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Abstract: Mercury (Hg) is a toxic and persistent element, easily bio-accumulable in the food chain
with several dangerous effects on people’s health. Among Hg airborne species, gaseous elemental
mercury (GEM) is dominant, more persistent in the atmosphere, and highly absorbable by humans.
The issue of atmospheric Hg pollution is largely discussed by several environmental agencies, giving
rise to a number of remarkably different threshold values beyond which exposure to Hg in its
different species is deemed dangerous. The present paper presents a comprehensive compilation
of the threshold limit values (TLVs) suggested/recommended by environmental health agencies
regarding the exposition to airborne Hg. The work tries to clarify the applicability of the threshold
concentrations, their terminology, and the methods by which they were calculated. The most critical
key-points in Hg TLVs derivation and use are stressed. The literature revision identifies about
20 TLVs: among these, only four are legally transposed into environmental laws, while the majority
are just recommendations. There is a high variability of suggested values for gaseous Hg TLVs,
mostly resulting from the different methodologies applied for their calculation. This difference is the
consequence of a considerable independence among agencies that suggest or enforce Hg limit values.
However, in the past years, a generalized substantial lowering of the Hg TLVs, both for chronic and
occupational exposure, has been observed. This tendency reflects a revision trend towards a more
protective approach for people’s health.
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1. Introduction

The perception of the scientific community on the risk related to mercury (Hg) expo-
sure was originally reported in the mid-1960s, soon after the first outbreak of methyl-Hg
poisoning of people living in Minamata Bay, Japan [1,2]. Only after more than forty
years, the question was tackled on a worldwide scale with the release of the first edition
of the Global Mercury Assessment (2002) by the United Nations Environment Program
(UNEP, [3]). The first regulations to limit Hg release and use started soon after the UNEP
assessment. Despite this, anthropogenic emissions overpassed two million kg of Hg in
2018, about 30% of the total Hg entering in the atmosphere [4].

The issue of atmospheric Hg pollution is now widely debated by the scientific com-
munity due to the centrality of the problem. Gaseous Hg is in fact a global pollutant, that
can be transported thousands of kilometers in the atmosphere, biogenically transformed
into more toxics forms and thus biomagnified in the food chain [5].

With respect to other heavy metals, Hg has a low but measurable vapor tension. Since
Hg-containing items (thermometers, batteries, lamps etc.) are diffused in many environ-
ments including homes [6,7], humans could be unaware of the exposure to anomalous
atmospheric Hg0 concentrations which could be rather common and unavoidable. The
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question is actively discussed by several international agencies, giving rise to various
Hg limit values, mainly focused on the occupational framework. The large number of
stakeholders involved in the question and the continuous scientific updates have produced
a multitude of different limit values that apply to similar and often overlapping contexts.
Terminology therefore is not always easy to understand.

The present paper offers an overview of the threshold limit values (TLVs) suggested/
recommended by the government or health agencies regarding the exposition to gaseous
Hg. Apart from international agencies such as WHO, the present study is limited to Western
countries, including European Union, USA, Canada, Australia, and New Zealand. The
work tries to clarify the applicability of the threshold concentrations, the terminology, and
the methods of derivation. The most critical key points in Hg TLVs derivation and use will
be stressed.

2. Mercury Forms, Sources and Health Effects

Mercury is one of the most toxic elements naturally present on the Earth’s crust; it
is easily bio-accumulable in the food chain, with highly dangerous effects on human’s
health [8].

Airborne Hg species are divided among gaseous species, i.e., gaseous elemental
Hg (GEM or Hg0) and reactive gaseous Hg (RGM, Hg2+), and particulate species, i.e.,
particulate-bound Hg (PBM). The sum of GEM and RGM is often defined as total gaseous
Hg (TGM), while the sum of all airborne species is indicated as total Hg (THg) [9,10].
The conversion among different forms is a dynamic process [11,12]: the knowledge of
these processes is fundamental to understand the Hg biogeochemical cycle and to define
the effects on human health. Among gaseous species, GEM is the most volatile and the
predominant atmospheric form (typically >95% [13]), characterized by high stability and an
elevated (6 months to 1 year) residence time in the atmosphere [14] due to its comparative
chemical inertness. Thanks to these features, GEM can be transported up to thousands of
kilometers from the source [15]. RGM mainly refers to divalent inorganic species (HgCl2,
HgO, HgSO4) and to methylated forms (methyl- and dimethyl-Hg). Monovalent Hg
compounds rarely occur in the atmosphere because they are unstable and rapidly oxidized
to the stable state (i.e., Hg2+ [16]). Reactive gaseous Hg consists of Hg compounds with
sufficiently high vapor pressure to exist in the gas phase [17]: these forms are highly water-
soluble, so their atmospheric residence time is sensibly lower than GEM [18]. PBM only has
an operational definition, being defined by the pore size of the filter used for sampling [19].
PBM consists of both stable condensed Hg and gaseous Hg forms adsorbed on atmospheric
particulate matter [20].

Mercury sources are both natural and anthropogenic. Mercury is naturally emitted in
the atmosphere by geothermal activity, weathering of superficial rocks and soil, volcanic
activity, but is also re-emitted from vegetation surface, from ocean and water bodies,
or through wildfires [15,21]. Anthropogenic Hg sources are mainly linked to fossil fuel
combustion, waste incineration, industrial processes like cement and building production,
metal smelting, refining, and manufacturing [3,22]. Metallic Hg is still used in a variety
of households and in industrial and medical products, while in artisanal and small-scale
mining Hg0 is used to extract gold from ore as an amalgam [21,23].

Humans are exposed to elemental Hg mainly by inhalation through the lungs, where
Hg0 is rapidly and almost completely adsorbed (ca. 80%) and readily distributed throughout
the whole body [24]. The high diffusion of Hg0 is due to the uncharged monoatomic form that
ensures lipid solubilization: Hg0 can rapidly cross the blood–brain or blood–placenta barrier,
and it accumulates in the brain or in the fetus once oxidized [25]. In the gastrointestinal
tract, GEM is instead poorly adsorbed (<0.01%) and almost completely excreted in the
feces [25,26]. Dermal exposure to Hg0 may also result from contaminated air [27], especially
in work settings, even if the absorption is limited (ca. 2–3% of the inhaled dose) [11,25,27].
The toxicity to Hg0 is mainly manifested in the central nervous system and in the kid-
ney. Tremor is assumed as the early and the principal neurological effect of Hg0 chronic
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exposure, related with several secondary effects like memory deficits and motor system
disturbances [28]. Kidney damage due to the toxic effect of Hg0 is mainly manifested
as proteinuria and various nephrotic syndromes [25]. A wide range of toxic effects have
also been observed in cardiovascular (palpitations, increase in the blood pressure) and
gastrointestinal (stomatitis, pain, nausea) systems [24]. An occupational exposure to Hg0

vapor has been demonstrated to be an infertility factor for women [29].
The inhalation exposure to inorganic Hg2+ compounds results in a systemic absorption

in several body regions (head, kidneys, pelvis, and legs) thanks to the high affinity of Hg2+

with blood thiolate anion and intracellular thiols (glutathione, glycinyl-cysteine); Hg2+

compounds have also been found in human cord blood, placenta, and milk, indicating
Hg transfer to the fetus and infants [30]. Differently, inorganic Hg2+ compounds are only
partially adsorbed by the gastrointestinal tract after ingestion (7–15% of doses), and they
are almost eliminated by feces [31]. There is no evidence of mutagenic and carcinogenic
effects resulting from inorganic Hg exposure in humans: only a few studies have reported
adverse effects in animals, though these data have been considered inadequate [32].

3. Limit Values: Definition, Classification and Derivation Methods

The threshold limit value was firstly defined in the middle of the 1950s during the
ACGIH (American Conference of Government Industrial Hygienists) meeting as “the
concentration of a substance that should cause no significant injury to the health of the large
majority of persons exposed daily” [33]. This definition has been subsequently modified to
“airborne concentrations of chemical substances and represent conditions under which it is
believed that nearly all workers may be repeatedly exposed, day after day, over a working
lifetime, without adverse health effects” [34]. Based on these definitions, TLVs were
developed to ensure people’s health during occupational exposure; nevertheless, in the last
years, several organizations (Agency for Toxic Substances and Disease Registry—ATSDR,
Unite States Environmental Protection Agency—EPA, California Environmental Protection
Agency—CalEPA and the World Health Organization—WHO) have also suggested limit
values for residential and non-working settings.

TLVs are generally expressed in mg/m3, so the only form considered for workers
exposure is through inhalation, despite the contribution of other exposure pathways, like
oral ingestion and dermal absorption, that not always could be considered as negligible for
the toxic effect of a chemical [35]. TLVs usually refer to an exposure time. Occupational
(i.e., work) exposure concentration limits are often expressed as time-weighted average
(TWA), i.e., a concentration averaged over a specific time period, such as 8 h day and
40 h week [34,36,37] or 10 h working day [38] (see Table 1). For example, the Occupational
Safety and Health Administration (OSHA), the regulatory agency of the United State (US)
Department of Labor, refers to an 8 h TWA with the name of PEL (permissible exposure
limit) as “the maximum permitted 8-h time-weighted average concentration of an airborne
contaminant” [39]. The National Institute for Occupational Safety and Health (NIOSH), the
US federal agency that is appointed to safeguard the workers safety and health, proposes a
10 h TWA named as REL (recommended exposure limit), i.e., “a time-weighted average
concentration for up to a 10-h workday during a 40-h workweek to protect workers from
hazardous substances and conditions in the workplace” [38]. US EPA proposed acute
exposure guideline levels (AEGLs, see definition in Table 1) even for shorter time-intervals,
from 10 min to 8 h (US EPA 2010) [40].

TWA exposures may also refer to concentration that must not be exceeded to avoid
the potential health risks of chronic effects over long time exposure; this is, for example, the
case of the EPA reference concentration (RfC, [41]) and of ATSDR action levels [42]; for their
definition, see Table 1. In the definition of reference exposure levels (RELs, see Table 1),
recently proposed by CalEPA [43] the health effects of the exposure to a contaminant may
become more explicit with respect to TLV-TWA thresholds. RELs, for example, refer to a
“[. . .] concentration at or below which adverse health effects are not likely to occur in the
general human population”; thus, they represent threshold that should not be exceeded.
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REL may be designed for both chronic and occupational exposures (see definitions
in Table 1). Interestingly, in 2014, CalEPA also defined an acute REL as the level at which
“intermittent one-hour exposures are not expected to result in adverse health effects” [43].

Table 1. Definitions of the TLV found in the literature.

TLV Acronym/Name
(Extended Name) Definition TLV Type/Note Bibliography

Action level

“Indoor air concentration of mercury vapor
that should prompt public health and
environmental officials to consider
implementing response actions”

No TWA. Action level could refer to
residential or workplace settings. [42]

AEGLs
(Acute Exposure
Guideline Levels)

“Threshold exposure limits for the general
public, applicable to emergency exposure
periods ranging from 10 min to 8 h.”

Three levels (AEGL-1, AEGL-2,
AEGL-3) are developed for each of five
exposure periods (10 and 30 min, 1 h,
4 h, and 8 h) and are distinguished by
varying degrees of severity of
toxic effects.

[40]

Ceiling limit “Ceiling concentrations that must not be
exceeded during any part of the workday”

If instantaneous monitoring is not
feasible, the ceiling must be assessed as
a 15-min TWA exposure. Regulatory
limit.

[44]

IDLH
(Immediately dangerous
to life or health)

“A condition that pose an immediate threat to
life or health, or conditions that pose an
immediate threat of severe exposure to
contaminants (. . .) which are likely to have
adverse cumulative or delayed effects on health”

Based on the effects that might occur as
a consequence of a 30-min exposure [45]

IOELV
(Indicative occupational
exposure limits)

“Health-based, non-binding values, derived
from the most recent scientific data available
and taking into account the availability of
measurement techniques”

IOELVs are established by the European
Commission, assisted by the Scientific
Committee for Occupational Exposure
Limits to Chemical Agents (SCOEL).

[46]

LOAEL
(Lowest Observable
Effect Levels)

“The lowest exposure (or dose) level of a
chemical at which there are statistically or
biologically significant increases in frequency or
severity of adverse effects between the exposed
population and its appropriate control group”

[41]

MRL
(Minimal Risk Level)

“An estimate of daily human exposure to a
substance that is likely to be without an
appreciable risk of adverse effects
(noncarcinogenic) over a specified duration
of exposure”

[30]

NOAEL
(No Observed Adverse
Effect Level)

“The highest exposure (or dose) level of a
chemical at which there are no statistically or
biologically significant increases in frequency
or severity of adverse effects seen between the
exposed population and its appropriate control”

[41]

PEL
(Permissible Exposure
Limit)

“The maximum permitted 8-h time-weighted
average concentration of an
airborne contaminant”

Regulatory limit. [39]

REL
(Reference Exposure
Level)

“A concentration at or below which adverse
health effects are not likely to occur in the
general human population”

REL could refer to chronic expositions
or TWA. [43]

REL
(Recommended
Exposure Limit)

“A time-weighted average concentration for up
to a 10-h workday during a 40-h workweek to
protect workers from hazardous substances and
conditions in the workplace”

Refer to a TWA exposition. [47]
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Table 1. Cont.

TLV Acronym/Name
(Extended Name) Definition TLV Type/Note Bibliography

RfC
(Reference
Concentration)

“An estimate (with uncertainty spanning
perhaps an order of magnitude) of a daily
inhalation exposure of the human population
(including sensitive subgroups) that is likely to
be without an appreciable risk of deleterious
effects during a lifetime”

[41]

TCL
(Lowest Toxic
Concentration)

“The lowest concentrations known to cause any
level of harm to humans” [42]

All the threshold limit value derivations basically started from epidemiological data
found in the literature, namely, published peer-reviewed studies examined by committees
composed by members from academia, government, or industrial settings, which critically
evaluate the toxicological data coming from animal experiments or, preferentially, epidemi-
ological data on humans [48]. Committee members consider several features of the toxic
substance, like physical and chemical properties, the toxic/pharmacokinetics, the potential
pathways of exposure, and its ability to cross the biological membranes [49]. Afterwards,
the concentration of the chemical compound in biomarkers (urine, blood, hair, nails) of
workers or animals allows for an estimation of the concentration of that chemical in air and
a NOAEL or a LOAEL (see definitions in Table 1) at which no adverse/adverse effects have
been observed in exposed people/animals. To obtain the TLV, the highest concentration of
a toxic substance at which no adverse health effects are observed (NOAEL) or the lowest
concentration of a toxic substance at which adverse health effects are observed (LOAEL)
is frequently divided by an uncertainty factor (UF [30]), i.e., a mathematical adjustment
applied to account for variations in people’s sensitivity, the differences of the toxicity data
between animals and humans, the uncertainty in using occupational data for another type
of exposure, and for the use of NOAEL or LOAEL data. For example, as we will see later
for Hg TLVs, the minimum risk level (MRL [30]) suggested by ATSDR or the RfC proposed
by US EPA [41] are both calculated starting from a LOAEL that is then divided by an UF.

However, not all the TLVs are calculated employing an UF: as we will see later, this is
the case of the occupational TLV for Hg established by the European Union and adopted
by all the EU member states [46].

4. Threshold Limit Values for Hg

The literature revision allowed to detect twenty-three Hg TLVs: six of these refer to a
chronic exposure and seventeen are calculated for a TWA exposition (Table 2). The detailed
description of the derivation method of each TLV is reported in the Summary S1 of the
Supplementary Materials (SM).

Table 2. Hg TLVs for residentials and workplace environments. TVLs with a regulatory value
are underlined.

µg/m3 Bibliography

chronic exposure
CalEPA—chronic REL for Hg0 0.03 [43]
ATSDR—MRL for chronic-duration inhalation 0.3 [30]
EPA—RfC 0.3 [41]
WHO—Average annual Hg concentration guideline 1 [50]
ATSDR—Action level for residential settings (normal occupancy) 1 [42]
ATSDR—Action level for residential settings (residents’ evacuation/relocation) 10 [42]
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Table 2. Cont.

µg/m3 Bibliography

TWA exposure
CalEPA—8 h REL for Hg0 0.06 [43]
CalEPA—acute REL for Hg0 0.6 [43]
ATSDR—Action level for workplaces not covered by 29 CFR 1910 Subpart Z 3-4 [42]
European Union 8-h TWA IOELV (Directive 2009/161/EU) 20 [32]
ATSDR—Action level for workplaces covered by 29 CFR 1910 Subpart Z 25 [42]
ACGIH—TLV (8-h TWA for inorganic Hg forms including metallic Hg) 25 [51]
Cal/OSHA—PEL (8-h TWA for mercury, metallic and inorganic compounds as Hg) 25 [44]
WHO—Recommended occupational exposure (TWA) 25 [52]
OSHA PEL (8-h TWA) and NIOSH—REL (10-h TWA) 50 [53]; [47]
NIOSH and OSHA Ceiling limit for metallic and inorganic Hg 100 [44]; [47]
EPA AEGL-2—AEGL-3 for 8 h exposure 330–2200 [40]
WHO—Recommended occupational short-term exposure 500 [52]
EPA AEGL-2—AEGL-3 for 4 h exposure 670–2200 [40]
EPA AEGL-2—AEGL-3 for 60 min exposure 1700–8900 [40]
NIOSH IDLH 10,000 [45]
EPA AEGL-2—AEGL-3 for 30 min exposure 2100–11,000 [40]
EPA AEGL-2—AEGL-3 for 10 min exposure 3100–16,000 [40]

4.1. Chronic Hg TLVs

The Hg TLVs referred to a chronic exposition range from the lowest value of 0.03µg/m3 set
by CalEPA (REL for Hg0; [43]), to the maximum value of 10 µg/m3 released by ATSDR [42]
as the action level for residents’ evacuation/relocation in residential settings (see Table 1
and Summary S1 in the SM for the complete definition). Several chronic Hg TLVs are
calculated starting from various occupational studies [54–58], whereas the derivation
method employed by each agency is not the same (see Summary S1 in the SM). This is, for
example, the case of the CalEPA REL (0.03 µg/m3) and the EPA Rfc (0.3 µg/m3). Both limits
ultimately refer to the same issue and aim (see Table 1), that is, avoid adverse health effects
to the exposed population. Both the agencies start from a LOAEL of 25 µg/m3, adjusted to
a continuous exposure duration (LOAEL-ADJ) of 9 µg/m3, which is then divided by a UF
factor of 300 and 30 by CalEPA and EPA, respectively [43,59]. Differently, ATSDR calculates
its MRL (0.3 µg/m3, [30]), converting the Hg concentrations of workers’ biomarkers (i.e.,
urine) reported in several occupational exposure studies [54,60–66] to an equivalent Hg0

air concentration (2.84 µg/m3): this value is then divided by a UF of 10 resulting in about
0.3 µg/m3 as a chronic Hg TLV.

WHO proposes an average annual concentration of 1 µg/m3 for Hg vapor (the chemi-
cal form is not specified) as a limit for continuative (i.e., chronic) exposure [50]. This value is
calculated starting from a LOAEL which varies over a wide concentration range (from 15 to
30 µg/m3), derived from an occupational study [67] and from a previous WHO report [68].
The LOAEL is then divided by a cumulative UF of 20, leading to a Hg TLV of 1 µg/m3

through a procedure whose single steps are not entirely clear.
The same TLV (1 µg/m3) is also proposed by ATSDR [42] as the action level for

normal occupancy in residential settings, while, as reported above, the action level for
isolation/evacuation of people from residential settings is set by ATSDR at 10 µg/m3,
following the study by Ngim et al. [58].

4.2. TWA Hg TLVs

The Hg TLV TWAs are typically related to an occupational exposure that occurs with
a specific duration and frequency. The lowest value is proposed by CalEPA [43], who
suggests an 8 h REL of 0.06 µg/m3.

CalEPA, in addition to this latter limit, also releases an acute REL (0.6 µg/m3, [43]).
The 8 h REL of 0.06 µg/m3 is substantially derived as the chronic REL (see Section 4.1),
starting from a LOAEL of 18 µg/m3, assuming that the ventilation rate for humans during
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a working day is half (10 m3/day) that of the whole day (20 m3/day). The acute REL
(0.6 µg/m3) refers instead to a one-hour intermittent exposure and is calculated from the
study of Danielsson et al. [69] carried out on a group of rats exposed to Hg0 vapors.

In addition to those for chronic exposition (see Section 4.1), ATSDR [42] also proposes a
TLV in the range of 3–4 µg/m3 as the action level specific for those workplaces not covered
by the Subpart-Z of the 29th Title of the Code of Federal Regulation [37], i.e., for those
workplaces where an exposure to a toxic compound is not expected (see Summary S1 in
SM for further details).

The European Union (EU) established an occupational 8 h TWA of 20 µg/m3 for “Hg
and divalent inorganic compounds of Hg, including Hg oxide and Hg chloride (measured
as Hg)” with the Directive 2009/161/EU [46]: this directive, transposed by all the EU
member states, reports a list of indicative occupational exposure limits (IOELVs) for several
chemical compounds. The EU Hg 8 h TWA is indicated by the Scientific Committee for
Occupational Exposure Limits to Chemical Agents (SCOEL): the suggested TLV for Hg0

(20 µg/m3, [32]) is derived by the Hg levels found in workers’ biomarkers with central
nervous system toxicity effects [56,70,71].

Several agencies (ATSDR, ACGIH, Cal/OSHA, WHO) concur to recommend an 8 h
TWA of 25 µg/m3 as occupational TLV, considering both metallic Hg and other forms of
inorganic Hg. Specifically, this value is suggested by (i) ATSDR, as the action level for
workplaces covered by the 29 CFR 1910 Subpart-Z [42], (ii) by ACGIH [51], (iii) by WHO,
as a recommended occupational exposure [52], (iv) by Cal/OSHA, as an 8 h PEL [53]; this
last limit is transposed into the California Code of Regulations.

The other Hg TLVs legally transposed as federal US laws are the 8 h TWA of 50 µg/m3

and the OSHA ceiling limit (see definition in Table 1) of 100 µg/m3 [44]. These values
refer to Hg0 and are derived from several occupational studies [72–74]; all the authors find
that adverse effects to vapor Hg exposure occur at concentrations ranging between 50 and
100 µg/m3, which are assumed by OSHA as an 8 h TWA and a ceiling limit, respectively.
The same ceiling value is reported by NIOSH as a ceiling REL [47].

A similar definition of the OSHA acceptable ceiling concentration and NIOSH ceiling
REL is the recommended occupational short-term exposure (see Summary S1 in SM) of
500 µg/m3, released by WHO [52].

The NIOSH IDLH for all inorganic Hg compounds is set at 10,000 µg/m3 [45]. As
reported by NIOSH [45], IDLHs were based on the effects that might occur as a consequence
of a 30 min exposure, therefore an exposure to concentration of 10,000 µg/m3 must be
avoided even for a very short time span.

Finally, we report the AEGLs released by EPA [40] for time intervals ranging between
8 h and 10 min exposure, divided according to the severity of the toxic effects (for spec-
ifications, see Summary S1 in SM). EPA AEGLs for 8 h exposure to Hg0 vary between
330 µg/m3 and 2200 µg/m3 for AEGL-2 and AEGL-3, respectively; for a 10 min exposure,
the values rise to 3100 µg/m3—16,000 µg/m3 [40]; this last is the highest TLV and the
shortest TWA for Hg found in the current technical literature.

5. Discussion

The large amount of gaseous Hg TLVs found in the literature gives rise to the two
most important themes for discussion: (i) the problematic division between chronic and
TWA (i.e., occupational) TLVs, and (ii) the different derivation methodologies through
which the TLVs are proposed and, therefore, the different TLV values referred to almost
the same conditions of application. The question of airborne Hg is of central importance
if we consider that gaseous Hg is a ubiquitous pollutant; in fact, different from the Hg
pollution of water or food, that could diversely affect people depending on their lifestyle
and diets, atmospheric Hg0 pollution concerns all mankind, and it is also the Hg fraction
most bioavailable, and therefore the most dangerous.

The time of exposure to a chemical compound is probably the foremost parameter
considered to define TLVs. Environmental agencies mainly divide TLVs between residential



Sustainability 2024, 16, 3142 8 of 15

(i.e., chronic), occupational (i.e., intermediate), and acute exposure. The first question results
from this division and from the differences that could be found between the TLV definitions.
The definition of chronic exposure is almost similar for the different environmental agencies.
For example, EPA defines chronic exposure as a “repeated exposure by the oral, dermal, or
inhalation route for more than approximately 10% of the life span in humans (. . .)” [75].
Similarly, ATSDR in the MRL explanation defines the chronic exposure as the “contact with
a substance that occurs over a long time (more than 1 year)” [30]. If we compare these
definitions with a TWA limit definition, it is difficult to find substantial differences between
an occupational and a chronic exposure. For example, the occupational limit released
by SCOEL [32] and reported in the Directive 2009/161/EU refers to “repeated exposures
(mainly 8-h per day, 5 days per week) over a working lifetime (up to 45 years)”; this time
interval corresponds to more than 10% of the mean lifetime of most people. Moreover, the
difference between a chronic and a TWA exposure seems to be even more inadequate if we
specifically consider Hg and its slow elimination rates from the human body, as suggested
by epidemiological data. Sällsten et al. [76] found a urinary Hg elimination half-life of
55 days among workers occupationally exposed for several years to Hg vapor; Hursh
et al. [77] observed that, after an exposure of a few minutes to high concentrations (about
90 µg/m3), the half-life elimination of Hg was 58 days from the whole body, while from
the kidney, it was 64 days. These elimination rates are ever lower for people who were
experimentally subjected to atmospheres with high GEMs, especially for women [78]. In
this regard, the difficulty to find a substantial difference between an occupational and a
residential (i.e., chronic) exposure led several authors [79,80] to lowering the existing Hg0

limits. The issue between residential (i.e., chronic) and occupational exposures is deeply
discussed by CalEPA [43]; not surprising, this agency proposes the lowest Hg TWA (8 h
REL of 0.06 µg/m3) found in the literature. Furthermore, it is notable that anomalous Hg
vapor concentrations, mainly attributable to accidents with products containing Hg or to
Hg release from unknown sources [81], could occur even at home. For example, Carpi and
Chen [82] found Hg0 concentrations in residential and business dwellings that exceeded
EPA RfC (0.3 µg/m3), while Li et al. [83] recorded even greater TGM values in several
residential locations of Chongqing (China). These data suggest that a high background
Hg pollution may be present even in residential settings, so TLVs for workplaces should
consider the cumulative impact of both pollution sources (i.e., occupational and residential)
on people’s health, in order to develop correct safeguard guidelines.

An additional key point that should be discussed refers to the uncertainty factors (UFs)
used to derive TLVs. This approach is not adopted by all the environmental agencies, or the
application criteria are not always explained. Based on our research and the data reported
in the Section 3, UFs are employed in TLV calculations by CalEPA, ATSDR, EPA, and WHO;
however, the same values are not always adopted, although they are applied to the same
procedure. For example, one of the UFs that is most used is the uncertainty factor to convert
a LOAEL to a NOAEL, and hence to derive several Hg TLVs [43,50]. This UF is usually
required because NOAEL is the preferable point of departure to calculate the TLV; if the
NOAEL is not identified in the epidemiological studies, it is estimated dividing the LOAEL
by an appropriate UF [84,85]. Despite its importance, the UF is not always employed with a
constant value to calculate TLVs referring to the same exposition time. This is, for example,
the case of chronic Hg0 TLVs released by CalEPA (0.03 µg/m3) and WHO (1 µg/m3) that,
starting from an almost identical LOAEL (see Summary S1), employed a UF of 10 and 2,
respectively [43,50]. Similarly, in accounting for the variations in people’s sensitivity to a
toxic compound, the UF is not always considered with the same value. This is the case of
chronic exposition to Hg0, where ATSDR for the MRL calculation and WHO employed a UF
of 10 [30,50], while CalEPA employs a UF of 30 [41]; the final resulting TLVs are thus quite
different (Table 2). In addition, the selection of the UFs to be used in the TLV calculation is
not uniform among the agencies. This is the case of CalEPA and EPA, which respectively
use a UF factor of 300 and 30 [43,59] to calculate a chronic Hg TLVs. Thus, in this case, there
are two different limits enforced in the same federation (USA), depending upon the state.
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The freedom of the agencies in employing different UFs is probably based on subjective
judgment among agency members considering the entire database of toxicologic effects
for the different chemicals [86]. Despite this, for the same toxic compound, the UFs used
should be the same, but probably for Hg, the great uncertainty to evaluate epidemiological
evidence [87] causes a lack of uniformity in the adopted UF values. It is notable that, when
specific chemical data are not available, a typical UF value of 10 is often employed for
people’s variability to calculate TLVs in residential settings [88]. Differently, in occupational
studies, a UF of less than 10 is often employed, due to the more homogeneous composition
of workers with respect to the general population [89]. However, this approach seems
to not be so accurate; despite young, sick, or old people not forming an occupationally
exposed population, workers may be rather heterogeneous; asthmatics, atopic people,
pregnant women, and other susceptible categories can be included, as already noticed by
Dankovic et al. [90]. It is also worth highlighting that several agencies which proposed Hg
TLVs for TWA exposure (NIOSH, OSHA, and SCOEL; Table 2) did not employ UFs for TLV
calculation. Based on their documentation [33,44,47], these agencies obtain TLVs directly
from NOAEL, without employing UFs [44,47], or from biological values (Hg in urine or
blood) directly converted to an atmospheric reference concentration [32]. The question
is not of secondary importance based on the influence of these agencies on TLV release;
NIOSH and OSHA jointly account for the USA Code of Federal Regulation, while SCOEL
is the occupational exposure committee of the European Commission.

Moreover, the different exposure pathways (i.e., inhalation, ingestion, dermal absorp-
tion) of potential risk for human health are not always considered, despite people, both
in residential and working settings, being exposed to a combination of Hg compounds in
its different valence states that could be converted from one form to another via several
chemical reactions [30,91]. For example, skin notation indicates the possibility that Hg
vapor could be absorbed through the skin; this notation is reported in TLV dispositions by
several environmental agencies [30,38,44,51,53]. In the 29 CFR 1910 act, OSHA underlines
the necessity to add this skin notation; moreover, it suggests how to properly handle clothes
that could be contaminated due to a continued exposure to airborne Hg compounds [44].
The skin notation is instead not reported by other agencies, such as the SCOEL; in its report
on Hg [32], the agency states that, although “a small amount of skin absorption occurs
on exposure to mercury vapor (. . .) the potential contribution to systemic body burden
seems to be insufficient to merit application of the skin notation”. The absence of the
skin notation in the SCOEL factsheet is then also transposed in the Community Directive
dealing with occupational exposure limit values [46]. Nevertheless, not all the Member
states that transposed this Community Directive omit the skin notation; this is, for example,
the case of the Italian law for health and safety on workplaces [92], where the skin notation
for Hg is reported in association with the 8 h TWA (20 µg/m3). Probably, the skin notation
is not commonly reported in the TLV definition because it is not always recognized as a
route of Hg exposure for humans. The question is strictly dealt with by the so-called MAK
Commission, the Senate Commission for the Investigative of Health Hazards of Chemical
Compounds in the Work Area, one of the commissions of the German Research Foundation
(DFG). The MAK underlines the significant contribution of the Hg vapor skin absorption
by pointing out that the 8 h TWA (20 µg/m3) proposed by the Commission itself probably
does not guarantee the prevention of an adverse effect on health [93].

Finally, it could be relevant to outline a timeline of Hg TLVs reported in the present pa-
per, based on the year of first publication and on the values suggested/imposed (Figure 1).
Based on this elaboration, we can observe a substantial lowering of the Hg TLVs pro-
posed by the different agencies over time, with the lowest value among the chronic Hg
TLVs that has been released only in the last years (i.e., EPA RfC [41]; CalEPA REL [43];
ATSDR MRL [30]). A substantial reduction can also be observed for occupational TLVs.
This is the case of (i) the ACGIH TLV, firstly released at 50 µg/m3 in 1994 and now set at
25 µg/m3, (ii) the NIOSH IDLH, originally at 28,000 µg/m3 and now suggested at
10,000 µg/m3, and of (iii) the OSHA PEL, formerly enforced at 100 µg/m3 and now estab-
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lished at 50 µg/m3 [44,45,51,94]. On the contrary, ATSDR MRL has been increased from its
release in 1999 from 0.2 µg/m3 to the more recent 0.3 µg/m3 [30,95]. The constant recon-
sideration of the Hg TLVs reflects a lowering trend towards a more protective approach for
people’s health, whether the exposition to Hg occurs at home or at the workplace.

1 
 

 Figure 1. Timeline of Hg0 TLVs for chronic (green dots), TWA (black squares), and ceiling/IDLH
exposures in function of their values. TLVs with a regulatory value are underlined. (NIOSH 1973 [47];
WHO 1980 [52]; OSHA 1989 [44]; NIOSH 1994 [45]; WHO 2000 [50]; EPA 2003 [41]; SCOEL 2007 [32];
ACGIH 2009 [51]; EPA 2010 [40]; ATSDR 2012 [42]; CalEPA 2014 [43]; ATSDR 2022 [30]).

This reconsideration trend of Hg TLVs can also be understood on the basis of the last
scientific evidence, which often report Hg concentrations of potential risk lower than most
of the TLVs found in the literature. For example, in an epidemiological survey on people
living in small-scale gold mining areas, Beate et al. [80] found a LOAEL of 3.5 µg/m3.

ATSDR states that an exposure to a Hg0 concentration greater than 10 µg/m3 could
be associated with human health effects [42]. This value (10 µg/m3), assumed by ATSDR
as the lowest toxic concentration level for humans (TCL), is also reported in other studies
as the threshold value beyond which human urinary levels of Hg start to increase [96–98].
Similarly, Richardson et al. [79], based on Ngim et al. [58], refers to a LOAEL of 14 µg/m3

as indicative for central nervous system effects related to an occupational Hg0 exposure;
this value is converted to 6 µg/m3 LOAEL for a continuous (i.e., chronic) exposure. A
concentration of 15 µg/m3 is instead assumed by WHO [50] as the air Hg concentration
which results in possible renal tubular effects, while 30 µg/m3 is the supposed limit for
objective tremors (see Summary S1 for details). These concentrations are sensibly lower
than most of the legislative limits enforced for gaseous Hg, but close to the limit adopted
by the EU for the 8 h TWA (20 µg/m3), for example.
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6. Conclusions

Airborne Hg pollution is a serious problem that received increasing attention dur-
ing the last years, as demonstrated by the numerous scientific studies dedicated to this
question. The problem has been addressed through the establishment of TLVs, that show
a significant disagreement among the proposing entities, arising from the quite different
approaches for establishing the limits. In recent years, a trend toward lowering the limits
has been observed, reflecting a more conservative approach to human health. A key point
is apparently the problematic division between chronic and TWA exposures. Moreover,
several factors, mainly related to Hg exposure routes and the effects on human health,
are not evenly considered. It seems therefore that a worldwide-coordinated effort (e.g.,
through UNEP) is needed to establish universally accepted criteria to define reliable and
comprehensible TLVs.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/su16083142/s1, Summary S1: Threshold limit values for Hg.
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