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Abstract: The reduction in agricultural carbon emissions (ACEs) in Shandong Province is essential
to China’s carbon peak and carbon neutrality objectives. In this regard, we constructed an ACE
inventory for Shandong Province at a resolution of 1 km × 1 km, integrating the emission factor
method with geographic information system (GIS) technology. Building upon this, we explored the
dynamic evolution patterns of ACEs using kernel density estimation and conditional probability
density estimation. Additionally, long short-term memory networks were trained to predict ACEs
under various scenarios. The results showed that: (1) ACEs in Shandong Province exhibited two
stages of change, i.e., “rise and decline”. Notably, 64.39% of emissions originated from the planting
industry. The distribution of emissions was closely correlated with regional agricultural production
modes. Specifically, CO2 emissions were predominantly distributed in crop cultivation areas, while
CH4 and N2O emissions were primarily distributed in livestock breeding areas. The uncertainty of
the emission inventory ranged from −12.04% to 10.74%, mainly caused by emission factors. (2) The
ACE intensity of various cities in Shandong Province is decreasing, indicating a decoupling between
ACEs and agricultural economic growth. Furthermore, the emission disparities among different
cities are diminishing, although significant spatial non-equilibrium still persists. (3) From 2022
to 2030, the ACEs in Shandong Province will show a continuous downward trend. By 2030, the
projected values under the baseline scenario, low-carbon scenario I, and low-carbon scenario II
will be 6301.74 × 104 tons, 5980.67 × 104 tons, and 5850.56 × 104 tons. The low-carbon scenario
reveals greater potential for ACE reduction while achieving efficient rural economic development and
urbanization simultaneously. This study not only advances the methodology of the ACE inventory
but also provides quantitative references and scientific bases for promoting low-carbon, efficient, and
sustainable regional agriculture.

Keywords: Shandong province; agricultural carbon emissions (ACE); emission inventory; spatio-
temporal evolution; scenario projections

1. Introduction

Greenhouse gas (GHG) emissions have become a major driver of climate change,
leading to global warming and an increase in extreme weather events. Countries around
the world have recognized the urgency of the situation and have reached a global con-
sensus on reducing GHG emissions. As a leader and pioneer in international low-carbon
actions, China announced in 2020 its aim to peak CO2 emissions before 2030 and strive
to achieve carbon neutrality by 2060. Agricultural production is a significant contributor
to anthropogenic GHG emissions [1], accounting for about 14% of the global total [2]
and growing at an annual average rate of 1.1% [3]. Both China and the United States are
agricultural powerhouses. However, while agricultural carbon emissions (ACEs) in the
United States account for only 6.3% of its total emissions [4], China’s ACEs reach as high
as 17% [5]. Therefore, ACE reduction is crucial for China to achieve its “dual carbon”
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goals. Additionally, there are regional differences in agricultural location and resource
endowments across China, making it necessary to conduct in-depth research on ACEs in
specific regions.

Research on ACEs began with the identification of emission sources, initially focus-
ing on inputs such as fertilizers, pesticides, and irrigation in agriculture [6–10]. Subse-
quently, researchers delved into carbon sources related to rice cultivation [11,12], agricul-
tural land [13,14], and straw burning [15,16], as well as animal enteric fermentation and
manure management [17–19]. Scholars have inherited and expanded on related research
findings, resulting in a more diversified trend in ACE sources, which now largely cover
both crop cultivation and livestock farming, the two main sectors of agricultural production.
Unified standards for calculating ACEs have not yet been established. The main measure-
ment techniques include the emission factor method [20–23], life cycle assessment [24], and
the modeling method [25]. The modeling method requires complex data and calculations,
while life cycle assessment entails higher costs. Both methods have limitations in estimating
emissions over long periods and at large scales. In contrast, the emission factor method
possesses both macroscopic and microscopic characteristics, is highly adaptable, and has
mature formulas, activity levels, and emission factor databases. It can relatively accurately
reflect the emission status of sources and has been widely adopted internationally [26],
including in China’s “Guidelines for the Compilation of Provincial Greenhouse Gas Invento-
ries”. After compiling ACE inventories, scholars further studied the characteristics of ACEs
and their future carbon emission reduction potential. Assessment of ACE characteristics is
typically based on efficiency [27–29] or intensity [30–33], analyzing their spatiotemporal
distribution using techniques such as kernel density estimation, Markov chain, standard
deviation ellipse, and Gini coefficient. Regarding predictions of future ACE reduction
potential, research approaches can be broadly categorized into two types. The first involves
using methods such as the Kaya constant equation, the logarithmic mean Divisia index, or
the stochastic impacts by regression on population, affluence, and technology (STIRPAT)
model to determine ACE influencing factors and combining them with scenario analysis
to predict ACEs [34–36]. The second type utilizes system modeling methods such as grey
prediction or autoregressive integrated moving averages to directly forecast ACEs based
on historical data [37,38]. Currently, the STIRPAT model combined with scenario analysis
is the mainstream forecasting method [39]. This approach can incorporate regional pol-
icy planning and agricultural conditions, exploring scenarios that maximize future ACE
reduction potential and promote sustainable agricultural development.

While current research on ACEs has yielded significant contributions, several chal-
lenges persist: (1) carbon sources such as crops, agricultural land, and straw burning are
often overlooked in ACE measurements, leading to underestimated emissions. (2) ACE
inventories are typically compiled based on administrative divisions as spatial statistical
units, which do not accurately identify their characteristics. Moreover, there is a lack of
quantitative assessment of the reliability of ACE inventories, i.e., uncertainty analysis.
(3) There is insufficient understanding of the continuity and mobility of ACE distribution,
hindering research on its dynamic evolutionary patterns. (4) The absence of robust learning
and testing processes in ACE prediction may lead to drawbacks example overfitting, vague
nonlinear relationships, and low generalization ability.

Shandong Province is a crucial agricultural production center in China, with its gross
agricultural output value, agricultural value-added, and total agricultural import and
export value ranking first nationwide. Therefore, we selected Shandong Province as the
research subject. To overcome the limitations of previous studies, we developed a more
comprehensive ACE measurement framework, encompassing five crucial domains: soil
utilization, crop planting, straw burning, enteric fermentation, and manure management.
The ACE inventory, with a spatial resolution of 1 km × 1 km, was generated by integrating
the emission factor method and geographic information system (GIS) technology, and its
uncertainty was quantitatively analyzed through Monte Carlo simulation. Subsequently,
kernel density and conditional probability density estimation techniques were employed
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to examine the dynamic evolution patterns and spatial heterogeneity of ACEs. Finally, we
trained a long short-term memory (LSTM) network to predict ACEs in Shandong Province
under various scenarios.

2. Materials and Methods
2.1. Study Area

Shandong Province is located on the east coast of China, spanning from 34◦22′ N to
38◦24′ N and from 114◦47′ E to 122◦42′ E. It shares its borders with Hebei, Henan, Anhui,
and Jiangsu provinces, from north to south. The province comprises 16 prefecture-level
cities and covers a total area of 15.58 × 104 km2 (Figure 1). The region experiences a tem-
perate monsoon climate, characterized by an average annual light duration of 2290–2890 h,
a temperature range of 11–14 ◦C, and rainfall between 550 and 950 mm. With abundant
light, heat, and water resources, Shandong is highly conducive to the growth of various
crops and livestock. In 2022, the planting industry in the province generated a total output
value of CNY 620.65 billion, while animal husbandry contributed to a total output value of
CNY 300.35 billion. The main crops cultivated in the province include wheat, maize, sweet
potatoes, soybeans, rice, and peanuts. Livestock farming primarily involves cattle, pigs,
sheep, poultry, and rabbits.
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Figure 1. Geographical location, administrative divisions, and land use types in Shandong Province.

2.2. Data Sources

The calculation of Shandong ACEs spanned the years 2000–2021, incorporating data
from multiple sources including statistical data, emission factor data, and geospatial
data. Specifically, activity level data for ACE sources were obtained from the Shan-
dong Provincial Statistical Yearbooks (2001–2022). Emission factor data for ACE sources
were obtained from reputable references such as the Intergovernmental Panel on Cli-
mate Change (IPCC), the Guidelines for the Compilation of Provincial Greenhouse Gas
Inventories, and relevant literature. Administrative boundary data were acquired from
the Resources and Environment Data Centre of the Chinese Academy of Sciences (https:
//www.resdc.cn/DOI/DOI.aspx?DOIid=121, accessed on 2 July 2023). Additionally, land
cover data with a spatial resolution of 30 m were obtained from the Zenodo platform
(https://zenodo.org/record/5816591#.ZCJIR8pBz1_, accessed on 6 April 2023).
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2.3. Measuring Method of ACEs

We employed the emission factor method, which is recommended by the IPCC, to
quantify ACEs. The total ACEs are calculated by summing up emissions from various
carbon sources, as expressed below:

E = Esoil + Ecrop + Estraw + Eenteric + Emanure (1)

where E represents the total ACEs, Esoil denotes the carbon emissions from soil utilization,
Ecrop signifies carbon emissions from crop planting, Estraw indicates carbon emissions from
straw burning, Eenteric refers to carbon emissions from enteric fermentation, and Emanure
represents carbon emissions from manure management. CH4 and N2O are expressed in
CO2 equivalents (CO2-eq) based on the global warming potential, with 1 kg of CH4 being
equivalent to 28 kg of CO2 and 1 kg of N2O being equivalent to 265 kg of CO2 [40].

The agricultural carbon emission intensity (ACEI) is defined as the carbon emissions
per unit of growth in agricultural GDP [41], expressed as:

ACEI = E/AGDP (2)

where AGDP is the gross value of agricultural production.

2.3.1. Carbon Emissions from Planting

(1) Soil Utilization

Carbon emissions from soil utilization consist of two aspects, CO2 emissions from
agricultural inputs, represented by Ematerial, and N2O emissions from agricultural land,
represented by Eland:

Esoil = Ematerial + Eland × 265 (3)

CO2 emissions from agricultural inputs relate to fertilizers, agricultural films, agricul-
tural diesel, pesticides, plowing, and irrigation:

Ematerial =
t

∑
s=1

Ematerial,s =
t

∑
s=1

Amaterial,s × EFmc,s × 44/12 (4)

where Ematerial,s, Amaterial,s, and EFmc,s are the CO2 emissions, activity levels, and emission
factors of the agricultural land material s, respectively. The emission factors are given in
Table 1.

Table 1. Carbon emission sources and emission factors of agricultural inputs.

Emission Source Emission Factor References

Chemical fertilizer

Nitrogen fertilizer 0.4173 kg(C)·kg−1

Fan [1]Phosphate fertilizer 0.4445 kg(C)·kg−1

Potash fertilizer 0.1773 kg(C)·kg−1

Compound fertilizer 0.4827 kg(C)·kg−1

Agricultural film 5.18 kg(C)·kg−1 Tian [42]
Agricultural diesel oil 0.5927 kg(C)·kg−1 IPCC [2]

Pesticide 4.9341 kg(C)·kg−1 Zhi and Gao [43]
Plowing 312.6 kg(C)·hm−2 Wu [44]

Irrigation 19.8575 kg(C)·kg−1 Wu [32]
Note: CO2 emission factor = carbon emission factor × 44/12.

N2O emissions from agricultural land are divided into direct and indirect emissions:

Eland = Edirect + Eindirect (5)

where Edirect and Eindirect are direct and indirect N2O emissions from agricultural land,
respectively.
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Direct emissions arise from in-season nitrogen inputs to agricultural land, including
fertilizer, manure, and straw. Due to the difficulty of obtaining data on manure application,
only fertilizer and straw were considered.

Edirect = (Nn f + Nsr)× EFdt (6)

Nsr =
q

∑
j=1

Nsr,j =
q

∑
j=1

((
Yj

Mj
− Yj

)
× Pj × R × Dj +

Yj

Mj
× Pj × Gj × Dj

)
(7)

where Nnf and Nsr represent nitrogen inputs from nitrogen fertilizers and straw returns, respec-
tively. EFdt is the direct emission factor of N2O from agricultural land (0.0057 kg(N2O)·kg−1) [45].
For crop j, Nsr,j, Yj, Mj, Pj, R, Dj, and Gj represent nitrogen inputs, economic yields, economic
coefficients, the proportion of nitrogen in straw, the straw return rate (56%) [22], the dry weight
ratio, and the root-to-crown ratio, respectively. The measured parameters are listed in Table 2.

Table 2. Parameters for measuring nitrogen in straw returned to the field by crop [45].

Crop Dry Weight
Ratio

Proportion of
Nitrogen in Straw

Economic
Coefficient

Root-to-Crown
Ratio

Rice 0.855 0.00753 0.489 0.125
Wheat 0.87 0.00516 0.434 0.166
Maize 0.86 0.0058 0.438 0.17
Beans 0.82 0.022 0.385 0.13
Tubers 0.45 0.011 0.667 0.05

Peanuts 0.9 0.0182 0.556 0.2
Rapeseed 0.82 0.00548 0.271 0.15
Vegetables 0.15 0.008 0.83 0.25

Indirect emissions originate from atmospheric nitrogen deposition, as well as nitrogen
loss through leaching and runoff:

Eindirect = End + Elr = (Nn f + Nsr)× V × EFnd + (Nn f + Nsr)× L × EFlr (8)

where End represents N2O emissions from atmospheric nitrogen deposition, Elr is N2O
emissions from leaching and runoff. V, EFnd, L, and EFlr denote the volatilization rate (10%),
the atmospheric nitrogen deposition emission factor (0.01 kg(N2O) kg−1), the loss rate
(20%), and the leaching and runoff emission factor (0.0075 kg(N2O)·kg−1), respectively [45].

(2) Crop Planting

Carbon emissions from crop cultivation include CH4 emissions from rice fields and
N2O emissions from major crops:

Ecrop = Erice × 28 +
q

∑
j=1

Ecrop,j × 265 = Arice × EFrice × 28 +
q

∑
j=1

Acrop,j × EFcc,j × 265 (9)

where Erice, Arice, and EFrice represent CH4 emissions, sown area, and CH4 emission factors
for rice fields, respectively. For crop j, Ecrop,j, Acrop,j, and EFcc,j denote N2O emissions, sown
area, and N2O emission factors, respectively. The emission factors are given in Table 3.
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Table 3. Carbon emission sources and emission factors of crop cultivation.

Emission Source Emission Factor References

Rice
215.5 kg(CH4)·hm−2 PRC National Development

and Reform Commission [45]
0.24 kg(N2O)·hm−2

Min and Hu [46]

Wheat 1.75 kg(N2O)·hm−2

Maize 2.532 kg(N2O)·hm−2

Beans 2.29 kg(N2O)·hm−2

Tubers
0.95 kg(N2O)·hm−2Peanuts

Rapeseed
Vegetables 4.944 kg(N2O)·hm−2

Cotton 0.4804 kg(N2O)·hm−2 Liu and Liu [47]
Melons 4.21 kg(N2O)·hm−2 Xie And Liu [48]

(3) Straw burning

Carbon emissions from straw burning are calculated by:

Estraw =
q

∑
j=1

(
Esh,j × 28 + Esc,j

)
=

q

∑
j=1

[(
Yj × Sj × Bj × Xj

)
×
(

EFsh,j × 28 + EFsc,j

)]
(10)

where Sj represents the straw-to-grain ratio of crop j; Esh,j, Esc,j, Bj, Xj, EFsh,j, and EFsc,j
denote the CH4 emissions, CO2 emissions, burning ratio, burning efficiency, CH4 and CO2
emission factors for straw burning of crop j, respectively. The measured parameters are
listed in Table 4.

Table 4. Parameters for measuring the straw burning of major crops [22].

Emission
Source

Straw-to-
Grain Ratio

Burning
Ratio

Burning
Efficiency

Emission Factor (kg·kg−1)

CH4 CO2

Rice 0.93 0.097 0.93 0.0032 1.46
Wheat 1.34 0.197 0.93 0.0034 1.46
Maize 1.73 0.234 0.92 0.0044 1.35

2.3.2. Carbon Emissions from Animal Husbandry

(1) Enteric Fermentation

Microorganisms in the digestive tract produce CH4 emissions through fermentation
during the normal metabolic process of livestock:

Eenteric =
l

∑
k=1

Eenteric,k × 28 =
l

∑
k=1

Alivestock,k × EFeh,k × 28 (11)

where Eenteric,k, Alivestock,k, and EFeh,k represent the CH4 emissions from livestock enteric
fermentation, year-end stock, and emission factors, respectively.

(2) Manure Management

Livestock manure emits CH4 and N2O during storage and handling before application
to soil:

Emanure =
l

∑
k=1

Emh,k × 28 +
l

∑
k=1

Emn,k × 265 =
l

∑
k=1

Alivestock,k × (EFmh,k × 28 + EFmn,k × 265) (12)

where Emh,k, Emn,k, EFmh,k, and EFmn,k represent the CH4 emissions, N2O emissions, CH4
and N2O emission factors for livestock manure management, respectively. The emission
factors are provided in Table 5.
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Table 5. Carbon emission sources and emission factors of animal husbandry (kg·head−1·year−1).

Emission Source
Enteric

Fermentation Manure Management
References

CH4 CH4 N2O

Cattle 80.125 5.73 1.262
PRC National Development

and Reform Commission [45]
Pig 1 5.08 0.175

Sheep 8.2333 0.27 0.113
Poultry – 0.02 0.007
Rabbit 0.254 0.08 0.02 Hu and Wang [49]

Note: There are variations in carbon emission factors for different rearing sizes and types of cattle and sheep. We
utilized the average value in our calculation.

2.4. Kernel Density Analysis

Kernel density analysis, a significant non-parametric estimation method, demonstrates
strong robustness and is not dependent on a particular model. Consequently, it has
become a widely employed technique for investigating non-uniform distribution problems.
Kernel density analysis can generate continuous and smooth density curves by estimating
the probability density of random variables. This approach accurately illustrates the
distribution pattern of random variables and thus aids in elucidating the dynamic evolution
trend of ACE.

2.4.1. Kernel Density Estimation

Kernel density estimation was proposed by Mood [50] and Silverman [51]. Let the
density function of a set of continuous random variables X be denoted by f (x) and the
probability density of the point x is given by:

f (x) =
1

nh

n

∑
i=1

K(
Xi − x

h
) (13)

K(x) =
1√
2π

exp(− x2

2
) (14)

where n, h, Xi, and x represent the number of observations, bandwidth, independently and
identically distributed observations, and mean, respectively. K(·) denotes the Gaussian
kernel function.

2.4.2. Conditional Probability Density Estimation

The conditional probability density estimation proposed by Hyndman et al. [52] can
reflect the continuity and mobility of the ACE distribution more comprehensively and
intuitively than kernel density estimation and the Markov chain. Its expression is:

g(y|x) = f (x, y)
f (x)

(15)

f (x, y) =
1

nhxhy

n

∑
i=1

K(
Xi − x

hx
)K(

Yi − y
hy

) (16)

where g(y|x) denotes the conditional probability density of y under the given x condition.
f (x,y) represents the joint density function of x and y.

2.5. LSTM

LSTM is an advancement and refinement of the recurrent neural network (RNN)
architecture. It was originally proposed by Hochreiter and Schmidhuber [53] and further
improved and popularized by Graves [54]. LSTM addresses the problem of vanishing
gradients in traditional RNNs through the introduction of memory cells and gating mecha-
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nisms. This enables LSTM to effectively learn dependencies in time-series data with strong
temporal order and non-linearity, thereby making it suitable for predicting ACE.

LSTM consists of four main components: an input gate, a forget gate, an output gate,
and a memory cell. In addition, three control gates are connected to the multiplication
unit to control the input, memory cell, and output of the LSTM unit. The memory cell
has a forgetting mechanism determined by its current state, the input of the forget gate xt,
and the previous intermediate output ht−1. The memory cell also has a retention vector
that combines the result of the input gate’s transformation (xt transformed by the tanh
and sigmoid functions) with the updated memory cell state. The intermediate output ht
is determined based on the updated memory cell state and the output gate. The primary
calculation equations for LSTM are as follows:

it = σ(Wixxt + Wihht−1 + bi) (17)

ot = σ(Woxxt + Wohht−1 + bo) (18)

ft = σ
(

W f xxt + W f hht−1 + b f

)
(19)

gt = ϕ
(

Wgxxt + Wghht−1 + bg

)
(20)

St = gt ⊙ it + St−1 ⊙ ft (21)

ht = ϕ(St)⊙ ot (22)

where σ and ϕ denote the sigmoid and tanh functions, respectively. it, ot, ft, ht, gt, and St
denote the input gate, the output gate, the forget gate, the intermediate output node, the
intermediate input node, and the state unit, respectively. Wix, Wih, Wox, Woh, Wfx, Wfh, Wgx,
and Wgh denote the weights of the inputs xt and the intermediate output ht−1 matrix. ⊙
denotes the Hadamard product. bi, bo, bf, and bg denote the bias of each corresponding gate.

3. Results
3.1. ACE Inventory

Table 6 presents the ACE inventory in Shandong Province from 2000 to 2021. Re-
garding the composition of agricultural GHGs, CO2 dominates with a total contribution
rate of 50.09%, followed by CH4 and N2O, which contribute 31.80% and 18.11%, respec-
tively. There is an overall upward trend in CO2 emissions (contribution rate), rising from
3866.30 × 104 tons (41.57%) in 2000 to 4652.43 × 104 tons (58.39%) in 2021. In contrast,
CH4 and N2O emissions (contribution rate) show an overall decreasing trend, falling from
3632.14 × 104 tons (39.05%) and 1802.11 × 104 tons (19.38%) in 2000 to 1860.37 × 104 tons
(23.35%) and 1454.74 × 104 tons (18.26%) in 2021, respectively.

Regarding the structure of the ACEs, the primary source is soil utilization with a total
contribution of 34.00%. It is succeeded by enteric fermentation, straw burning, manure man-
agement, and crop planting with contributions of 22.86%, 22.29%, 12.75%, and 8.10% respec-
tively. The emissions (contribution rate) of the planting industry show an overall increasing
trend, rising from 5242.55 × 104 tons (56.37%) in 2000 to 5913.29 × 104 tons (74.22%) in 2021.
Conversely, animal husbandry emissions (contribution rate) show an overall decreasing
trend, decreasing from 4058.00 × 104 tons (43.63%) in 2000 to 2054.24 × 104 tons (25.78%)
in 2021.

Overall, emissions in Shandong Province exhibit a pattern of initial increase fol-
lowed by a subsequent decrease, with the average annual growth rate being −0.73%.
Between 2000 and 2005, the total emissions experienced an upward trend, increasing from
9300.55 × 104 tons to 10327.22 × 104 tons, representing an increment of 11.04% and an
average annual growth rate of 2.12%. However, from 2005 to 2021, the trend reversed,
with a decline in total emissions. The total emissions reached 7967.54 × 104 tons in 2021, a
decrease of 22.85% from the peak in 2005 and an average annual decrease of 1.61%.
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Table 6. ACE inventory in Shandong Province from 2000 to 2021 (104 tons).

Years

Planting Industry Animal Husbandry

Total EmissionsSoil Utilization Crop Planting Straw Burning Enteric
Fermentation Manure Management

N2O CO2 CH4 N2O CH4 CO2 CH4 CH4 N2O

2000 491.62 2445.71 106.65 666.24 111.73 1420.60 2841.45 572.30 644.25 9300.55
2001 488.67 2527.32 96.14 656.92 111.32 1396.39 2870.14 592.82 662.01 9401.73
2002 466.15 2698.60 93.70 660.07 99.21 1249.36 2961.47 612.36 684.02 9524.94
2003 449.64 2724.59 63.29 644.70 97.91 1230.14 3119.03 644.10 718.58 9691.99
2004 460.57 2741.41 75.27 642.88 110.53 1374.40 3276.69 680.47 758.57 10120.78
2005 477.71 2825.96 72.49 676.23 130.38 1642.84 3108.18 667.32 726.12 10327.22
2006 490.21 2919.22 75.98 684.71 143.55 1811.56 2433.67 563.44 598.68 9721.01
2007 490.10 2922.40 77.76 677.80 148.15 1859.56 1919.76 500.78 489.61 9085.93
2008 443.97 2935.31 77.99 679.80 156.62 1968.13 2042.24 558.05 534.82 9396.93
2009 436.07 2856.22 78.42 693.06 172.34 2154.83 2103.63 604.43 568.65 9667.64
2010 432.10 2887.46 76.70 702.37 177.14 2213.25 2123.05 635.61 588.47 9836.15
2011 425.18 2873.85 75.06 707.08 183.60 2288.51 2146.15 669.11 609.76 9978.31
2012 424.44 2923.91 61.48 687.36 176.92 2200.33 2172.67 688.60 625.93 9961.63
2013 416.99 2901.54 65.79 674.48 162.98 2038.16 2138.74 698.73 620.81 9718.21
2014 410.36 2793.63 64.82 673.72 169.36 2113.79 2098.25 689.86 607.08 9620.85
2015 402.06 2824.74 60.19 669.82 166.82 2088.90 1911.87 656.66 573.64 9354.70
2016 389.44 2795.32 56.01 658.59 161.30 2021.90 1679.80 631.00 541.52 8934.88
2017 379.36 2722.88 65.93 698.69 180.16 2232.75 1390.65 550.43 473.11 8693.97
2018 360.58 2631.15 68.92 697.44 177.17 2197.88 1218.78 522.72 444.96 8319.59
2019 338.34 2497.42 69.97 693.67 176.81 2202.75 1170.55 472.77 447.20 8069.48
2020 328.35 2365.33 68.11 695.15 179.87 2237.82 964.79 517.43 420.68 7777.54
2021 308.72 2393.42 68.44 702.53 181.18 2259.01 1057.95 552.80 443.49 7967.54

The emission structures of CH4, N2O, CO2, and total emissions from agriculture in
Shandong Province between 2000 and 2021 are depicted in Figure 2. Major sources of CH4
emissions include enteric fermentation in cattle and sheep, as well as manure management
in pigs. With Shandong Province undergoing industrial restructuring in animal husbandry,
there has been a reduction in the number of large livestock requiring long feeding cycles and
high farming costs. Consequently, CH4 emissions from animal husbandry have decreased
rapidly in recent years. N2O emissions originate from various sources, including both the
planting industry and animal husbandry. However, the reduction in emissions from animal
husbandry has led to the planting industry becoming the primary source of N2O emissions.
The main source of CO2 emissions is the plowing and burning of wheat and maize straw. In
response to measures by the Chinese Ministry of Agriculture to reduce the use of chemical
fertilizers and pesticides and to improve the efficiency of agricultural inputs, CO2 emissions
from agricultural inputs have been steadily decreasing. Nevertheless, due to the rise in
crop productivity and inadequate comprehensive utilization of straw, straw burning has
emerged as the foremost contributor to CO2 emissions.

The total emissions trend indicates an annual rise in carbon emissions from straw
burning, whereas carbon emissions from enteric fermentation and manure management
have consistently decreased. Currently, the planting industry serves as the primary source
of ACEs in all cities across the province.

Spatial allocation of ACEs in Shandong Province was conducted using ArcGIS 10.8
software. The 30 m resolution cropland raster data were chosen to characterize the emis-
sions from the planting industry. The GHG emissions per unit area of the emission sources
within the planting industry in each city served as the spatial allocation factors. By con-
necting the gridded administrative division data (1 km × 1 km) with the cropland raster
data, the corresponding GHG emissions within each grid were obtained. This involved
multiplying each GHG’s spatial allocation factor with the cropland area within the grid.
Similarly, 30 m resolution grassland raster data characterized emissions from animal hus-
bandry, and emissions within the corresponding grid were calculated. Emissions of the
same GHG from different sources were summed to derive the inventory for CH4, N2O,
CO2, and total emissions (Figure 3).
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Figure 2. Emission structure of agricultural CH4 (a), N2O (b), CO2 (c), and total emissions (d) in
Shandong Province from 2000 to 2021. Note: The subscripts ch, sh, eh, and mh represent CH4 emis-
sions from crop planting, straw burning, enteric fermentation, and manure management, respectively.
The subscripts cn, ni, nd, lr, and mn represent N2O emissions from crop planting, in-season nitrogen
inputs to agricultural land, atmospheric nitrogen deposition, nitrogen loss through leaching and
runoff, and livestock manure management, respectively. The subscript sc represents CO2 emissions
from straw burning.
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Figure 3. Emission inventory of agricultural CH4, N2O, CO2, and total emissions in Shandong
Province at 1 km × 1 km resolution for the period of 2000 to 2021.

The spatial and temporal distribution of agricultural GHG emissions in Shandong
Province is closely related to regional agricultural production methods. Specifically, CH4
emissions are concentrated mainly in the mountainous and hilly areas of central, southern,
and eastern Shandong Province, along with some areas of Binzhou and Dongying. These
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areas are suitable for grazing and constitute the main distribution areas for animal hus-
bandry in Shandong Province, so the grids with higher emissions are mostly concentrated
here. CH4 emissions experienced a slight increase in some regions of Yantai, central and
southern Shandong, between 2000 and 2005. However, from 2005 to 2021, the emission
distribution shifted gradually towards central and southern Shandong. N2O emissions are
mainly concentrated in the mountainous and hilly areas of central and southern Shandong
Province, as well as some areas of Yantai and Weifang. Between 2000 and 2021, N2O
emissions in Shandong Province decreased, and the main source of emissions shifted to
the planting industry, so the emission distribution tends to spread to the southwest and
northwest plains of Shandong Province which are suitable for the development of the
planting industry. CO2 emissions are more uniformly distributed compared to CH4 and
N2O emissions. The emissions are mostly concentrated in the plains of southwest and
northwest Shandong Province and part of Weifang. These regions contain extensive crop-
lands where dryland crops predominate and have a large residual amount of straw leading
to higher CO2 emissions. From 2000 to 2021, CO2 emissions increased in the southwest and
northwest plains, as well as the eastern hilly areas of Shandong Province.

In general, ACEs tend to spread from the central and southern regions of Shandong
Province to the southwest, northwest, and east regions as emissions from the planting
industry increase and those from animal husbandry decrease in the province.

Monte Carlo stochastic simulation sampling was utilized to evaluate the uncertainty in
the ACE inventory of Shandong Province. This technique enabled quantitative analysis of
uncertainty and identification of the primary sources of uncertainty. The Oracle Crystal Ball
add-in for Microsoft Excel 2013 software was employed for this purpose. The simulation
made several assumptions about the input data. The activity levels of the emission sources
were assumed to follow a normal distribution. The emission factors derived from the
IPCC and the Guidelines for the Compilation of Provincial Greenhouse Gas Inventories
were assumed to follow a uniform distribution, while the remaining emission factors were
assumed to follow a normal distribution. ACEs were considered as the output and the
relationship between the input variables (activity levels and emission factors) and the
output was established. Random sampling was conducted using the Latin hypercube
sampling scheme. Through 10,000 simulations, the analysis provided 95% confidence
intervals, uncertainty ranges, and sensitivities of activity levels and emission factors to
emissions. The results are presented in Table 7.

The uncertainty of ACEs in Shandong Province ranged from −12.04% to 10.74%,
indicating relatively low overall uncertainty in the emissions inventory. Uncertainty in
the emission inventory arises from both the activity levels of the emission sources and
the emission factors. On average, the sensitivity of activity levels is 31.35%, while the
sensitivity of emission factors is 68.67%. This suggests that the emission factors contribute
more to the uncertainty of the inventory. The range of uncertainty for emission sources,
such as agricultural diesel, nitrogen input, atmospheric nitrogen deposition, leaching and
runoff, enteric fermentation, and the manure management of cattle, pigs, and sheep and
poultry manure management, ranges between −18.17% and 28.70%. For these emission
sources, the sensitivity means for activity levels and emission factors are 31.22% and 68.85%,
respectively. These emission sources have lower uncertainty, demonstrating that their
emission factors reflect self-characteristics with accuracy. The remaining emission sources
exhibit higher uncertainty, ranging from −35.35% to 72.98%. The average sensitivities of
the activity levels and emission factors are 31.43% and 68.57%, respectively. This suggests
that further refinement and measurement of emission factors for these sources are required
to reduce uncertainty.
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Table 7. Uncertainty analysis of the ACE inventory in Shandong Province in 2021.

Category Emission Source GHG
95% Confidence Interval
for Emissions (104 tons)

Uncertainty (%)
Sensitivity (%)

Activity Level Emission Factor

Soil utilization

Nitrogen fertilizer

CO2

[94.7977, 232.7535] −59.27–45.53 13.21 86.79
Phosphate fertilizer [28.4206, 74.7848] −46.05–41.97 17.85 82.15

Potash fertilizer [12.4471, 28.6343] −35.52–48.34 11.49 88.51
Compound fertilizer [231.2040, 506.0170] −36.12–39.80 9.02 90.98

Agricultural film [278.3114, 734.2676] −43.57–48.88 29.53 70.47
Agricultural diesel oil [208.0059, 339.9838] −21.69–21.87 35.73 64.27

Pesticide [123.2064, 269.8380] −37.08–37.81 9.76 90.24
Plowing [518.1084, 1148.9644] −35.73–42.53 7.35 92.65

Irrigation [23.2312, 55.9521] −40.13–44.19 8.98 91.02
Nitrogen input

N2O
[170.6895, 267.6686] −20.46–24.73 28.14 71.86

Atmospheric nitrogen
deposition [30.4558, 46.7743] −19.10–24.24 28.21 71.79

Eluvial runoff [44.1231, 70.1920] −21.87–24.29 28.42 71.58

Crop planting

Rice
CH4 [34.5988, 104.2274] −49.45–52.29 81.24 18.76
N2O [0.3359, 1.1818] −53.44–63.82 60.00 40.00

cotton

N2O

[0.8353, 2.0990] −40.45–49.64 40.36 59.64
Wheat [119.0260, 269.6978] −35.74–45.61 13.70 86.30
Maize [152.9962, 382.1876] −41.49–46.16 10.98 89.02
Beans [6.0772, 16.5086] −46.27–45.95 26.90 73.10
Tubers [1.8456, 4.9651] −42.55–54.56 40.37 59.63

Peanuts [9.5957, 24.3079] −39.66–52.85 29.35 70.65
Rapeseed [0.1159, 0.3796] −50.39–62.50 58.12 41.88
Vegetables [129.1353, 284.2686] −35.35–42.31 13.94 86.06

Melons [14.0770, 34.7674] −39.55–49.31 36.49 63.51

Straw burning

Rice
CH4 [0.2550, 1.2324] −65.30–67.70 62.44 37.56
CO2 [5.7054, 20.7136] −52.35–72.98 63.60 36.40

Wheat
CH4 [37.8900, 86.6197] −38.51–40.56 14.69 85.31
CO2 [586.1546, 1443.0230] −37.98–52.69 14.78 85.22

Maize
CH4 [71.5296, 186.1854] −39.80–56.70 13.38 86.62
CO2 [802.0140, 1880.3797] −38.40–44.43 14.18 85.82
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Table 7. Cont.

Category Emission Source GHG
95% Confidence Interval
for Emissions (104 tons)

Uncertainty (%)
Sensitivity (%)

Activity Level Emission Factor

Enteric fermentation

Cattle

CH4

[502.8381, 777.4392] −19.89–23.86 29.54 71.46
Pig [71.2008, 106.5995] −19.30–20.82 24.69 75.31

Sheep [262.0795, 435.0550] −22.47–28.70 40.15 59.85
Rabbit [1.7692, 6.5957] −56.00–64.02 59.52 40.48

Manure management

Cattle
CH4 [34.1380, 54.5783] −23.95–21.59 29.66 70.34
N2O [71.6853, 116.9311] −23.38–24.98 28.99 71.01

Pig CH4 [366.7496, 542.9419] −18.17–21.14 24.94 75.06
N2O [117.2628, 179.2518] −19.75–22.67 24.52 75.48

Sheep CH4 [8.6245, 14.0533] −22.20–26.77 39.92 60.08
N2O [33.2595, 56.1955] −24.25–27.98 40.15 59.85

Poultry CH4 [37.0005, 59.3530] −21.88–25.31 32.36 67.64
N2O [120.4601, 195.5208] −23.22–24.62 32.81 67.20

Rabbit
CH4 [0.6148, 2.1457] −51.46–69.42 59.33 40.67
N2O [1.4767, 4.9066] −50.72–63.73 59.41 40.59

Total [7008.3901, 8823.2922] −12.04–10.74 —
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3.2. ACE Dynamic Evolution

Figure 4 presents the kernel density curves of ACEI in Shandong Province. Examining
the curve’s location, interval, and peaks allows us to comprehend the dynamic evolution
patterns and spatial disparities of ACEs in the province.
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Figure 4. Kernel density estimate curves of ACEI in Shandong Province from 2000 to 2021.

The dynamic evolution of ACEs in Shandong Province’s 16 cities displays two distinct
features. First, the center of the distribution curve continuously shifted leftward throughout
the study period, while the interval decreased and the peak value gradually increased. This
indicates a continuous decrease in ACEI across Shandong Province’s cities, accompanied
by a reduction in the disparities of such emissions between them. Secondly, the distribution
curve exhibited a single peak in 2000, while a right secondary peak appeared in 2005.
Subsequently, the interval and peak value of the right secondary peak gradually decreased
until it disappeared completely in 2021, leaving only a slight peak left of the crest. This also
suggests decreasing differences in emissions between cities in Shandong Province.

Furthermore, the internal dynamics of the ACE distribution in Shandong Province
were examined using conditional probability density estimation. The continuity and mobil-
ity of the distribution were analyzed by examining the morphology of stacked conditional
density (SCD) plots and density contour (DC) plots.

In Figure 5a, the ridges of the left SCD plots gradually deviate from the 45◦ diago-
nal, and most of the density contours of the right DC plots are below the diagonal. This
indicates that the distribution of ACEs in Shandong Province from 2000 to 2005 displays
a certain degree of mobility. Furthermore, the peak and high-density areas are predom-
inantly below the diagonal, suggesting a gradual decrease in ACEI for most cities, with
the potential for further reduction. The cities with ACEI values of [3.4, 6.6] at T + 5 exhibit
a more pronounced downward trend and greater mobility, as evidenced by the density
contours further away from the diagonal. Conversely, cities with ACEI values of [1.1, 3.4]
have density contours close to the diagonal, indicating a lower downward trend and
weaker mobility.

In Figure 5b, the ridges and crests of the SCD plots continue to shift below the diagonal,
indicating a further increase in the mobility of the ACE distribution in Shandong Province
during 2005–2010. The density contours fall entirely below the diagonal, implying a de-
crease in ACEI for all cities. Notably, a sub-density zone appears in the area corresponding
to the ACEI value of [2.3, 3.0] at T + 5, showing a distinct bipolar differentiation in the
ACE distribution.
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In Figure 5c, the ridges and crests of the SCD plots are still below the diagonal, but a
small proportion of the density contours return to the vicinity of the diagonal. This suggests
weakened mobility in the distribution of ACEs in Shandong Province during the period of
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2010–2015, with a slower decreasing trend of ACEI in each city. At T + 5, the sub-density
zone occurs in the areas with ACEI values of [1.6, 1.8] and [2.1, 2.3], indicating a transition
from bipolar to multipolar differentiation in the ACE distribution.

In Figure 5d, the ridges and crests of the SCD plots neighbor each other closely and
are parallel to the diagonal, while the area of maximum density of the DC plots remains
below the diagonal. This indicates a further decline in the mobility of the ACE distribution
in Shandong Province during the period of 2015–2021. Despite this, the ACEI of most cities
continues to decrease. At T + 6, the sub-density areas concentrate around values of 1.4,
indicating the disappearance of ACE distribution polarization in Shandong Province.

3.3. ACE Scenario Projections

The STIRPAT model is widely used to study the drivers of and predict trends in
environmental pollution [55]. It decomposes environmental pressures into the combined
effects of population size, affluence, and technology level. Based on the theory of the
STIRPAT model, we selected seven ACE characteristic variables. These variables collectively
reflect the influence of agricultural scale, rural affluence, and agricultural technology level
on ACEs. They include rural population, crop sown area, number of large livestock,
agricultural industry structure (measured by the ratio of planting output value to total
agricultural output value), agricultural GDP per capita, rural per capita disposable income,
and total agricultural mechanization power.

Following the LSTM steps, the sample data were normalized. The training set com-
prised 11 years of normalized sample data, while the test set used the remaining 11 years.
The LSTM’s input layer has a shape of (7, 1), with 50 hidden units in the hidden layer and
1 response in the output layer. To prevent overfitting, a dropout layer with a probability
of 0.5 was added. An adaptive momentum estimation optimizer was employed for train-
ing the model for 1000 rounds with a batch size of 11. The initial learning rate was 0.01,
and a gradient threshold of 1 was applied to prevent gradient explosion. Data were not
shuffled during training to preserve temporal order. R2 and root mean square error (RMSE)
evaluated the LSTM’s fitting effect on the training and test sets. In Figure 6, the training
set achieved an R2 of 0.9859 and an RMSE of 81.3527, indicating a high fit level. The test
set achieved an R2 of 0.9079 and an RMSE of 218.1455, suggesting strong generalization
ability. This result demonstrates the model’s effectiveness in predicting regional ACEs,
with it being further applicable to research.

Sustainability 2024, 16, x FOR PEER REVIEW 17 of 23 
 

 

Figure 6. Comparison of fitted and measured values of ACEs for the LSTM training set (a) and test set 

(b). 

To comprehensively analyze the future trends of ACEs in Shandong Province, three 

scenarios were established based on the Outline of the Fourteenth Five-Year Plan for the 

National Economic and Social Development of Shandong Province and the Visionary 

Goals for 2035 (referred to as the Planning Goals), while considering agriculture develop-

ment. These scenarios include the baseline scenario, low-carbon scenario I, and low-car-

bon scenario II. 

Several variables are defined for these scenarios. The rural population is determined 

based on the average annual growth rate of the urbanization rate, set at 1% in the Planning 

Goals. Agricultural GDP per capita is determined based on the average annual growth 

rate of GDP, set at 5.5% in the Planning Goals. Rural per capita disposable income is de-

termined based on the average annual growth rate of per capita disposable income, set at 

5.5% in the Planning Goals. Crop sown area, number of large livestock, total agricultural 

mechanization power, and agricultural industrial structure do not have specific develop-

ment targets in the Planning Goals. Hence, they were set based on the average annual 

growth rate of the respective sample data. The growth rates of each characteristic variable 

under different scenarios are shown in Table 8. 

Table 8. The growth rate setting of ACE characteristic variables in Shandong Province under differ-

ent scenarios. 

Scenarios Years 

Growth Rate Setting (%) 

Rural Popula-

tion 

Agricultural 

GDP per Cap-

ita 

Rural per Cap-

ita Disposable 

Income 

Crop 

Sown 

Area 

Number of 

Large Live-

stock 

Total Agricul-

tural Mechaniza-

tion Power 

Agricultural 

Industrial 

Structure 

Baseline sce-

nario 

2022–2025 −1.0 5.5 5.5 

−0.0856 6.3954 2.2398 −0.4053 

2026–2030 −1.5 6.0 6.0 

Low-carbon 

scenario I 

2022–2025 −3.5 8.0 8.0 

2026–2030 −4.0 8.5 8.5 

Low-carbon 

Scenario II 

2022–2025 −5.0 9.5 9.5 

2026–2030 −5.5 10.0 10.0 

The trained LSTM predicted the ACEs of Shandong Province from 2022 to 2030 under 

the baseline and low-carbon scenarios, as shown in Figure 7. 

In all three scenarios, the ACEs of Shandong Province exhibit a consistent decreasing 

trend, with the rate of decrease gradually diminishing over the years. In the baseline sce-

nario, the projected value for 2030 is 6301.74 × 104 tons, indicating a 20.91% reduction 

Figure 6. Comparison of fitted and measured values of ACEs for the LSTM training set (a) and test
set (b).



Sustainability 2024, 16, 3196 18 of 24

To comprehensively analyze the future trends of ACEs in Shandong Province, three
scenarios were established based on the Outline of the Fourteenth Five-Year Plan for the
National Economic and Social Development of Shandong Province and the Visionary Goals
for 2035 (referred to as the Planning Goals), while considering agriculture development.
These scenarios include the baseline scenario, low-carbon scenario I, and low-carbon
scenario II.

Several variables are defined for these scenarios. The rural population is determined
based on the average annual growth rate of the urbanization rate, set at 1% in the Planning
Goals. Agricultural GDP per capita is determined based on the average annual growth rate
of GDP, set at 5.5% in the Planning Goals. Rural per capita disposable income is determined
based on the average annual growth rate of per capita disposable income, set at 5.5% in the
Planning Goals. Crop sown area, number of large livestock, total agricultural mechanization
power, and agricultural industrial structure do not have specific development targets in
the Planning Goals. Hence, they were set based on the average annual growth rate of the
respective sample data. The growth rates of each characteristic variable under different
scenarios are shown in Table 8.

Table 8. The growth rate setting of ACE characteristic variables in Shandong Province under different
scenarios.

Scenarios Years

Growth Rate Setting (%)

Rural
Population

Agricultural
GDP per

Capita

Rural per Capita
Disposable

Income

Crop Sown
Area

Number of
Large

Livestock

Total
Agricultural

Mechanization
Power

Agricultural
Industrial
Structure

Baseline
scenario

2022–2025 −1.0 5.5 5.5

−0.0856 6.3954 2.2398 −0.4053

2026–2030 −1.5 6.0 6.0
Low-carbon

scenario I
2022–2025 −3.5 8.0 8.0
2026–2030 −4.0 8.5 8.5

Low-carbon
Scenario II

2022–2025 −5.0 9.5 9.5
2026–2030 −5.5 10.0 10.0

The trained LSTM predicted the ACEs of Shandong Province from 2022 to 2030 under
the baseline and low-carbon scenarios, as shown in Figure 7.
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In all three scenarios, the ACEs of Shandong Province exhibit a consistent decreasing
trend, with the rate of decrease gradually diminishing over the years. In the baseline
scenario, the projected value for 2030 is 6301.74 × 104 tons, indicating a 20.91% reduction
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compared to the 2021 value of 7967.54 × 104 tons. In the low-carbon scenario I, there is
a significantly greater decreasing trend in the ACEs compared to the baseline scenario,
with a projected value for 2030 at 5980.67 × 104 tons, reflecting a 24.94% decrease from the
2021 value. In the low-carbon scenario II, the ACE decrease rate is the highest among the
three scenarios, with a projected value for 2030 at 5850.56 × 104 tons, indicating a 26.57%
decrease from the 2021 value. The low-carbon scenario demonstrates a higher potential for
reducing carbon emissions while simultaneously achieving efficient development of the
rural economy, urbanization, and ACE reduction compared to the baseline scenario.

4. Discussion
4.1. ACE Characteristics of Shandong Province

From 2000 to 2021, ACEs in Shandong Province followed a pattern of initial growth fol-
lowed by decline, closely associated with China’s agricultural policies. Before 2005, China
initiated rural tax reforms while providing subsidies for grain cultivation, high-quality
seeds, and agricultural machinery purchases. These agricultural policies effectively incen-
tivized farmers to increase agricultural inputs and expand livestock production. However,
during this period, agricultural resources were not utilized optimally, and emission reduc-
tion strategies were incomplete, resulting in a significant increase in ACEs. Subsequently,
China introduced the concept of environmentally friendly agriculture and implemented
a series of measures to reduce ACEs, including actions to achieve zero growth in the use
of fertilizers and pesticides. This effectively controlled agricultural input and improved
utilization efficiency. Additionally, the annual decline in the rearing volume of large live-
stock, attributed to the restructuring of the livestock industry and the impact of diseases,
contributed to the decrease in ACEs.

Research indicates that carbon emissions from China’s planting industry have sur-
passed those from the livestock industry [23]. In Shandong Province, carbon emissions from
planting accounted for 64.39% of the total emissions primarily originating from soil use
and straw burning. To achieve the goal of agricultural carbon neutrality, the province must
prioritize reducing emissions and improving efficiency in the planting industry. However,
carbon emissions from enteric fermentation and manure management in the livestock indus-
try cannot be overlooked. The livestock industry in Shandong Province is characterized by
small-scale operations and a deficiency in standardized feeding management and manure
treatment methods, making carbon emissions from this sector still a significant concern.

The primary contributor to agricultural GHG emissions in China is CH4, followed by
CO2 and N2O [1]. However, in Shandong Province, CO2 emerged as the primary GHG
emitted, and its distribution is closely related to agricultural production patterns. In 2020,
Shandong Province’s ACEI stood at 0.76 × tons·(104 yuan)−1, marking a notable decrease
of 72.46% compared to 2.76 × tons·(104 yuan)−1 in 2005, surpassing China’s target of
reducing carbon emission intensity by 40–45% in 2020. This underscores the remarkable
achievement of Shandong Province in ACE reduction. Currently, ACEs in all provinces of
China are declining [30,32], and the inter-provincial disparities in ACEs among principal
grain-producing areas are narrowing [33]. Nevertheless, for Shandong Province, although
ACEI is decreasing, the mobility of ACE distribution has been weakening since 2010,
indicating increased pressure for ACE reduction. The diminishing gap in ACEs between
cities in Shandong Province is accompanied by a phenomenon of polarization. Although
this phenomenon disappeared after 2015, in 2021, 7 out of 16 cities still had ACEIs exceeding
the provincial average, indicating persistent emission disparities. Therefore, implementing
targeted policies addressing the spatial and temporal differentiation of ACEs in Shandong
Province would help establish a coordinated emission reduction pattern across the region.

4.2. Countermeasures to Decrease ACEs in Shandong Province

Shandong Province continues to depend on extensive agricultural production methods
that consume resources, and this pattern has not fundamentally changed, leading to a
conflict between agricultural development and environmental protection. According to
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our study, Shandong Province exhibits greater potential for emission reduction under
low-carbon scenarios. Therefore, the development of low-carbon, efficient, and sustainable
agricultural practices is paramount for achieving emission reduction objectives.

The excessive use of agricultural materials, underutilization of resources, and insuffi-
cient technical preparation for the development of green and low-carbon agriculture have
resulted in persistently high levels of carbon emissions within the planting industry [56].
The effectiveness of carbon reduction through low-carbon cultivation techniques hinges
on the proportion of corresponding carbon sources in ACEs and their implementation
level [57]. In Shandong Province, soil utilization and straw burning contribute 34.00%
and 22.29% to ACEs, respectively. To curb carbon emissions from planting, it is essential
to advocate measures like returning straw to the field, reducing fertilizer and pesticide
application while enhancing their efficiency, and adopting agricultural film substitution
technologies. Additionally, practices such as crop rotation, intercropping [58], and optimiz-
ing intermittent irrigation can further promote carbon emission reduction [59].

Enteric fermentation serves as the primary source of CH4 emissions from ruminant
animals [60]. In Shandong Province, enteric fermentation and manure management in
livestock contribute 22.86% and 12.75% to ACEs, respectively. Effective strategies to miti-
gate carbon emissions from livestock encompass optimizing feed composition, improving
barn environments, adjusting breeding structures, and properly utilizing livestock manure.
Intensive, standardized, and large-scale farming practices can reduce enteric fermentation
in livestock while increasing the efficiency of manure management, thereby facilitating the
return of livestock manure to fields. Moreover, curtailing livestock product consumption
represents an effective measure to alleviate non-CO2 GHG emissions [61].

5. Conclusions

(1) Between 2000 and 2021, Shandong Province achieved remarkable progress in reducing
ACEs, reaching its agricultural carbon peak in 2005. ACEs are structured as “soil
utilization > enteric fermentation > straw burning > manure management > crop plant-
ing “, with the planting industry serving as the primary emissions source. The GHG
composition follows “CO2 > CH4 > N2O”, with emission distribution closely linked
to regional agricultural production modes. CO2 emissions are mainly distributed in
crop cultivation areas, whereas CH4 and N2O emissions are primarily concentrated in
livestock breeding areas. The emission inventory provides a precise representation of
ACE characteristics, but it is not without uncertainty, primarily arising from emission
factors. To reduce the uncertainty of the emission inventory, future research should
focus on intensifying the localization of emission factors from major sources.

(2) Between 2000 and 2021, the ACEI of different cities in Shandong province exhibited a
declining trend, indicating a decoupling between ACEs and agricultural economic
growth. Although spatial imbalances persist, the emission disparity among cities is
diminishing. Nevertheless, the mobility of ACE distribution is gradually decreasing,
posing a challenge to further mitigating ACEs.

(3) From 2022 to 2030, the ACEs in Shandong Province will continue to decline. The
low-carbon scenario has greater potential for carbon emissions reduction compared
to the baseline scenario. It also balances efficient development of the rural econ-
omy and urbanization, thereby accelerating the achievement of the province’s “dual
carbon” goals.

6. Suggestions

(1) Establish a comprehensive monitoring and evaluation system for ACEs. Improve mon-
itoring indicators, localize emission factors, unify measurement methods, optimize
the setup of monitoring points in different regions, and conduct targeted monitoring
alongside regular statistical analysis.

(2) Strengthen the prevention and control of agricultural surface source pollution. Pro-
mote techniques such as soil testing for tailored fertilization, organic fertilizers re-
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placing chemical ones, and biological and physical methods of pest control, aiming
to reduce the use of chemical fertilizers and pesticides while enhancing agricultural
productivity. Establish systems for the collection, storage, and transportation of
agricultural waste to facilitate the efficient utilization of resources such as livestock
manure, straw, and agricultural film.

(3) Optimize the agricultural industry structure and establish a new agricultural pro-
duction pattern that matches agricultural productivity with the carrying capacity of
resources and the environment. In the central and southern regions of Shandong
Province, where resource overexploitation and environmental issues are prominent,
adjust the crop and livestock structure, and implement land retirement for afforesta-
tion to promote integrated crop–livestock. In areas with better alignment of agricul-
tural production with water and soil resources, such as Weihai, Rizhao, and Dongying,
develop forestry, fisheries, and ecological agriculture tourism industries with compar-
ative advantages and regional characteristics.

(4) Building a green and low-carbon agricultural industry chain to increase agricultural
GDP and the income of rural residents. Promote variety cultivation and standardized
production to enhance the quality of agricultural products. Simultaneously, construct-
ing a green supply chain for agricultural products will drive industrial clustering and
circular development. These measures will lead Shandong Province’s agricultural
development into a low-carbon scenario.
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24. Elżbieta, W.G.; Marta, B.M. Assessment of greenhouse gas emission from life cycle of basic cereals production in Poland.
Zemdirbyste 2016, 103, 259–266. [CrossRef]

25. Yadav, D.; Wang, J.Y. Modelling carbon dioxide emissions from agricultural soils in Canada. Environ. Pollut. 2017, 230, 1040–1049.
[CrossRef] [PubMed]

26. Qiu, Z.J.; Jin, H.M.; Gao, N.; Xu, X.; Zhu, J.H.; Li, Q.; Wang, Z.Q.; Xu, Y.J.; Shen, W.S. Temporal characteristics and trend prediction
of agricultural carbon emission in Jiangsu Province, China. J. Agro-Environ. Sci. 2022, 41, 658–669. [CrossRef]

27. Gu, R.; Duo, L.; Guo, X.; Zou, Z.; Zhao, D. Spatiotemporal heterogeneity between agricultural carbon emission efficiency and
food security in Henan, China. Environ. Sci. Pollut. Res. 2023, 30, 49470–49486. [CrossRef] [PubMed]

28. Zhang, X.; Liao, K.; Zhou, X. Analysis of regional differences and dynamic mechanisms of agricultural carbon emission efficiency
in China’s seven agricultural regions. Environ. Sci. Pollut. Res. 2022, 29, 38258–38284. [CrossRef]

https://doi.org/10.5846/stxb202201290273
https://doi.org/10.1088/1748-9326/8/1/015009
https://doi.org/10.1016/j.envpol.2007.06.030
https://www.ncbi.nlm.nih.gov/pubmed/17706849
https://doi.org/10.1016/j.eja.2015.06.009
https://doi.org/10.1016/S0167-8809(01)00233-X
https://doi.org/10.1016/j.envint.2004.03.005
https://doi.org/10.4028/www.scientific.net/AMM.291-294.1385
https://doi.org/10.1016/j.agee.2011.05.012
https://doi.org/10.1016/j.envdev.2011.12.004
https://doi.org/10.1016/j.fcr.2012.06.007
https://doi.org/10.1016/j.spc.2022.09.001
https://doi.org/10.1016/j.agee.2012.09.006
https://doi.org/10.1088/1748-9326/ab0399
https://doi.org/10.1016/j.jclepro.2015.09.112
https://doi.org/10.1016/j.agee.2016.12.042
https://doi.org/10.1073/pnas.1308044111
https://www.ncbi.nlm.nih.gov/pubmed/24567375
https://doi.org/10.1016/j.scitotenv.2019.01.048
https://www.ncbi.nlm.nih.gov/pubmed/30743941
https://doi.org/10.12357/cjea.20210624
https://doi.org/10.1016/j.envpol.2011.02.024
https://doi.org/10.1007/s11356-018-2589-7
https://doi.org/10.1016/j.jclepro.2022.133516
https://doi.org/10.19674/j.cnki.issn1000-6923.20221207.006
https://doi.org/10.13080/z-a.2016.103.033
https://doi.org/10.1016/j.envpol.2017.07.066
https://www.ncbi.nlm.nih.gov/pubmed/28764120
https://doi.org/10.11654/jaes.2021-0647
https://doi.org/10.1007/s11356-023-25821-z
https://www.ncbi.nlm.nih.gov/pubmed/36780085
https://doi.org/10.1007/s11356-021-16661-w


Sustainability 2024, 16, 3196 23 of 24

29. Zhu, Y.B.; Ma, X.Z.; Shi, Y.J. Agricultural input-output efficiency and the potential reduction of emissions in Henan Province at
the county scale Chinese. J. Eco-Agric. 2022, 30, 1852–1861. [CrossRef]

30. Yuan, Y.; Sun, X.T. Spatial-temporal Evolution and Driving Factors of Inter-provincial Carbon Emission Intensity in China.
Environ. Sci. Technol. 2022, 45, 168–176. [CrossRef]

31. Guo, H.; Fan, B.; Pan, C. Study on Mechanisms Underlying Changes in Agricultural Carbon Emissions: A Case in Jilin Province,
China, 1998–2018. Int. J. Environ. Res. Public Health 2021, 18, 919. [CrossRef]

32. Wu, G.Y.; Liu, J.D.; Yang, L.S. Dynamic evolution of China’s agricultural carbon emission intensity and carbon offset potential.
China Popul. Resour. Environ. 2021, 31, 69–78. [CrossRef]

33. Tian, Y.; Yin, M.H. Re-evaluation of China’s Agricultural Carbon Emissions: Basic Status, Dynamic Evolution and Spatial Spillover
Effects. Chin. Rural. Econ. 2022, 3, 104–127.

34. Jiang, J.; Zhao, T.; Wang, J. Decoupling analysis and scenario prediction of agricultural CO2 emissions: An empirical analysis of
30 provinces in China. J. Clean. Prod. 2021, 320, 128798. [CrossRef]

35. Wang, S.F.; Gao, G.L.; Li, W.; Liu, S.M. Carbon emissions from agricultural and animal husbandry in Shanxi Province: Temporal
and regional aspects, and trend forecast. J. Agro-Environ. Sci. 2023, 42, 1–18. [CrossRef]

36. Xiao, X.W.; Liu, X.H.; Liu, Z.S.; Qin, H.M.; Li, S.; Zhang, Y.L.; Chen, X.X. Characteristics, driving factors and trend prediction of
agriculture carbon emission in the three gorges reservoir area. (Hubei Section). Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 212–222.

37. Chang, Q.; Cai, W.M.; Gu, X.L.; Wu, Y.Q.; Zhang, B.L. Spatial-Temporal Variation, Influencing Factors, and Trend Prediction of
Agricultural Carbon Emissions in Henan Province. Bull. Soil. Water Conserv. 2023, 43, 367–377. [CrossRef]

38. Xu, L.; Qu, J.S.; Wu, J.J.; Wei, Q.; Bai, J.; Li, H.J. Spatial-Temporal Dynamics and Prediction of Carbon Emission from Agriculture
and Animal Husbandry in China. J. Ecol. Rural. Environ. 2019, 35, 1232–1241. [CrossRef]

39. Wei, Z.; Wei, K.; Liu, J.; Zhou, Y.Z. The relationship between agricultural and animal husbandry economic development and
carbon emissions in Henan Province, the analysis of factors affecting carbon emissions, and carbon emissions prediction. Mar.
Pollut. Bull. 2023, 193, 115134. [CrossRef]

40. IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change; Climate Change, 2014; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151.

41. Zhang, S.Y.; Yin, C.J.; He, Y.Y.; Xiao, X.Y. Spatial differentiation and dynamic evolution of agricultural carbon emission in
China—Empirical research based on spatial and non-parametric estimation methods. China Environ. Sci. 2020, 40, 1356–1363.
[CrossRef]

42. Tian, Y.; Zhang, J.B.; He, Y.Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions
in China. J. Integr. Agric. 2014, 13, 1393–1403. [CrossRef]

43. Zhi, J.; Gao, J.X. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China. Prog. Geogr.
2009, 28, 429–434.

44. Wu, F.L.; Li, L.; Zhang, H.L.; Chen, F. Effects of conservation tillage on net carbon flux from farmland ecosystems. Chin. J. Ecol.
2007, 26, 2035–2039. [CrossRef]

45. National Development and Reform Commission, PRC. Guidelines for the Preparation of Provincial Greenhouse Gas Inventories
(Trial). Available online: http://www.gxdtrc.cn/h-nd-217.html (accessed on 16 May 2023).

46. Min, J.S.; Hu, H. Calculation of Greenhouse Gases Emission from Agricultural Production in China. China Popul. Resour. Environ.
2012, 22, 21–27. [CrossRef]

47. Liu, Y.; Liu, H.B. Characteristics, influence factors, and prediction of agricultural carbon emissions in Shandong Province. Chin. J.
Eco-Agric. 2022, 30, 448–569. [CrossRef]

48. Xie, Y.H.; Liu, Z. Study on Spatial Spillover Effect and Equity of Planting Carbon Emission in Henan Province at County Scale.
Areal Res. Dev. 2022, 41, 159–164. [CrossRef]

49. Hu, X.D.; Wang, J.M. Estimation of livestock greenhouse gases discharge in China. Trans. Chin. Soc. Agric. Eng. 2010, 26, 247–252.
[CrossRef]

50. Mood, A.M. An Introduction to the Theory of Statistics; McGraw-Hill Book Company: New York, NY, USA, 1973.
51. Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986.
52. Hyndman, R.J.; Bashtannyk, D.M.; Grunwald, G.K. Estimating and visualizing conditional densities. J. Comput. Graph. Stat. 1996,

5, 315–336. [CrossRef]
53. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
54. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012.
55. Ma, H.; Liu, Y.; Li, Z.; Wang, Q. Influencing factors and multi-scenario prediction of China’s ecological footprint based on the

STIRPAT model. Ecol. Inform. 2022, 69, 101664. [CrossRef]
56. Wang, X.T.; Zhang, J.B. Basic path and system construction of agricultural green and low-carbon development with respect to the

strategic target of carbon peak and carbon neutrality. Chin. J. Eco-Agric. 2022, 30, 516–526. [CrossRef]
57. Huang, B.B.; Zhang, X.Y.; Zhang, J.Q. Carbon Reduction Effect and Application Drivers of Low-Carbon Planting Technologies. J.

Ecol. Rural. Environ. 2018, 34, 1082–1090. [CrossRef]
58. Wang, Y.; Yang, D.L.; Wang, L.L.; Zhao, J.N.; Liu, H.M.; Tan, B.C.; Wang, H.; Wang, M.L.; Huang, J.; Zhang, X.F. Effects of

farmland management measures on soil organic carbon turnover and microorganisms. J. Agric. Resour. Environ. 2020, 37, 340–352.
[CrossRef]

https://doi.org/10.12357/cjea.20220219
https://doi.org/10.19672/j.cnki.1003-6504.1368.21.338
https://doi.org/10.3390/ijerph18030919
https://doi.org/10.12062/cpre.20210606
https://doi.org/10.1016/j.jclepro.2021.128798
https://doi.org/10.11654/jaes.2022-1190
https://doi.org/10.13961/j.cnki.stbctb.20230220.011
https://doi.org/10.19741/j.issn.1673-4831.2018.0884
https://doi.org/10.1016/j.marpolbul.2023.115134
https://doi.org/10.19674/j.cnki.issn1000-6923.2020.0097
https://doi.org/10.1016/S2095-3119(13)60624-3
https://doi.org/10.13292/j.1000-4890.2007.0360
http://www.gxdtrc.cn/h-nd-217.html
https://doi.org/10.3969/j.issn.1002-2104.2012.07.004
https://doi.org/10.12357/cjea.20210582
https://doi.org/10.3969/j.issn.1003-2363.2022.05.025
https://doi.org/10.3969/j.issn.1002-6819.2010.10.042
https://doi.org/10.1080/10618600.1996.10474715
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.ecoinf.2022.101664
https://doi.org/10.12357/cjea.20210772
https://doi.org/10.11934/j.issn.1673-4831.2018.12.004
https://doi.org/10.13254/j.jare.2018.0329


Sustainability 2024, 16, 3196 24 of 24

59. Zhang, D.; Shen, J.; Zhang, F.; Li, Y.E.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [CrossRef]
[PubMed]

60. Wang, K.Y.; Li, X.; Lu, J.D.; Zhou, B.; He, Y. Low-carbon development strategies of livestock industry to achieve goal of carbon
neutrality in China. Trans. Chin. Soc. Agric. Eng. 2022, 38, 230–238. [CrossRef]

61. Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Domínguez, I.P.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman,
J.F.L.; et al. Agricultural non-CO2 emission reduction potential in the context of the 1.5 C target. Nat. Clim. Change 2019, 9, 66–72.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-017-04182-x
https://www.ncbi.nlm.nih.gov/pubmed/28663590
https://doi.org/10.11975/j.issn.1002-6819.2022.01.026
https://doi.org/10.1038/s41558-018-0358-8

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources 
	Measuring Method of ACEs 
	Carbon Emissions from Planting 
	Carbon Emissions from Animal Husbandry 

	Kernel Density Analysis 
	Kernel Density Estimation 
	Conditional Probability Density Estimation 

	LSTM 

	Results 
	ACE Inventory 
	ACE Dynamic Evolution 
	ACE Scenario Projections 

	Discussion 
	ACE Characteristics of Shandong Province 
	Countermeasures to Decrease ACEs in Shandong Province 

	Conclusions 
	Suggestions 
	References

