or regions.

Furthermore, the consistently low error correction terms obtained from the VECM
estimates (Table 7) imply that deviations from the long-run equilibrium take time to correct
in the short term. Our study’s identification of consistently low error correction terms
aligns with the research conducted by De Zhou and Koemle [42], who found comparable
slow adjustment dynamics in China’s hog and feed markets. Our study focused on live
weaner prices as our primary livestock variable, whereas De Zhou and Koemle’s [42]
research centered on China’s hog market. Despite the difference in livestock species, our
comparative analysis highlights different dynamics between live animal variables. De
Zhou and Koemle’s [42] findings suggest an 11-month adjustment period for hog prices,
whereas our study revealed a 3.5-month correction period for live weaner prices in South
Africa. Additionally, slow adjustments were also observed in other livestock markets. For
instance, Ajjan et al. [43] found that the maize and poultry market in India is cointegrated,
with the highest speed of adjustment found in their study for egg prices at 12% per week,
translating roughly to 2 months to fully correct a deviation from the long-run equilibrium.
This comparison further underscores broader patterns in market dynamics across livestock
sectors and geographical regions.
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Moreover, our examination revealed differing rates of adjustment among our study
variables, suggesting an asymmetrical transmission of prices within South Africa’s grain
and livestock sector. This parallels De Zhou and Koemle’s [42] research, which similarly
identified varying adjustment speeds across different markets in China, encompassing
hogs, maize, and soybeans. The variations in adjustment speeds across different variables
suggest potential inefficiencies within the grain and livestock markets, warranting further
investigation into the factors driving these differences.

In addition, our study confirmed a long-term positive relationship between yellow
maize and soybean prices and live weaner prices. This finding is similar to Ozdemir’s [44]
observations regarding the significant influence of grain feed prices on the beef market in
the U.S. Additionally, our analysis resembles the insights of Wang et al. [45] in China, which
highlight the impact of minor increases in hog prices on breeding costs and overall hog
prices. Moreover, Tejeda and Goodwin’s [46] research underscores the broader implications
of input price increases on livestock and food prices, a concept further supported by our
findings. Particularly, our impulse response functions demonstrate the direct effect of South
African yellow maize market shocks on livestock prices. Thus, although each study offers
unique insights, our findings contribute to a more comprehensive understanding of the
universal importance of grain prices in shaping livestock markets, particularly emphasizing
the significance of yellow maize and soybean prices in our analysis.

Our study results also revealed a positive long-run relationship between beef carcass
prices and live weaner prices. This finding is supported by Oosthuizen [47], who suggested
that high beef carcass prices incentivize feedlots to purchase more weaners for feeding and
eventual slaughter. The second cointegration equation (Equation (13)) further supports
this relationship by indicating that as beef and lamb carcass prices increase over the long
run, yellow maize prices also increase. This suggests that higher carcass prices stimulate
demand for live weaners, subsequently leading to increased demand for feed commodities
like yellow maize. Spies [48] also observed significant price transmissions downward
from retail to producer levels in the South African beef value chain, aligning with our
findings on the influence of beef carcass prices on live weaners. The findings from our
study, complemented by the studies of Oosthuizen [47] and Spies [48], contribute to a
deeper understanding of how pricing dynamics operate within the livestock sector.

Furthermore, the long-term positive impact of beef and lamb carcass prices on yellow
maize prices aligns with the findings of Seok et al. [49], who observed a significant influence
of beef prices on yellow maize prices in the U.S. Seok et al. [49] attributed this connection
to the substantial size of the beef market in the U.S., which exerts significant demand
pressure on yellow maize prices. Marsh [50] also observed that the yellow maize sector in
the U.S. benefits from increased demand in the beef retail market, leading to heightened
demand for animal feeds. South Africa is suspected to share a similar situation to the
U.S. regarding a significant portion of the demand for yellow maize originating from
the livestock industry. According to the NAMC [3], the livestock sector in South Africa
accounts for approximately 70% of the demand for yellow maize and 86% of the demand
for soybeans. Considering our results and the statistics provided by NAMC [3], it appears
that the South African beef market exercises price leadership in the South African yellow
maize market. These insights indicate the intricate dynamics between livestock and grain
markets, highlighting the lasting influence of livestock prices on yellow maize prices in
both the U.S. and South Africa.

Also notable from the second cointegrating equation (Equation (13)) is that an increase
in live weaner prices has a negative effect on yellow maize prices. Although the beef carcass
market plays a dominant role in the South African yellow maize market, it seems that fluc-
tuations in weaner calf prices also play a role in shaping this relationship. Marsh [50] noted
that North America’s 2003 bovine spongiform encephalopathy (BSE) outbreaks negatively
affected feeder cattle, slaughter cattle, and corn markets. Though not explicitly mentioned
by Marsh [50], it can be inferred that BSE reduced the number of live weaners, consequently
diminishing the demand for yellow maize. This inference supports our finding that higher
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live weaner prices negatively impact yellow maize prices, as reduced demand corresponds
with weaner calf price fluctuations. South Africa’s livestock market is susceptible to disease
outbreaks such as foot and mouth disease (FMD), which detrimentally affects industry
productivity [51–53]. Therefore, our findings and those of Marsh [50] highlight the critical
importance of understanding livestock–grain market dynamics, external factors like disease
outbreaks, and informed decision-making for enhancing market stability and resilience in
South Africa’s agricultural sector.

The error correction term for soybean prices lacks statistical significance, indicating
that deviations from long-run equilibrium do not significantly affect soybean prices. Our
causality tests confirmed that other variables do not affect soybean prices significantly.
Additionally, impulse response function analysis suggests minimal impact of soybean
market shocks on livestock prices. Our results are comparable to those of Fiszeder and
Orzeszko [54], who similarly observed limited causal relationships involving soybean
prices relative to the livestock market in the U.S. The isolation of soybean prices from
livestock variables in our study may be attributed to unique factors in the South African
livestock and grain markets. Firstly, according to AFMA [2], soybeans constitute only about
15% of the total feed content in South Africa, suggesting its limited direct impact on overall
livestock production. Similarly, Fiszeder and Orzeszko [54] attributed the lack of causal
effects between livestock market and soybean price to the fact that cattle are not a huge
consumer of soybeans, and therefore such a result is expected. The low usage of soybeans
in livestock feeds is attributed to soybean’s status as one of the most expensive protein
sources in feed rations [55]. Secondly, South Africa’s soybean production has experienced
significant growth in recent years, accompanied by a substantial increase in soybean
processing capacity. However, the South African soybean market can be considered to
be in its infancy, with connections between the soybean and livestock industries yet to
reach full maturity. As production stabilizes and market dynamics evolve, more significant
interactions may emerge in the future.

Also notable from the results is the low FEVD of white maize due to its past shocks,
suggesting that external factors significantly influence South Africa’s white maize market.
Previous studies have identified various external factors as key drivers of white maize
prices in South Africa [24,56–58]. Therefore, our results support the notion of the impor-
tance of considering external influences when analyzing white maize price dynamics in
South Africa.

Our study, employing the Toda–Yamamoto causality test, revealed significant short-
run relationships, particularly within the grain market, where all causal links converge on
yellow maize. This aligns with the statistics provided by the AFMA [2] highlighting yellow
maize’s dominant role in South Africa’s livestock feed sector. Importantly, our findings
underscore the pivotal role of yellow maize as the sole grain variable influenced by the
livestock market, thus serving as a crucial bridge between the grain and livestock sectors, a
perspective also emphasized by the AFMA’s [2] data. Interestingly, our results parallel those
of Tegle [59], who similarly found limited causal relationships between grain and livestock
variables but identified strong causal relationships among various grains. However, our
study diverges from Tegle’s [59] findings in one key aspect. Whereas Tegle [59] found that
other grain variables also impact soybeans, our results indicate that none of our study
variables influenced soybeans. Overall, our causality results underscore pivotal role of
yellow maize in facilitating market linkages between the grain and livestock sectors in
South Africa.

Furthermore, elaborating on the Toda–Yamamoto causality test results in the livestock
market, lamb carcass and live weaner prices were found to Granger cause beef carcass
prices, while beef carcass prices influenced yellow maize prices in the grain market. The
unidirectional causal effect from lamb to beef carcass prices is consistent with the findings
of Lawrence et al. [60] on cross-commodity price transmission between beef and mutton
in the U.S. Pozo and Schroeder [61] observed that consumer preferences and disposable
income also drive the substitution effect between beef and lamb consumption. Ogundeji
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and Maré [62] also noted that the substitution between beef and lamb particularly occurs
in market situations with relatively high beef prices. Our Toda–Yamamoto causality test
also identified a unidirectional causal relationship from live weaner prices to beef carcass
prices, consistent with the upward causal relationships observed in the South African beef
value chain by spies [48].

5. Conclusions

This study has shed light on the complex interactions between South Africa’s livestock
and grain markets, uncovering noteworthy findings with important implications for pol-
icymakers and stakeholders. Specifically addressing the research question posed in the
introduction, our research has provided a comprehensive examination of the dynamics of
price transmissions between these markets, offering valuable insights for policymakers and
stakeholders to consider when addressing challenges and capitalizing on opportunities
within the agricultural sector. Firstly, the confirmation of a long-run relationship among
the study variables underscores the interconnectedness within the South African grain
and livestock markets. Additionally, the observed consistently low error correction terms
highlight the slow adjustment dynamics, indicative of asymmetric price transmission. To
address these findings, policymakers should prioritize the implementation of measures
aimed at stabilizing both grain and livestock markets. Specifically for the grain market,
regulations could focus on ensuring fair pricing mechanisms, promoting transparency in
trading, and preventing market manipulation. Similarly, for the livestock market, policies
could be implemented to address issues such as animal welfare standards, disease control
measures, and fair-trade practices. By fostering market resilience and mitigating the impact
of asymmetries in price transmission, these measures can enhance the overall stability
and sustainability of the South African agricultural sector, ensuring more robust market
conditions for stakeholders across the value chain.

Secondly, the observation regarding the significant influence of external factors on
South Africa’s white maize market highlights a critical concern, especially considering
its status as a staple food source for South Africa and other SADC members reliant on
imports from South Africa. Given the global predominance of yellow maize production
and the limited availability of white maize, South Africa could face challenges in securing
reliable sources for white maize imports during shortages and drought. Policymakers
need to strategize to increase white maize hectares without compromising yellow maize
production, considering the country’s significant yellow maize exports. Balancing these
priorities is essential to ensure food security and stability in South Africa and among other
African countries reliant on South Africa.

Thirdly, our findings indicate that soybean prices in South Africa are relatively insu-
lated from the influence of other study variables, as evidenced by the lack of statistical
significance in the error correction term and causality test results. The minimal impact of
soybean market shocks on livestock prices further underscores this independence. These
findings emphasize the importance for stakeholders to acknowledge the emerging nature
of the soybean industry in South Africa. These results suggest a need for stakeholders to
explore diversification opportunities in livestock feed sources. By reducing dependency on
specific inputs like soybeans, the livestock market can enhance its resilience and mitigate
risks associated with fluctuations in the emerging South African soybean market.

In addition, it might be noteworthy for policymakers to also encourage collaboration
between the grain and livestock sectors in South Africa for fostering better market under-
standing, facilitating policy formulation, and enhancing overall agricultural sustainability.
Although Grain South Africa (Grain SA) and the Red Meat Producers Organization (RPO)
hold separate annual congress meetings for their respective members, there is a pressing
need to encourage collaborative efforts between these sectors to maximize the effectiveness
of policymaking and industry development initiatives. Therefore, policymakers should
consider facilitating a collaborative effort between these two sectors annually, as they are
highly interrelated, as highlighted by our results.
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Acknowledging certain limitations, this study highlights areas for future consideration.
Firstly, the analysis, conducted within a VAR/VECM framework, requires further robust-
ness to address potential endogeneity issues arising from policy changes or exogenous
shocks affecting grain and livestock markets. Secondly, our reliance on economic vari-
ables overlooks influential factors such as environmental impact and government policies,
which could significantly influence price dynamics. Lastly, our focus on price relationships
neglects other critical factors, such as supply–demand dynamics, technological advance-
ments, and international trade policies, which could enhance the comprehensiveness of our
understanding of the grain–livestock market dynamics in South Africa. Future research
should strive to incorporate these factors for a more comprehensive understanding of
market dynamics. Additionally, future research should consider extending the time frame
beyond the five-year period analyzed in this study. A more extensive time frame could
further contribute to our understanding of the grain–livestock dynamics in South Africa by
capturing long-term trends and fluctuations.
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