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Abstract: The advent of autonomous vehicles (AVs) has sparked many concerns about pedestrian
safety, prompting manufacturers and researchers to integrate external Human–Machine Interfaces
(eHMIs) into AVs as communication tools between vehicles and pedestrians. The evolving dynamics
of vehicle–pedestrian interactions make eHMIs a compelling strategy for enhancing safety. This study
aimed to examine the contribution of eHMIs to safety while exploring the impact of an incentive
system on pedestrian risk behavior. Participants interacted with AVs equipped with eHMIs in
an immersive environment featuring two distinct scenarios, each highlighting a sense of urgency
to reach their destination. In the first scenario, participants behaved naturally without specific
instructions, while in the second scenario, they were informed of an incentive aimed at motivating
them to cross the road promptly. This innovative experimental approach explored whether motivated
participants could maintain focus and accurately perceive genuine risk within virtual environments.
The introduction of a reward system significantly increased road-crossings, particularly when the
vehicle was approaching at higher speeds, indicating that incentives encouraged participants to take
more risks while crossing. Additionally, eHMIs notably impacted pedestrian risk behavior, with
participants more likely to cross when the vehicle signaled it would not stop.

Keywords: autonomous vehicles; vehicle–pedestrian interaction; virtual environments; pedestrian
crossing; road safety; pedestrian behavior; reward system; gamification; pedestrian simulator; risk

1. Introduction

As the development and deployment of autonomous vehicles (AVs) continues to
advance, it is becoming increasingly important to consider how they will interact with
other road users, particularly pedestrians. Pedestrians are often the most vulnerable road
users, and their safety is a critical concern in the design and implementation of AVs.
One approach that AV manufacturers and researchers are employing to address this issue
is the use of external Human–Machine Interfaces (eHMIs). These interfaces are specifically
designed to facilitate communication between the AV and other road users, including
pedestrians. eHMIs can take many forms, including digital displays, lights, and even
sound [1–3].

The use of eHMIs can help to improve the safety of pedestrians by providing them
with clear and concise information about the intentions of the AV. For example, an AV
equipped with an eHMI may display a message on its digital display indicating that it is
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stopping to allow pedestrians to cross the road. This can help to reduce confusion and
uncertainty and make it easier for pedestrians to navigate around AVs [4–7]. However,
prolonged exposure to eHMIs can potentially lead pedestrians to excessively rely on the
displayed message while potentially ignoring implicit vehicle cues [8].

Nevertheless, there are still many challenges to be overcome in the design and im-
plementation of eHMIs. For instance, creating displays and messages that are easily
understood by a diverse range of pedestrians, including those with visual or hearing im-
pairments, can be challenging. Moreover, further research is needed to determine the most
effective types of eHMIs for different situations [9–12].

Researchers have employed various methods to evaluate the suitability and effec-
tiveness of eHMIs in conveying the intentions and behavior of AVs to pedestrians, such
as self-report studies, questionnaires and interviews [5,13,14], computer-based experi-
ments [1,15–19], real-world experiments and field tests [4,10,20–25], and virtual reality
studies, using Cave Automatic Virtual Environment (CAVE)- and Head-Mounted Display
(HMD)-based simulators [26–33]. In summary, the interaction between pedestrians and
AVs is a complex and evolving topic, and the use of eHMIs is just one of the many strategies
being developed to improve safety and communication on the road.

The use of virtual environments to study pedestrian behavior proves to be an effective
strategy to avoid time-consuming and costly field studies, while simultaneously addressing
ethical concerns. These simulations, also known as pedestrian simulators, enable the
presentation of traffic scenarios from a pedestrian’s perspective, allowing for a thorough
exploration of safety measures. Numerous studies have successfully employed pedestrian
simulators to explore road-crossing behavior [34–47]. These setups provide a secure,
adaptable, and highly controllable environment, offering precise control over variables.
However, challenges may arise due to disparities between simulated environments and
naturalistic traffic conditions, originating not only from sensory cue mismatches but also
from difficulties in scenario design [48].

Among the most frequently simulated scenarios in pedestrian studies is the task of
crossing the street, given its safety implications and relatively compact spatial demands.
The decision to cross involves a delicate balance between saving time and minimizing
the risk of injuries [49]. Still, the imposition of time pressure in simulations may seem
unnatural, as individuals typically cross the road with a destination in mind rather than
simply for the act of crossing. This perceived lack of significance in simulator studies can
lead to diminished motivation, tedium, and exhaustion.

To address this challenge, one strategy involves the incorporation of game elements
into non-game contexts, a concept commonly known as “gamification” [50]. The interplay
between rewards and human behavior has been extensively studied across various disci-
plines, and gamification has shown positive outcomes, particularly in enhancing perceived
competence [51,52]. This game-based strategy has also been employed to educate children
on road safety [53]. Given its success in diverse applications, similar principles are likely
applicable to pedestrian simulation scenarios. Notably, time pressure, often associated
with temporal restrictions, has been shown to influence pedestrian behavior. For instance,
children exhibited riskier behavior when instructed to act quickly [54]. These examples
emphasize the potential impact of gamification elements, such as time constraints, on
shaping pedestrian behavior in simulated environments.

This study aimed to investigate and analyze pedestrian crossing behavior in the pres-
ence of AVs equipped with eHMIs while exploring the impact of a game-based reward
mechanism by considering a range of personal characteristics and background variables as
potential influencing factors. The experiment involved two distinct scenarios presented to
the participants in a CAVE-based pedestrian simulator. In the first scenario, participants
were instructed to behave naturally, while in the second scenario, they were made aware
of an incentive to cross the road by means of a game-based reward system. In both cases,
participants were asked to act as if they were in a hurry to reach their destination. This in-
novative experimental approach was designed to determine whether participants, when
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offered motivational incentives to cross the road, would maintain their focus throughout
the experiment, sustain a constant state of urgency, and genuinely perceive a sense of risk.

The researchers expected to answer three main questions in the context of autonomous
driving and pedestrian–vehicle interaction: (i) how the inclusion of eHMIs contribute to
pedestrian safety; (ii) how pedestrians’ risk behavior change when they are presented with
an incentive to cross the road; and (iii) what factors contribute to the change in pedestrians’
behavior. This research will contribute to a greater understanding of how these vehicles
should interact with pedestrians, facilitating the development of effective safety measures
and policies. For the purpose of this study, the term AV refers to a fully automated vehicle
that operates without a human driver, conforming to the classification of SAE level 5 [55].

2. Method
2.1. Participants

A total of 34 adult participants were recruited from the University of Minho and the
surrounding community. To be eligible, participants had to have resided in Portugal for
at least one year and provided informed consent before the experiment. All participants
volunteered to participate in this study without receiving any economic compensation.
One male participant was unable to complete the experiment due to moderate simulator
sickness and fatigue and was therefore excluded from further analyses. The first two partic-
ipants, one male and one female, were recruited to help calibrate the equipment and were
also excluded from the analyses. Ultimately, 31 participants (17 female and 14 male) were
considered for analysis. Their ages ranged from 25 to 44 years old (M = 31.2, SD = 4.54).
The study lasted approximately one hour and was approved by the ethics committee of the
University of Minho.

2.2. Simulator Setup and Virtual Environment

The study took place at the Centre for Computer Graphics at the University of Minho,
using a CAVE-based pedestrian simulator [46,56]. The simulator boasts a large nine-meter-
wide by three-meter-high screen, onto which stereoscopic images were projected using
an array of three projectors. Participants were equipped with 3D glasses and headphones
throughout the experiment allowing them to see the images in three dimensions. Their
head’s position and orientation were tracked using an infrared multi-camera system from
Vicon (www.vicon.com, accessed on 20 February 2024) which captured the position of a
set of reflective markers attached to the headphones. This allowed for the adjustment of
the perspective of the projected images to the point of view of the participants in real time.
It also allowed for the auralization of the sounds of the vehicle and the surrounding envi-
ronment which were wirelessly transmitted to the headphones. The room itself provided a
controlled environment spanning approximately 36 square meters, ensuring the safety of
participants as they walked during the experiment.

The virtual environments employed in this study were generated using the Blender
engine software Version 2.79b (www.blender.org, accessed on 20 February 2024). These en-
vironments depicted two real-world urban settings, specifically residential areas featuring
buildings and trees positioned on either side of the road (refer to Figure 1). To enhance
realism and avoid a sense of emptiness, additional parked vehicles were placed nearby.
In both scenarios, traffic consisted of a single vehicle traveling along the outer lane, ap-
proaching from the left side of the participant. As indicated by the study conducted by
Rodríguez Palmeiro et al. [57], the direction from which the vehicle approached was found
to be irrelevant to pedestrian crossing behavior. Each lane of the one-way street within the
virtual environments had an approximate width of three meters. Both virtual environments
were designed and rendered to offer participants with immersive and realistic experiences,
aligning with the specific objectives of the study. To prevent visual monotony and repet-
itiveness for participants, the assignment of each virtual environment to experimental
blocks was randomized before the start of the experiment.

www.vicon.com
www.blender.org
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Figure 1. Overview of the crosswalk and approaching traffic in the virtual environments.

2.3. Experimental Design

The design methodology employed in the experiment encompassed three key condi-
tions: (i) the speed of the approaching vehicle: 35, 40, 45, and 50 km/h; (ii) the deceleration
behavior of the vehicle: “no deceleration” or “conditional deceleration”; and (iii) the eHMI
message displayed by the vehicle: “vehicle is yielding” or “vehicle is not yielding”. The ex-
periment was organized into two distinct experimental blocks: (1) a block without a reward
or incentive: no reward was offered to the participants during this block, and they were
instructed to behave naturally; and (2) a block with a reward or incentive: a reward was
presented to the participants (refer to Section 2.4 for further details).

Within each experimental block, the vehicle approached the pedestrian at the four
different speeds mentioned earlier. Half of the trials were in the “conditional deceleration”
condition, where the vehicle’s behavior was interactive, i.e., depending on the participant’s
movement, the vehicle would either (i) decelerate until it stopped or (ii) not decelerate
(refer to the “normal behavior” branch in Figure 2). The other half of the trials were in
the “no deceleration” condition, in which the vehicle’s behavior was independent of the
participant’s movement, even if it could result in an accident (refer to the “manipulated
behavior” branch in Figure 2). This aspect aimed to assess the pedestrian’s reactions when
exposed to a high volume of non-decelerating vehicles, both with and without an eHMI.
Regarding the eHMI feature, half of the trials included an active eHMI, while the other
half had an inactive eHMI (refer to Figure 2). The inclusion of a “no eHMI” condition
was designed to evaluate the pedestrian’s response to an approaching AV solely based on
kinematic cues. This design choice allows for a comparison with the research conducted by
Lee et al. [6].
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Overall, the study included four conditions presented at four different approaching
speeds, randomly ordered, and resulting in a total of 16 experimental conditions. To ensure
robust data, each participant underwent four repetitions for each condition, resulting in a
total of 64 trials per experimental block for each participant.

2.3.1. eHMI Design and Messages

In this study, two distinct eHMI designs were employed, each associated with a
different message. The first design featured a green-light band, which was associated with
the message “vehicle is yielding”. Conversely, the second design incorporated a red-light
band, indicating the message “vehicle is not yielding”. The choice to use these colors was
primarily influenced by their familiarity as they are commonly used in traffic lights and
have been implemented in previous eHMI designs [1,19].

To ensure that participants understood each eHMI design, the researchers provided
prior information regarding their respective meanings. This information was presented to
each participant before they began the practice session, ensuring they were aware of the
intended message associated with each eHMI design. The green- and red-light bands were
positioned near the headlights of the vehicle, using static textures sourced from the Blender
engine library (see Figure 3).
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2.3.2. Vehicle Behavior

Figure 4 provides a comprehensive overview of the crosswalk in one of the virtual
environments, and a depiction of the approaching vehicle can be observed in Figure 1.
The other crosswalk maintains similar measurements and features.

The following is a summary of the elements highlighted in Figure 4: (A) participant
starting point: positioned three meters away from the road, this marks the initial position
where the participant begins; (B) detection point: located one meter away from the road,
this point serves as the location where the participant was detected by the vehicle. For non-
decelerating trials, the vehicle proceeds without stopping. In trials with “conditional
deceleration”, the vehicle’s behavior depends on its distance to the crosswalk; (C) the
crossing point: this represents the section where the participant begins crossing the road;
and (D) the end crossing point: this designates the conclusion of the crossing, after which
participants return to the starting point for a new trial.

In each trial, the vehicle starts moving as the participant passes the starting point (A),
with the vehicle consistently beginning its approach from a fixed distance of 50 m. In non-
decelerating trials, the vehicle maintains a constant speed (35, 40, 45, or 50 km/h), passing the
participant without stopping. The activation of the eHMI, if applicable, signaling yielding or
non-yielding behavior, occurs when the participant crosses the detection point (B).

For “conditional deceleration” trials, the vehicle’s deceleration is dependent on its
distance to the crosswalk at the detection point (B). If a calculation confirms that the vehicle
can come to a stop at least 5 m away from the pedestrian, a gentle and constant deceleration
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of 2.4 m/s2 begins [4]. If not, no deceleration occurs. The activation of the eHMI in
“conditional deceleration” trials is influenced by the participant’s precise timing passing
the detection point.
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Points C and D mark the participant crossing point and the end of the crossing,
respectively. After passing Point D, participants return to the starting point for a new
randomly generated trial. This experimental design aims to simulate realistic and dynamic
scenarios, namely the vehicle’s behavior and eHMI activation procedure, allowing for a
thorough investigation of participant responses and reactions in various conditions.

2.4. Experimental Procedure

The participants entered the simulator room, where they received an introduction to
the apparatus. Before initiating the experiment, they were asked to review and sign an
informed consent form outlining the task details. The researchers then explained the task,
which involved interacting with a virtual AV. Participants were instructed to walk in the
direction of the crosswalk while the virtual vehicle approached at varying speeds. Their
task was to decide whether to cross based on their judgment of safety. The researchers
emphasized that they should behave naturally as they would when crossing an actual
road, and imagine themselves in a scenario where they were running late for an important
meeting, thus eliciting a sense of urgency to reach their destination.

Additionally, participants were informed about the unique frontal display on the vehicle,
featuring two light bands, one green and one red, each signifying specific meanings. The green
light indicated that the vehicle was yielding, while the red light indicated non-yielding
behavior. Participants were explicitly informed of these meanings before the experiment, with
the researchers reinforcing this information verbally during the practice session.

In addition, participants were made aware that there would be instances when the display
would not be present, and the vehicle might not yield. They were explicitly instructed not to
run or stop in the middle of the road. Once a decision to cross was made, participants were
required to continue walking, even if it meant a potential collision. After the task explanation,
the participants were allowed to ask any questions they had before proceeding.

Before the main experiment, participants underwent a brief practice session to ac-
quaint themselves with the virtual environment and understand the task. They completed
two questionnaires, one before the experiment and another afterward (refer to Section 2.4.1
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for more details). During the practice session, participants encountered various conditions
with different combinations of eHMIs. They were informed that virtual accidents, such as
collisions, might occur if they decided to cross but failed to reach the other side safely in
non-decelerating trials. In such cases, they would hear a crashing sound to indicate that
they had been hit by the vehicle.

The experiment consisted of two blocks and participants were informed that each
block would take approximately 15 to 20 min to complete, with a short break in between.
They were instructed to fill out a simulator sickness questionnaire before and after both
experimental blocks (refer to Section 3.5.3). After completing the first block, participants
were informed, at that point only, about the difference in the second block. Verbal commu-
nication from the researchers conveyed the following information: “We will now proceed
with the second part of the experiment. Similar to the previous one, there is one distinct
aspect to this segment. You will engage in a competitive game with other participants in
the study. At the study’s conclusion, the participant with the highest score will be awarded
a prize. You will accumulate one point for each safe crossing and three points for each risky
crossing. A safe crossing is defined as crossing the road when the vehicle is yielding, while
a risky crossing occurs when the vehicle is not yielding. However, be aware that if a crash
occurs, we will deduct five points from your overall score. If you have no further questions,
feel free to begin whenever you are ready”.

2.4.1. Questionnaires

Before starting the experiment, participants were tasked to complete the demographics
questionnaire (refer to Table 1) and the first portion of the simulator sickness question-
naire [58]. Questions 4 and 5 from the first questionnaire were used to assess participants’
familiarity with and trust in AVs, respectively. Familiarity with AVs generally refers to indi-
viduals’ understanding of how AV technology works, their level of comfort or experience
interacting with AVs, and their knowledge of AV capabilities and limitations. While being
able to visually identify AVs on the road may be one aspect of familiarity, it is not the single
or most critical factor. In dense urban traffic, especially with buses and large passenger
vehicles, relying solely on visual recognition may not be practical. Subsequently, upon the
conclusion of the study, participants were requested to respond to a second questionnaire,
specifically addressing their experiences with street-crossing and interactions with AVs
equipped with eHMIs in the simulated environment (refer to Table 2). The final question
asked participants to identify the factors they considered to be most important when cross-
ing the road. The structure of the questionnaires was developed drawing on the existing
literature, particularly the study conducted by Razmi Rad et al. [19].

Table 1. First questionnaire (answered before commencing the study).

Question Possible Answer

1 Your sex Female; male

2 Your age Secondary education; bachelor’s degree;
master’s degree; doctor’s degree

3 Your education level Not at all familiar = 1 to extremely familiar = 5

4 How familiar are you with the concept of autonomous vehicles? Strongly disagree = 1 to strongly agree = 5

5
Imagine a scenario where autonomous vehicles coexist with

conventional vehicles on the road. Now, as a pedestrian, please indicate
your level of agreement with each of the following statements.

(a) I feel comfortable to cross the road in front of a vehicle which is in
autonomous mode.

(b) I expect the autonomous vehicles to be better at identifying me than a
human driver.
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Table 2. Second questionnaire (answered after completing the study).

Question Possible Answer

A As a pedestrian, how important do you believe it is for autonomous vehicles
to be easily distinguishable from conventional human-driven vehicles? Not important = 1 to extremely important = 5

B
As a pedestrian, how significant do you think it is for autonomous vehicles

to visually communicate their intentions (such as about to yield or not
stopping) to pedestrians?

Not important = 1 to extremely important = 5

C What was the most crucial factor you considered when deciding whether to
cross the road or not as a pedestrian? Open answer

2.5. Statistical Analysis

Four key behavioral measures were obtained from participants’ street-crossing be-
havior: accepted crossings, collisions, safety margin, and crossing speed. The statistical
analysis employed Linear Mixed Models (LMMs) and Generalized Linear Mixed Models
(GLMMs) with a binomial response variable link using the logit function [59]. The choice
of LMMs was motivated by violations of the assumption of independent observations.
The significance level was set at 0.05, and post hoc tests were conducted with Bonferroni
corrections when appropriate.

LMMs and GLMMs are widely utilized in the analysis of behavioral measures in stud-
ies employing simulated environments, as demonstrated in previous research [19,38,48].
These experimental setups often involve nested data structures, with participants nested
within conditions or trials. LMMs and GLMMs are particularly suitable for modeling
such hierarchical data, accommodating multiple observations within each participant or
group. Given that participants may undergo repeated measures or experience various
conditions, these modeling techniques excel in accounting for within-subject correlations
and dependencies in the data. One of the key advantages of LMMs and GLMMs is their
ability to model both fixed effects (such as experimental conditions) and random effects
(such as participant variability). This flexibility allowed for the accounting of both the
systematic and random sources of variation in the data, improving the accuracy of the
statistical analysis. Additionally, LMMs and GLMMs can capture non-linear relationships
between predictors and response variables, accommodating both categorical and continu-
ous predictors. This feature allows for the exploration of complex behavioral patterns that
may arise in simulated experimental conditions.

The fixed effects considered for the analysis included: (i) manipulated variables from
the experimental design: experimental block (1/2), vehicle speed (35/40/45/50), and eHMI
status (Off/On); and (ii) participants’ personal characteristics: age, sex (F/M), education
level (1/2/3/4), familiarity with AVs (1/2/3), and trust in AVs (1/2/3). In the case of
familiarity with AVs and trust in AVs, the factors were transformed from five levels to
three levels to simplify the model.

The modeling process was guided by key metrics such as the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), the Intraclass Correlation Coeffi-
cient (ICC), Root-Mean-Square Error (RMSE), and conditional R2. The assessment involved
a Likelihood Ratio test using ANOVA to establish the statistical significance of introducing
new variables.

To address the non-independence of observations, random effects were incorporated
for the subjects. The verification of LMM assumptions was conducted, ensuring linearity,
normality, homoscedasticity, no collinearity among fixed effects, and the absence of influen-
tial data points. As for GLMMs, the normality of the random effects and multicollinearity
were assessed. All these assumptions were confirmed to be satisfied. The variance inflation
factor was calculated for all predictors, revealing no significant correlation between the
predictor variables in the models.

Model enhancement involved tests to identify relevant interactions between the factors.
Focusing primarily on interactions between two factors, following the principle that simpler
models are often preferable, decisions to retain interactions were based on three criteria:
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(i) statistical significance, (ii) improvement in model performance, and (iii) the avoidance
of excessive complexity.

To address the limitation of the random intercept model, which assumes consistent
behavior across all conditions for each subject, the analysis was refined by considering the
incorporation of random slopes. To maintain simplicity in the random effects structure, the
inclusion of random slopes was limited to one particular variable: the experimental block.
This adjustment acknowledged that individual subjects may exhibit varying behavioral
measures under different experimental block circumstances, leading to a more realistic
representation of their behavior.

3. Results

A total of 3968 trials were conducted (31 participants × 64 trials each × 2 experimental
blocks). Data recording issues resulted in the exclusion of 24 trials from the first block and
20 trials from the second. Therefore, a total of 3924 viable trials were used for the analyses,
with 1960 trials in the first block. The experimental design generated 624 viable trials for
the decelerating vehicle, with 280 trials in the first block, and 3300 viable trials for the
non-decelerating vehicle, with 1680 trials in the first block.

3.1. Accepted Crossings
3.1.1. Non-Decelerating Trials

The rate of accepted crossings was calculated by dividing the number of crossings by
the total number of trials, considering only the non-decelerating trials. In Figure 5, the rate
of accepted crossings in each experimental block is depicted as a function of vehicle speed
and eHMI status. For the decelerating trials, all participants successfully crossed the road,
as mentioned in Section 3.1.2.

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 24 
 

 

3.1. Accepted Crossings 
3.1.1. Non-Decelerating Trials 

The rate of accepted crossings was calculated by dividing the number of crossings by 
the total number of trials, considering only the non-decelerating trials. In Figure 5, the rate 
of accepted crossings in each experimental block is depicted as a function of vehicle speed 
and eHMI status. For the decelerating trials, all participants successfully crossed the road, 
as mentioned in Section 3.1.2. 

 
Figure 5. The mean rate of accepted crossings (%) for the non-yielding vehicles in each experimental 
block as a function of vehicle speed and eHMI status (error bars represent standard errors). 

The initial phase of the analysis focused on determining the model that exhibited the 
best fit to the data, following the procedure described in Section 2.5. Factors contributing 
to the model’s enhanced performance included the experimental block, vehicle speed, 
eHMI status, and participant familiarity with AVs. Incorporating random slopes for the 
experimental block resulted in an improved model fit, as indicated by improved perfor-
mance indices. While this choice may not be the most parsimonious, it did not lead to an 
over-fitted model. Notably, no significant interactions were identified between the factors. 
A summary of the model results is provided in Table 3. 

Table 3. Results of the GLMM estimation for the accepted crossings in the non-decelerating trials. 

Predictors Coefficient Std. Error p-Value 
Fixed effects    

Intercept 1.669 * 0.841 0.047 
Block = 1 – a – a – a 
Block = 2 1.080 ** 0.358 0.003 

Speed = 35 – a – a – a 
Speed = 40 –2.158 *** 0.177 <0.001 
Speed = 45 –3.599 *** 0.194 <0.001 
Speed = 50 –4.833 *** 0.222 <0.001 
eHMI = Off – a – a – a 
eHMI = On 0.239 * 0.109 0.028 

Familiarity = 1 – a – a – a 
Familiarity = 2 –0.756 0.957 0.429 
Familiarity = 3 –3.601 * 1.549 0.020 
Random effects    

σ2id 4.84   

Figure 5. The mean rate of accepted crossings (%) for the non-yielding vehicles in each experimental
block as a function of vehicle speed and eHMI status (error bars represent standard errors).

The initial phase of the analysis focused on determining the model that exhibited the
best fit to the data, following the procedure described in Section 2.5. Factors contributing
to the model’s enhanced performance included the experimental block, vehicle speed,
eHMI status, and participant familiarity with AVs. Incorporating random slopes for
the experimental block resulted in an improved model fit, as indicated by improved
performance indices. While this choice may not be the most parsimonious, it did not lead
to an over-fitted model. Notably, no significant interactions were identified between the
factors. A summary of the model results is provided in Table 3.
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Table 3. Results of the GLMM estimation for the accepted crossings in the non-decelerating trials.

Predictors Coefficient Std. Error p-Value

Fixed effects

Intercept 1.669 * 0.841 0.047

Block = 1 – a – a – a

Block = 2 1.080 ** 0.358 0.003

Speed = 35 – a – a – a

Speed = 40 −2.158 *** 0.177 <0.001

Speed = 45 −3.599 *** 0.194 <0.001

Speed = 50 −4.833 *** 0.222 <0.001

eHMI = Off – a – a – a

eHMI = On 0.239 * 0.109 0.028

Familiarity = 1 – a – a – a

Familiarity = 2 −0.756 0.957 0.429

Familiarity = 3 −3.601 * 1.549 0.020

Random effects

σ2
id 4.84

σ2
slope 3.34

Correlation −0.26

Observations 3300

Groups 31

R2 0.739

RMSE 0.314

AIC 2329.9

BIC 2397.0

ICC 0.624
a Reference level; * p < 0.05; ** p < 0.01; *** p < 0.001; σ2

id = random intercept variance; σ2
slope = random slope variance.

3.1.2. Decelerating Trials

In the decelerating trials, all participants successfully crossed the road. Figure 6 illustrates
the distinct patterns observed for conditions with the eHMI present, signaling yielding
behavior using the green-light band, and the eHMI absent. The estimation of the distance
between the vehicle and the pedestrian occurred when the participant initiated the crossing
point. Additionally, the average distance at which the eHMI was activated was determined
based on when the pedestrian passed the detection point.

For experimental block 1 and experimental block 2, the average activation distances of the
eHMI were calculated to be 31.8 m (SD = 2.4) and 33.2 m (SD = 2.5), respectively. This suggests
that when the eHMI was active and conveying yielding information, the incentive to cross the
road resulted in participants approaching the crosswalk at a faster pace.

In both experimental blocks, the crossing pattern remained largely consistent. Some
participants opted to wait for the vehicle to fully stop before crossing when the eHMI was
not active. However, this behavior shifted when the eHMI was active, suggesting that
the message conveyed by the vehicle facilitated a quicker and safer decision for crossing.
This pattern also implies that pedestrians felt more at ease crossing the road either when
the vehicle was at a considerable distance, in both absent and present eHMI conditions, or
when they perceived the yielding behavior from the vehicle, particularly when it signaled
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its intention to yield. These observations align with similar findings from a study conducted
by Lee et al. [6].
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distance at which the eHMI was activated to the participants. The vehicle always stopped five meters
away from the pedestrian.

3.2. Collisions

During the experiments, any virtual contact detected between the vehicle and the
participant was considered a collision. To ensure participants were aware of these collisions,
a sound was played every time the width of the vehicle’s front bumper reached them.
The collision rate was determined by dividing the number of collisions by the total number
of accepted crossings. This phenomenon exclusively occurred in the non-decelerating trials.
Figure 7 illustrates the collision rate divided by experimental block, as a function of vehicle
speed and eHMI status.
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This analysis included a total of 1016 trials, with 434 trials in the first block. One par-
ticipant exhibited an overly conservative approach by never attempting to cross the road
before the vehicle reached the crosswalk and was not included in the analysis. In line with
the approach described in Section 3.1.1, a similar methodology was applied to fit a GLMM.
Notably, the factors that exhibited superior performance in the model were the experimen-
tal block and vehicle speed. Despite the eHMI variable being statistically non-significant,
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the decision was made to retain this factor in the model for further consideration. The Std.
Error increases at higher speeds due to the number of trials where collisions occur being
smaller at higher speeds. This reduction in observations for collision incidents and the
inclusion of random effects leads to less precise estimates of the Std. Error for the fixed
effects, resulting in larger values. Random slopes were considered for the experimental
block, and no relevant interactions were observed between the factors. The results of the
model are summarized in Table 4.

Table 4. Results of the GLMM estimation for the collisions in the non-decelerating trials.

Predictors Coefficient Std. Error p-Value

Fixed effects

Intercept −10.802 *** 2.844 <0.001

Block = 1 – a – a – a

Block = 2 −12.477 ** 4.578 0.006

Speed = 35 – a – a – a

Speed = 40 0.294 1.396 0.833

Speed = 45 4.258 * 1.805 0.018

Speed = 50 12.957 *** 3.762 <0.001

eHMI = Off – a – a – a

eHMI = On −0.038 0.748 0.960

Random effects

σ2
id 81.56

σ2
slope 376.66

Correlation −0.26

Observations 1016

Groups 30

R2 0.989

RMSE 0.081

AIC 148.7

BIC 193.0

ICC 0.987
a Reference level; * p < 0.05; ** p < 0.01; *** p < 0.001; σ2

id = random intercept variance; σ2
slope = random slope variance.

3.3. Safety Margin

The safety margin was calculated for each crossing in the non-decelerating trials, with
the exclusion of the collision data. This metric was determined as the time between the
moment the participant passed the path of the approaching vehicle (front end width of
the vehicle) and when the vehicle reached the participant’s crossing line. Essentially, it
represents the “time left before a collision” during the crossing, as described by Dommes
et al. [36]. Figure 8 illustrates the safety margin as a function of vehicle speed and eHMI
status and is divided by experimental block.

The statistical analysis was conducted using LMMs, following the outlined procedure
in Section 2.5. Two participants were excluded: one who exhibited very conservative
behavior and never attempted to cross before the car reached the crosswalk, and the
other who was involved in a collision during every attempt to cross. The variables that
demonstrated better performance in explaining the safety margin were the experimental
block, vehicle speed, eHMI status, and participants’ age. No relevant interactions were
identified between these factors, and random slopes were considered for the experimental
block. The results of the model are summarized in Table 5.
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Table 5. Results of the LMM estimation for the safety margin in the non-decelerating trials.

Predictors Coefficient Std. Error p-Value

Fixed effects

Intercept 2.315 *** 0.373 <0.001

Block = 1 – a – a – a

Block = 2 0.272 *** 0.038 <0.001

Speed = 35 – a – a – a

Speed = 40 −0.475 *** 0.014 <0.001

Speed = 45 −0.828 *** 0.016 <0.001

Speed = 50 −1.095 *** 0.021 <0.001

eHMI = Off – a – a – a

eHMI = On 0.042 *** 0.011 <0.001

Age −0.041 ** 0.012 0.002

Random effects

σ2
id 0.08

σ2
slope 0.03

Correlation 0.36

Observations 975

Groups 29

R2 0.904

RMSE 0.171

AIC −394.8

BIC −341.1

ICC 0.790
a Reference level; ** p < 0.01; *** p < 0.001; σ2

id = random intercept variance; σ2
slope = random slope variance.

3.4. Crossing Speed

The crossing speed was calculated by dividing the crossing distance of three meters
by the time taken to cross the road. The data comprised both non-decelerating trials, with
collisions excluded from the analysis, and decelerating trials where participants crossed
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the road before the vehicle reached the crosswalk. Figure 9 shows the crossing speed as
a function of vehicle speed and eHMI status, divided by experimental block, for both
yielding and non-yielding conditions.
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The statistical analysis was conducted using LMMs, following the procedure outlined in
Section 2.5. The variables that demonstrated strong performance in the model were the exper-
imental block, vehicle speed, and eHMI status. Particularly, the pace at which participants
crossed the road might be influenced by additional factors intrinsic to the experiment. Given
that the data encompassed both yielding and non-yielding vehicles, the yielding behavior of
the vehicle was also modeled as a fixed effect. The factors representing participants’ personal
characteristics did not contribute significantly to the model’s improvement.

The apparent ineffectiveness of eHMI in influencing crossing speed, as seen in Figure 9,
might originate from pedestrians relying more on their perception of vehicle speed than the
information conveyed by the eHMI. Moreover, the time required for pedestrians to process
and respond to eHMI information may be longer compared to directly perceiving the
vehicle’s speed. Additionally, pedestrians’ familiarity and experience with eHMI-equipped
vehicles could also impact their responsiveness to eHMI signals; however, these factors
were not significant in the model.

Random slopes were considered for the experimental block. The results of the model
are summarized in Table 6. A significant interaction was observed between the eHMI
status and the yielding behavior of the vehicle. The results of the post hoc analysis of the
interaction are presented in Table 7 (t-tests estimated using Bonferroni’s method).



Sustainability 2024, 16, 3236 15 of 23

Table 6. Results of the LMM estimation for the crossing speed in both decelerating and non-
decelerating trials.

Predictors Coefficient Std. Error p-Value

Fixed effects

Intercept 1.378 *** 0.027 <0.001

Block = 1 – a – a – a

Block = 2 0.076 *** 0.020 <0.001

Speed = 35 – a – a – a

Speed = 40 0.066 *** 0.008 <0.001

Speed = 45 0.175 *** 0.012 <0.001

Speed = 50 0.280 *** 0.014 <0.001

eHMI = Off – a – a – a

eHMI = On 0.013 0.009 0.125

Yield = No – a – a – a

Yield = Yes −0.077 *** 0.011 <0.001

eHMI = Off × Yield =
No – a, b – a, b – a, b

eHMI = On × Yield =
Yes −0.028 * 0.014 0.040

Random effects

σ2
id 0.02

σ2
slope 0.01

Correlation 0.13

Observations 1632

Groups 31

R2 0.708

RMSE 0.132

AIC −1664.1

BIC −1599.3

ICC 0.611
a Reference level; b post hoc analysis; * p < 0.05; *** p < 0.001; σ2

id = random intercept variance; σ2
slope = random

slope variance.

Table 7. Post hoc analysis of the interaction between eHMI status and yielding behavior of the vehicle.

Group Contrast Coefficient Std. Error p-Value

Yield = No eHMI = Off – a – a – a

eHMI = On −0.013 0.009 0.750

Yield = Yes eHMI = Off – a – a – a

eHMI = On 0.015 0.011 0.942

eHMI = Off Yield = No – a – a – a

Yield = Yes 0.077 *** 0.011 <0.001

eHMI = On Yield = No – a – a – a

Yield = Yes 0.106 *** 0.011 <0.001
a Reference level; *** p < 0.001.
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3.5. Questionnaires
3.5.1. First Questionnaire

Participants were asked to indicate their level of familiarity with AVs on a scale ranging
from 1 (not at all familiar) to 5 (extremely familiar). The results showed that nearly half of
the participants (45%) reported being slightly familiar with the concept of AVs, while 23%
stated that they were not familiar with it at all. On average, participants’ familiarity with
AVs was moderate (M = 2.2, SD = 1.0).

Subsequently, participants were presented with two questions to assess their trust in
AVs. The first question gauged their comfort level when crossing the road in front of an AV,
and the second question explored their belief in whether AVs could better identify them
compared to a human driver. Both questions were answered using a scale that ranged
from 1 (strongly disagree) to 5 (strongly agree). The results revealed that, on average,
participants remained neutral regarding their comfort level when crossing the road in front
of an AV (M = 3.2, SD = 1.1). However, they leaned towards the belief that AVs would
outperform human drivers in identifying them (M = 3.5, SD = 1.1) on the same scale.

3.5.2. Second Questionnaire

Participants were surveyed about their opinions on specific aspects related to AVs
through two key questions, with responses rated on a scale from 1 (not important) to
5 (extremely important). The first question addressed whether AVs should be distinguish-
able from conventional human-driven vehicles. Results indicated that participants deemed
this aspect to be very important (M = 3.6, SD = 1.1), suggesting a belief that AVs should
have a distinct appearance from traditional vehicles on the road.

The second question focused on whether AVs should visually communicate their inten-
tions to pedestrians. Participants assigned high importance to this feature (M = 4.4, SD = 0.8),
emphasizing the need for AVs to clearly indicate their actions to enhance pedestrian under-
standing and safety. These findings align with a study by Razmi Rad et al. [19], which reported
similar results in their survey questionnaires.

To explore potential relationships between participants’ opinions and their behaviors
towards AVs, a Spearman’s correlation analysis was conducted. The analysis revealed a
positive correlation (rS = 0.491, p = 0.005) between participants who felt more comfortable
crossing the road in front of AVs and their expectation that AVs would excel at identifying
pedestrians compared to human-driven vehicles. This suggests that higher comfort levels
with AVs may be associated with greater trust in their ability to detect pedestrians accurately.

Conversely, participants who felt less comfortable crossing the road in front of AVs
showed a negative association (rS = −0.383, p = 0.034) with the belief that it is important
for AVs to be distinguishable from conventional vehicles. This implies that individuals
less at ease with AVs may find visual distinctiveness a crucial factor in feeling safe and
comfortable around them.

However, no significant correlation was found between participants’ opinions and
their level of familiarity with AVs, indicating that familiarity did not significantly influence
their opinions on the evaluated features of AVs.

Additionally, participants were asked about the most important criterion they consid-
ered when deciding to cross the road. This was an open answer, and the purpose was to
avoid any potential bias that might arise from providing predefined options. Participants
indicated that the speed at which the vehicle is approaching plays a crucial role in their
decision process, mentioned 20 times in various responses. Participants also emphasized
the significance of the vehicle’s sound and communication, with only three participants
pointing out the communication capabilities of the vehicle. In a study by Razmi Rad
et al. [19], participants considered the distance of the vehicle as the most important cri-
terion. The deviation in criteria between the present study and the mentioned one may
stem from the differing experimental environments. The current study was conducted in
an immersive setting, while the referenced study took place in a computer-based setup.
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The contrasting nature of these environments could contribute to the observed differences
in participant responses.

3.5.3. Simulation Sickness Questionnaire

The simulation sickness questionnaire was administered to participants both before the
experiment (as a baseline) and after the experiment. Comprising 16 symptoms, participants
rated the discomfort they experienced during the simulation, ranging from none (zero) to
severe (three). These symptoms were categorized into three groups: nausea, oculomotor
disturbance, and disorientation, following the classification by Kennedy et al. [58].

In addition to the recruited participants, the first two participants who assisted in calibrat-
ing the equipment were also included in the analysis, bringing the total number of participants
to 33. The average total score, calculated using the method outlined by Deb et al. [60], was
12.6, indicating the presence of “significant symptoms” during the experiment. Scores above
20 suggest potential simulator issues, while scores below 10 indicate minimal symptoms. No-
tably, participants were required to walk continuously for a total of 40 min, and the symptoms
that scored the highest were “fatigue” and “sweating”, which were expected given the nature
of the experimental design. The third highest-scoring symptom was “eyestrain”, which was
also anticipated considering the demands of the experiment.

Based on these findings, it can be concluded that the current experimental design is
safe to use. However, caution is advised against increasing the duration of the experiment
in future studies, as a more extended exposure to the simulator could likely exacerbate
the highlighted symptoms. These conclusions align with those reported by Deb et al. [60],
where a thirty-minute exposure to the virtual environment resulted in minimal simulation
sickness, while a duration of forty minutes or more led to significant simulation sickness.

4. General Discussion and Conclusions

One of the objectives of the present study was to explore the contribution of eHMIs to
pedestrian safety in street-crossing scenarios. Another objective was to assess the influence
of an experimental reward system on pedestrians’ risk-crossing behavior in the presence
of AVs. Ultimately, the researchers expected to identify the factors that contributed to
the observed changes in pedestrian behavior during interactions with AVs equipped with
external HMIs.

4.1. Vehicle Interaction with and without eHMIs

The presence of an eHMI conveyed a notable influence on risky crossing behavior.
Participants were observed to cross more frequently when the vehicle communicated that
it was not stopping. This behavior implies that pedestrians were more inclined to take risks
when the vehicle signaled an intention not to stop, compared to situations where there
was no communication with the pedestrian. Interestingly, this behavior resulted in fewer
collisions, although the model found this to be statistically non-significant. Additionally,
the safety margin exhibited a slight increase when the eHMI was active and conveyed that
the vehicle was not stopping, in contrast to situations where it was absent.

The observed increase in the safety margin could be linked to participants crossing faster
when the eHMI was active and the vehicle was not stopping. However, this was proven to
be non-significant in the model. Notably, pedestrians crossed faster when the vehicle was
yielding, irrespective of the eHMI status, suggesting that the presence or absence of the eHMI
did not significantly impact pedestrian crossing speed, as revealed in Table 7.

4.2. Street Crossing with and without an Incentive

The introduction of a reward system with game-related elements notably influenced
participants’ behavior during the experiment. The accepted crossings exhibited an increase
from the first to the second block, suggesting that participants were more motivated to
cross when provided with an incentive. Moreover, fewer collisions were observed in the
second experimental block, indicating intensified participant attention during this phase.
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The incentive to cross the road also had effects on other variables. The safety margin
displayed an increase from the first to the second block, implying a potential risk reduction
when pedestrians were motivated to cross. However, the crossing speed also increased
during this period, which might have influenced the observed higher safety margins.

An increase in crossing speed was also reported in the study by Schneider et al. [48]
under game-related comparable experimental conditions. In contrast, in their study, there
was a reduction in the safety margin and an increase in collisions from the first block to the
second block. Their experiment involved continuous traffic flow with multiple vehicles on
the road with a permanent speed of 30 km/h and increasing gaps between vehicles over time.
Participants faced time pressure as points were deducted in the game scenario for prolonged
waiting, thereby encouraging them to accept the closest possible gap. In this scenario, the
potential point deduction for waiting, as opposed to the higher point deduction for collisions,
created a more pronounced time pressure compared to the present study.

4.3. Factors That Contributed to Behavioral Change

The current observations suggest that both the eHMI of the vehicle and the incentive
to cross using game-related elements have influenced pedestrian behavior in the simulator.
Additionally, the speed of the approaching vehicle has emerged as a crucial factor impacting
crossing behavior, with higher vehicle speeds associated with a lower crossing rate. Moreover,
vehicle speed significantly impacted collisions and safety margins, with higher speeds corre-
lating with a higher frequency of collisions and shorter safety margins. This underscores the
pivotal role of vehicle speed in pedestrian safety during street-crossing situations.

This aligns with the expectation that higher speeds are linked to shorter safety mar-
gins and more collisions, as observed in the present study, and supported by previous
research [42]. Participants also ranked vehicle speed as the most significant criterion for
deciding when to cross the road in the questionnaires (refer to Section 3.5.2). The pattern of
risky behavior with high-speed approaching vehicles is consistent with findings from prior
studies [36,39,61,62].

The speed of the approaching vehicle also influenced pedestrians’ crossing speed,
with participants increasing their crossing speed as the speed of the approaching vehicle
increased. However, this pattern may not hold for older pedestrians, as observed in other
studies where crossing speed is considered an important predictor of risky behavior among
the elderly [42].

Participants’ familiarity with AVs and age also appeared to influence crossing behavior.
Those more familiar with AVs crossed less frequently in the non-yielding conditions,
revealing that a better understanding of the technology led to more cautious behavior.
Familiarity with AVs has played a crucial role in other comparable studies, such as the
one by Razmi Rad et al. [19]. Additionally, the safety margin was reduced for older
participants, suggesting a higher risk of road-crossing for this age group. Similar findings
were observed in the study by Pala et al. [42], where reduced safety margins were noted for
older participants compared to younger ones.

Another fundamental aspect of understanding behaviors towards AVs involves ex-
amining pedestrian acceptability and the willingness to pay for shared AV services. While
these topics were not the focus of this study, it is essential to recognize their significance
in transportation research. Investigating pedestrian attitudes and perceptions towards
AVs, their trust in AV technology, and their willingness to use shared AV services provides
valuable insights into societal acceptance and potential implications for future mobility
services [63,64].

Based on these findings, a new set of experiments should be conducted with a larger and
more diverse sample of participants, encompassing a wider range of ages. Emphasizing the
role of participants’ age in road-crossing behavior could provide valuable insights into how
different age groups react to varying scenarios with AVs on the road. Figure 10 illustrates the
outline of the factors that contributed to the change in pedestrian behavior.
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4.4. Conclusions

This study employed an experimental approach to investigate the impact of incentives
and the use of eHMIs on pedestrian interactions with AVs within virtual environments, con-
sidering the challenges and ethical considerations associated with real-world experiments.
Several significant factors influencing pedestrian behavior were identified, including ve-
hicle speed, the deceleration behavior of the vehicle, eHMI status, familiarity with AVs,
and age. However, gender, trust in AVs, and education level did not emerge as significant
factors. The presence of an external HMI had a significant effect on crossing behavior,
particularly in measures associated with risky behavior. Participants were more inclined to
cross when the eHMI indicated that the vehicle was not stopping, suggesting a willingness
to take risks. The safety margin also exhibited a slight increase when the eHMI was present
and the vehicle was not stopping.

The introduction of a reward system during the game-based experimental block
led to a noticeable increase in the number of accepted crossings, particularly at higher
vehicle speeds. Although the incentive encouraged participants to take more risks, the
actual risk involved decreased, indicating that the reward system influenced risk-taking
behavior without compromising safety significantly. Overall, the experimental approach
significantly altered participants’ behavior in all of the behavioral measures: accepted
crossings, collisions, safety margin, and crossing speed.

The speed of the approaching vehicle emerged as a crucial factor influencing crossing
behavior, with higher vehicle speeds associated with a lower crossing rate. Additionally,
higher vehicle speeds correlated with a higher frequency of collisions, emphasizing the
role of vehicle speed in pedestrian safety during road-crossing situations. The speed of the
approaching vehicle also impacted pedestrians’ crossing speed, with pedestrians increasing
their speed as the vehicle’s speed increased.

Participants’ familiarity with AVs and age also influenced pedestrian crossing behav-
ior. Participants who were more familiar with AVs crossed less frequently, indicating a
more cautious approach. Older participants exhibited a reduced safety margin, suggest-
ing a higher risk of crossing the road. These findings highlight the multifaceted factors
influencing pedestrian behavior in the presence of AVs.

Questionnaire data indicated participants’ moderate familiarity with AVs and a some-
what neutral stance on their comfort in crossing in front of these vehicles. However,
participants had a positive expectation regarding the ability of AVs to surpass human
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drivers in identifying pedestrians. They emphasized the importance of AVs being visually
distinguishable and communicating intentions clearly, suggesting that addressing these
design and communication aspects could enhance the perception of safety and trust in AVs.

The challenges of investigating this topic in real-world settings lead to the decision
to conduct experiments in a virtual environment. While controlling variables provided a
systematic approach, this study has limitations, namely by simplifying real-world scenarios
and, thus, limiting the generality of the findings. Controlled environments allow for precise
manipulations and observations of participant behavior, but they may not fully capture
environmental, social, and individual factors present in real-world situations. Therefore,
interpreting the findings within this context is essential, along with recognizing potential
limitations in extrapolating the results to real-world contexts.

Future research could bridge this gap by incorporating more realistic elements into
simulated environments, such as virtual reality simulations or semi-controlled field experi-
ments. This approach would comprehensively address the stochastic nature of the topic
and enhance the applicability of the findings to real-world scenarios.

The study underscores the significance of eHMIs as an external cue influencing pedes-
trians’ interactions with AVs. The data support the idea that eHMIs play a crucial role in
shaping participants’ responses and behaviors during road-crossing experiences, especially in
risk-related factors. These insights contribute to the understanding of the potential impact
of external cues on pedestrians’ decisions and actions when crossing roads in the presence
of AVs. This is essential for designing effective communication strategies between AVs and
pedestrians, ultimately contributing to safer and more efficient vehicle–pedestrian interactions.
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