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Abstract: Considering that the fusion of education and technology has delivered encouraging out-
comes, things are becoming more challenging for higher education as students seek experiences
that bridge the gap between theory and their future professional roles. Giving priority to the above
issue, this study presents methods and results from activities assisting engineering students to uti-
lize recent machine-learning techniques for tackling the challenge of water resource preservation.
Cost-effective, innovative hardware and software components were incorporated for monitoring
the proper operation of the corresponding agricultural equipment (such as electric pumps or water
taps), and suitable educational activities were developed involving students of agricultural engi-
neering. According to the evaluation part of the study being presented, the implementation of a
machine-learning system with sufficient performance is feasible, while the outcomes derived from
its educational application are significant, as they acquaint engineering students with emerging
technologies entering the scene and improve their capacity for innovation and cooperation. The
study demonstrates how emerging technologies, such as IoT, ML, and the newest edge-AI techniques
can be utilized in the agricultural industry for the development of sustainable agricultural practices.
This aims to preserve natural resources such as water, increase productivity, and create new jobs for
technologically efficient personnel.

Keywords: internet of things; machine learning; smart sensors; fault detection; embedded systems;
smart agriculture; water preservation; sustainability; educational practices; higher education

1. Introduction

Nowadays, innovative technologies have been incorporated into the curricula of
schools, delivering promising educational outcomes, particularly in the STEM (Science,
Technology, Engineering, and Mathematics) framework. Although STEM education has
many benefits for young students, the same courses and principles cannot apply to higher
education without proper adaptation, as higher-education students, having already ac-
quired several basic knowledge sets and skills, seek advanced learning experiences [1].
Quite a few innovative solutions are available that support laboratory-level trials and
create interesting activities that encourage the students to take part in all stages of the
development of real-world applications. Indeed, considerable work is done, involving
microcontrollers, pairing electronics [2], and small-scale inexpensive systems (i.e., robotic
devices), usually through applying PBL (Project Based Learning) approaches [3], in the
context of K-12 education [4,5] and higher education [6]. The inclusion of the STEM model
into today’s educational methods is challenging for a variety of reasons [7]. In the case
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of university students, more effort should be made, as the students ask for more complex
systems and learning experiences that are equal to real-world conditions.

There is apparently a gap between university and industry, regarding appropriate engi-
neering capabilities [8,9], which is easier to bridge by developing pure software, using open
platforms [10]. Additionally, software platforms are highly beneficial for facilitating the
development of systems and programming controllers of industrial specifications [11–13],
including the ones applied in the agricultural sector [14]. It is worth mentioning that, quite
frequently, students are not being given the opportunity to experiment with the full set of
diverse settings of actual equipment during the classes, which mainly operates as a “black
box” system [15]. This situation, inherited by the secondary education, is experienced in the
engineering university department and is further magnified due to the intensification of the
students’ technical curricula. Additionally, the outdated equipment being used on several
occasions during the laboratory classes cannot always be computerized (i.e., with modern
interfaces for communication, monitoring, and control) or it is merely computerized, solely
with the assistance of properly trained personnel.

These facts indicate the necessity and the difficulty of incorporating advanced tech-
nologies into the universities’ courses [16], not only in theory but also in practice, via
enriching laboratory activities with practical experiences and, thus, aiming to train students
so as to develop skills for tackling real-world problems. In this regard, the inclusion of
innovative technologies and hands-on activities in higher education will prepare students
to adapt easily to the continuously developing industry and to gain valuable knowledge
and skills that will be utilized in the future to improve the planet. These actions need to be
carried out taking into consideration the fostering of sustainable development in order to
ensure environmental protection and preservation of natural resources [17].

Indeed, sustainability serves as a main pillar for the green transition, it entails fulfilling
current needs while ensuring future generations can meet their own needs without compro-
mises [18]. Hence, sustainable practices intend to decrease the negative impact of human
activities on the environment, society, and the economy [19]. In this context, entrepreneur-
ship should enable the development of new technologies and business models that provide
fresh products, and services that create value by addressing sustainability challenges, while
also contributing to economic growth and job creation [20]. Sustainability and education
are intricately linked concepts that play a pivotal role in shaping a sustainable future for
our planet. The idea of Sustainable Education (SE) involves seeking lasting solutions to
environmental, social, and economic challenges through educational means [21]. This
concept calls upon both formal and informal education sectors to engage proactively in
developing programs that enhance quality of life, promote empowerment, and recognize
the interconnectedness of economic, social, and environmental aspects [22,23]. On the
other hand, Education for sustainability refers to the integration of sustainability principles
into the curriculum and educational experiences. It focuses on teaching students about
concepts, values, and skills related to sustainability, enabling them to understand and
address complex global challenges, such as climate change, biodiversity depletion, and
social inequality [24]. It emphasizes the content of education, incorporating topics related
to environmental conservation, social justice, and economic viability into various subjects.
Students are encouraged to explore real-world issues, develop critical thinking skills, and
participate in projects that promote sustainable practices in society. The goal is to create
environmentally and socially conscious citizens who can contribute to building a more
sustainable future.

From the perspective of agriculture, dealing with the problem of water depletion,
according to sustainable policies, is of particular concern since the agricultural sector is
the main water consumer on Earth. In fact, water is an important input for agricultural
production and holds significance in food security, as global irrigation for agricultural
production comprises 70% of clean water use [25]. Water pumps and faucets play a
vital role in irrigation operations, as they are primarily employed to transport substantial
volumes of water from their respective sources to the fields. Furthermore, water pumps
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can undergo damage due to various factors, including insufficient provision of water from
the origin, inefficient power, or the circulation of contaminated water. To avoid damage
to the components of these pumps, it is crucial to observe their operational status and act
in the event of a malfunction. The digitalization of agriculture appears to be a promising
opportunity for monitoring and automating agricultural operations through cutting-edge
technology, such as the internet of things (IoT) and machine learning (ML) [26,27].

For the aforementioned reasons, the case described in this paper focused on addressing
water depletion issues and equipment maintenance. This approach aimed to familiarize
students with the principles of sustainability, encouraging them to comprehend the intricate
interplay between human activities, environmental concerns, and sustainable solutions.
Above this, the contribution of this work is to emphasize the viability for integrating
software and hardware components to provide, apart from technical outcomes, considerable
educational outcomes regarding the issue of strengthening the benefits of real equipment
for water preservation. These components, without being expensive, can assist in creating
effective instruments for maximizing the educational benefits for the students, while they
are called to tackle problems related to the water preservation purposes. The experiments
carried out were dedicated to sustainability, emphasizing the preservation of water and the
maintenance of equipment. This method strives to achieve dual advantages for participants:
acquiring additional technical knowledge while also putting sustainable applications into
practice. In this context, the experimental arrangements described herein are trying to
highlight the potential benefits—from technical and educational perspectives, with more
focus on the latter—of modern technological advancements like the ML and the IoT, aiming
at the delivery of cheap devices capable of making smart in situ decisions and reporting
the results to the interested parties accordingly, instead of relying upon complicated, non-
cost-effective, centralized infrastructures.

In more detail, the first step of this research, in the direction of the on-device intelli-
gence deployment technique [28], was the development of a classification model executed
on a microcontroller attached to a commercial faucet along with a flow sensor so as to
determine water-consumption profiles and alert the user about them [29]. To further benefit
from this deployment technique, a machine-learning model was developed for classifying
and diagnosing possible motor defects in a water pump, using vibration data from an
accelerometer to achieve a more comprehensive and precise perspective on the factors
influencing the system [30]. These preexisting works, apart from introducing technical
innovations, provide fertile ground, from an educational perspective, for pedagogical setup
descriptions, experimentation, and evaluation reports that are among the main subjects of
the study being presented. Toward this direction, the applications’ implementation process
and overall utilization experience are also evaluated through questionnaires, suitable for
the specific target groups of undergraduate and postgraduate university students. The
results indicated that valuable hard skills and soft skills were acquired (and, thus, reported)
by the students who participated, thereby making them better prepared for their roles in a
rapidly changing era.

Subsequently to the introduction in Section 1, the paper is laid out as follows. Section 2
identifies the main motivations and challenges of this work. Section 3 provides an overview
of the educational arrangements as well as some facts about the functionality and the
selection of the components. In Section 4, the design of the system is presented and some
interesting details regarding its implementation are highlighted. Section 5 concentrates on
evaluation of the results and discussion of some insights derived from the findings of this
work. Finally, Section 6 of the paper presents key conclusions derived from this work and
outlines potential directions for future research.

2. Related Work and Rationale

In terms of agricultural engineering education, in most cases, universities primarily
prioritize enhancing the performance of particular implementations from a technical stand-
point, often without placing emphasis on the basis of educational practices or the social
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impact [31]. It is important to highlight that students in agricultural engineering show a
clear preference for teaching methods based on experiential learning, which equips them
with skills for innovation and creation [32,33]. The field of digital agriculture includes
not only agriculture, but also engineering and computing, and, thus, it is challenging to
find experts that are fully conversant with these aspects simultaneously [33]. Moreover,
education for sustainable development [34] is not included in the activities of universi-
ties, although it is a key element in the Agenda for Sustainable Development, driving the
fulfillment of all the Sustainable Development Goals (SDGs) [35]. The ESD stands for the
inclusion of sustainability issues, i.e., protection and conservation of natural resources,
climate change, and sustainable exploitation/consumption, in teaching and learning [34].
In this regard, preparing well-trained professionals should include equipping them with
the knowledge, skills, and values that will empower them to contribute to the creation
of a more sustainable world and enhance wellbeing as well as socio-economic growth,
along with conserving natural resources. The importance of introducing the sustainability
concept in higher education has been identified by researchers. As [36,37] indicate, in order
to emerge as leaders and catalysts for change in sustainability, higher education institu-
tions must prioritize understanding and addressing the needs of both present and future
generations. This involves equipping professionals, well-versed in Sustainable Develop-
ment (SD), to effectively educate individuals of all ages and guide them in transitioning to
sustainable societal patterns. To achieve this goal, it is crucial for university leaders, faculty,
and students to be empowered to introduce Sustainable Development into all aspects of
their institutions, including courses, curricula, and various activities. Recognizing the
importance of multidisciplinary and transdisciplinary approaches in teaching, research,
and community outreach is essential for expediting the necessary societal transition toward
sustainable development.

The literature also shows that the incorporation and utilization of technologies in
education systems, overall, are not advancing as indicated by the digital and 2030 agen-
das [38] due to technological, pedagogical, and organizational inefficiencies. Many of
the new technologies having a strong impact in modern life are not well incorporated
yet into the higher education curricula, that remain more theoretical than practical, while
flexibility and multidisciplinarity are required. A notable case of such technologies is the
field of artificial intelligence (AI) known as machine learning (ML), that has many practical
applications offering solutions to several critical problems, and, thus, could be making it a
prime example motivating for integration into educational practices.

Apart from the more conventional educational approaches dealing with engineering
with electromechanical [39,40] and basic IoT [41] solutions applied in modern industry and
agriculture, various educational projects aim to improve individuals’ AI literacy. According
to recent research [42], preliminary courses on AI are offered at various educational levels,
from elementary school [43] and secondary education [44,45] to higher education [46,47].
Nevertheless, most of these approaches are software-based paradigm and they are not
well linked with real-world problem solutions that fully exploit the engineering spectrum.
Unfortunately, it is hard to find research works combining education on machine learn-
ing with impact on sustainability and offering at the same time real-world performance
applications experiences.

Some works may be found, dealing with sustainability or with machine learning,
although not satisfactorily covering both issues. machine learning models possess the ability
to learn and adjust according to the problem, whereas traditional programming alternatives
are constrained since those implementing them are expected to already understand the
intricacies of the system for which the solution is being customized [48]. In recent years,
the accessibility of extensive volumes of data and information has enabled more fast and
accurate ML models [49]. The swift growth in available data, facilitated by improved sensor
inventions, has significantly elevated the significance of machine learning, transforming it
into a potent instrument for numerous applications between various disciplines. Indeed,
fresh hardware and software tools have recently appeared, allowing for fast deployment of
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applications in the area, and it is worth these tools to be efficiently and creatively utilized
by higher education professionals.

This work initially aims to bridge the aforementioned gap and proceeds further to
achieve mutual benefits from the educational and technological context. In greater detail,
the combined goal of this work is to facilitate the communication of innovative technology
practices to agricultural engineering university students, based on the development of a
final product, in order to become more efficient in their careers, and simultaneously to
make the students aware of critical sustainability issues. In this regard, the activities being
proposed need to be oriented towards covering all these types of challenges. Traditionally,
through technology, several solutions had to be found to tackle intense problems, such
as the depletion of natural resources or the increased nutritional needs of humans, while
modern disciplines like IoT, automation control, artificial intelligence, and networking
were amongst the most promising instruments of the abovementioned efforts. Therefore,
the emerging advance in the area is further increasing the need for well-trained students
and future professionals involved in developing, parameterizing, and maintaining the
relevant systems.

Going deeper, it emphasizes the feasibility of developing economical systems of re-
alistic dimensions, which is achieved due to the presence of user-friendly programming
software, which can be either textual or visual, streamlining the entire approach. Indeed,
according to the study report of 2021 of the European Commission (EU) [50], the role of
open-source software and hardware is paramount for facilitating the digital transformation
and fostering the improvement of societies. Additionally, from an educational perspective,
the proposed processes, which are mainly oriented (but not limited) to agricultural engineer-
ing students, are utilized for better delivering the essentials of machine-learning techniques
and various hardware, software, and networking principles as well as to raise awareness of
sustainability issues and ways to contribute to more sustainable agricultural production
practices. The demanding collaboration needed for the completion of the suggested system
also offers the essential setting to reinforce several cooperative and organizational skills.
Apart from that, the exploitation of retired or remaining/unused components is a good
option, as they are inexpensive for the creation of educational scenarios, and they align with
the common guidelines for sustainability and circular economy that modern communities
are encouraged to adhere to [51]. In greater detail, during laboratory lessons experiences,
university students of little technological background, were assisted to clarify cutting-edge
technologies, and to bridge the gap between small-sized educational constructions and
real-size systems. The experiments conducted have a very clear technological description
in order to be easily reproduced by other teams of researchers/educators, but they are
also strongly oriented towards sustainability, as they are dealing with subjects that intrinsi-
cally exist in the sustainability context, such as water preservation and pump equipment
maintenance challenges.

To that end, this paper takes into consideration the material provided by two studies
that use machine learning techniques for developing detection systems in order to ad-
dress typical irrigation network problems. The first one introduces a water-misuse alert
system [29], while the second one utilizes a classification model to detect water pump
malfunctions in agricultural premises [30]. This article, except from providing a brief
technical overview, is trying to explain how the latter systems can be transformed into
effective educational instruments, suitable for serving the priorities of an agricultural en-
gineering laboratory. It is an attempt to delve deeper into the integration of ML in the
field of engineering from a scientific and educational standpoint, providing university
students with the opportunity to combine hands-on methods and create smart agriculture
solutions, often called “the future of the digitalization of farming” and “the driver of
sustainable development”.
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3. Methods and Materials

Section 3.1 delves into the field of education for agriculture, defining the pedagogical
goals and framework for acquiring both technical (hard) as well as interpersonal (soft) skills.
Section 3.2 offers a concise summary of the enhanced farming systems and the rationale
behind their design, to aid the understanding of the article.

3.1. Pedagogical Approach

From a pedagogical point of view, it is considered that the development of real proto-
type systems, for example a smart-agriculture application, will function as a crucial tool for
problem-solving and aid in the integration of various disciplinary domains. Note that an
indicative review of the STEM educational directions along with the related trends, can be
found in [52–54] and the references within them, whereas the advantages from the synergy
of incorporating STEM practices with agricultural are shared and significant [55,56].

In this regard, aiming for a more effective education in agricultural engineering, a
water usage alert system was developed, and a retired water pump was exploited in order
to be transformed into educational instruments. Below, the fundamental goals of the
suggested approach, concerning the acquisition of skills, are referred:

• Enhanced comprehension of machine learning basics,
• Enhanced comprehension of networking basics,
• Enhanced comprehension of embedded systems basics,
• Improved ability of students to model and solve real-world problems,
• Equipment of learners with knowledge, capabilities, and values that contribute to

sustainable development.

Furthermore, to cultivate better pedagogical results of the students’ training in this
approach, one priority was the development of several soft skills, including:

• Enhancing the students’ communication and team-working skills,
• Enhancing students’ confidence of their professors’ efficacy,
• Assisting students’ self-confidence to accomplish a project based on given instructions.

According to the abovementioned analysis of the expected outcomes, it is anticipated
that students participating in these activities will demonstrate enhanced learning potential,
improved skill development, and improved learning capacity for innovative technologies
fostering sustainability. To evaluate the influence of the suggested arrangements on the
attitudes of the students were recorded anonymously and voluntarily using five-point
Likert questionnaires.

Over the span of the 10-month duration of the core activities related to machine learn-
ing, the persons participating in were: agricultural engineering professors (normally, one
professor or two for each lesson activity), students working on their final thesis, students
undertaking internships, and students involved in the curricular lesson activities. The
mix of courses that the students attended during the semesters were: “Applications of
Informatics in Agriculture”, “Measurements and Sensors”, “Electronics and Micropro-
cessors”, “Automatic Control Processes”, and “Applications of Artificial Intelligence in
Agriculture”. Most students were in the age range of 20 to 26 years old. A team formation
scheme was essential, aiming to assemble each group with members that had different
but complementary capabilities, to some extent in accordance with the principles outlined
in [57].

Challenge-Based Learning (CBL) provides an efficient framework for learning while
solving real-world challenges, as it is an innovative teaching methodology that engages stu-
dents to resolve real-world challenges while applying the knowledge they acquired during
their professional training. Participants are encouraged to develop increasing interest for
the subjects to be studied motivated by the significance of the problems to be addressed and
their impact on society and well-being. Indeed, the CBL model has been applied to a large
extend in higher education for groups of undergraduate students [58–60], and postgraduate
students [61] and the results were positive, showing that the participants came up with
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innovative ideas to resolve challenges and improved skills and competencies. The benefits
of the PBL [3] and CL [62] approaches, in terms of practicality and methodology, can be
combined [63] and reinforced by the CBL technique to maximize the educational outcomes.
As stated by Sukacke et al. [64] the implementation of active learning methodologies in
education, such as PBL and more recently CBL, has become the new norm, especially in
engineering universities, preparing future engineers for their professional careers.

The above philosophy is followed by activities being discussed, during which the
instructors had the role to encourage and inspire the participants and to supervise the
entire process, while the students in their teams, shared ideas and collaborated seeking for
necessary information, comprehended techniques, conducted experiments, and executed
challenging tasks of progressive difficulty. The students with greater experience served as
mentors for the less experienced ones [65], thus assisting their professors.

Consequently, the primary challenges in implementing AI-based systems revolve
around the absence of standardized programming practices and the insufficient multidisci-
plinary background knowledge of both trainers and trainees [66], thus selecting easy-to-use
electronic parts as well as popular programming tools is needed. For the above reason,
the activity being presented upgrades a water pump of convincing size and a faucet being
used in real-world applications, while remaining plain and utilizing tools and components
possessing these attributes.

3.2. Functionality Overview and Component Selection

This section provides, in brief, the overall functionality of both systems and the
components selection for their development, while it additionally reports their role to be
capable of executing important work related to water usage and pump functionality.

The aim of scenario A was the development of a system that can intercept and charac-
terize water usage events. The water alert system included sensor nodes positioned at the
place (edge points) where water is being consumed, along with appropriate sink/gateway
node(s) to gather the reports transmitted by the peripheral nodes. The edge nodes, apart
from collecting time series data corresponding to events that contained information about
water usage, also possessed the intelligence to classify these events into categories of ratio-
nal or irrational water consumption without depending on external entities. The user could
monitor the operation of the entire system using portable devices (e.g., tablet, smartphone,
or laptop) through traditional connectivity options.

In the case of the malfunction detection system installed on the water pump (scenario
B), some common malfunctions were emulated for comparison with the normal operation
of the water pump. Motion sensor data was recorded for four classes, which correspond
to normal operation, and three cases of malfunction (inlet choke, outlet choke, and air
intake) in addition to the fifth class of data with the engine switched off to simulate cases of
inactivity. Therefore, a dataset containing five distinct classes was generated and a neural
network model was developed that had the capability to identify each class. Additionally, a
webpage was created to offer information to the user about the operation condition. More
specifically, the hardware components being utilized were an AC centrifugal water pump
(which was retired equipment), a water tank of a capacity of 50 lt, placed on a custom
base and connected to the water pump via ¾ plastic hydraulic tubes interceded by plastic
valves within each tube. These valves were quite significant components as they enabled
the simulation of possible malfunctions. Moreover, readily available, well-documented,
and cost-effective off-the-shelf hardware modules were employed.

Both systems incorporate an Arduino Nano 33 BLE Sense (Arduino, Turin, Italy) [67],
which is a microcontroller board equipped with a robust processor that provides the ability
to create bigger programs when compared to an Arduino Uno (Arduino, Turin, Italy) [68],
with a 32 times bigger flash memory, and 128 times bigger RAM. In addition, a unit, based
on the ESP8266 (Espressif Systems, Shanghai, China) [69] chip, for Wi-Fi connectivity
options investigation, was used.

The Arduino Nano 33 BLE Sense device needed to be programmed in a way to:



Sustainability 2024, 16, 3261 8 of 25

• record and upload flow sensor data, specifically the interrupt signals corresponding to
the pulses of the rotor rolling in the water flow sensor (scenario A),

• record and upload motion sensor data, specifically through its built-in accelerometer
(scenario B),

• enable the essential networking connectivity (scenarios A & B),
• run the ML models (scenarios A & B),
• modular deployment with provision for implementations of diverse complexity.

The above prerequisites were fulfilled through the Arduino IDE (1.8.16) [70] program-
ming environment, that was the most promising choice.

Regarding the machine learning part corresponding to both systems, training, and
integration of each artificial neural network (ANN) [71] model into the software of the
microcontroller was needed. Typically, the structure of an ANN model features a single
input layer and some interconnected hidden layers, along with an output layer to provide
the results. The Edge Impulse (EI) cloud environment was the platform chosen for the
development of the ML models, as it is a straightforward and effective platform for devel-
oping ML models (encompassing training and extraction/compilation processes) tailored
for edge devices [72]. EI accommodates a variety of development boards, including the
Arduino Nano 33 BLE Sense, facilitating the immediate recording along with uploading
the samples needed for the dataset. After the training, it also allows to directly deploy the
model to the development board.

To make the procedures easily comprehensible for the students, the following deploy-
ment strategy was implemented:

• Installing a flow sensor on a typical water faucet (scenario A);
• Creating the basic water pump—water reservoir system plus the necessary valves em-

ulating specific disturbances and installing an accelerometer sensor on it (scenario B);
• Connecting the sensors to a microcontroller so as to inspect and collect the readings of

scenarios A and B;
• Training the ML model and installing it on an ML-capable microcontroller (e.g., the

Arduino Nano Sense);
• Building an elementary networking functionality for easy inspecting the smart deci-

sion results.

The design and execution of the project were purposely made modular to clearly define
the specific functions of each component. This was aligned with the university curriculum
and helped agricultural engineering students to better understand modern technologies.
Despite using relatively simple components, a few challenges arose, triggering the interest
of students, particularly due to the real-scale nature of the systems being proposed.

4. Design and Implementation Details

Section 4 is devoted to describing the crucial implementation details and challenges of
the presented farm systems. In particular, Section 4.1 furnishes technical details pertaining
to hardware and software issues while Section 4.2 covers information regarding neural
network training. Section 4.3 specifies the details of on-device integration, and finally
Section 4.4 outlines the hardware and software for the system at the end-user.

4.1. Description of the Basic System

The proposed implementation, regarding the water alert system, was built around
an Arduino Nano BLE unit, being the coordinator of the main functions. For measuring
the water flow, a Hall effect meter sensor (YF-S201 model) [73] was employed, capable
of detecting changes in the flow of water as it passes through and rotates the rotor. This
system is intended to be fixed close to a tap/faucet, so as the flow sensor to be connected
in series with the water supply pipes, as depicted in the design overview of the system
in Figure 1a. The second system that is being discussed involved a water pump that was
designed to operate as a closed system, meaning that water was drawn from a 50-L tank
and recycled back into the tank. Plastic tubes were used to connect the inlet and outlet of
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the water pump to the tank, intercepting by plastic valves to control the flow of water in
each tube. An additional tube was attached vertically to the inlet tube of the water pump
and had an open end that allowed air to enter based on the position of a valve. The Arduino
Nano, equipped with an integrated accelerometer, was positioned on the side of the water
pump to identify and differentiate the vibration patterns for each dataset. (Figure 1b).
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Figure 1. (a) Design overview of the water misuse system added in series to a standard faucet
(system A); (b) Overview of the design of the malfunction detection system for water pump operation
(system B).

During the implementation stage, to acquire the necessary data for training the model,
a connection was established between the Arduino and a computer, via serial interface,
thus enabling the straightforward recording, and uploading samples to the designated
Edge Impulse project. This connection was also used for the compilation and uploading of
the trained model to the Arduino Nano BLE, as well as to monitor the model’s performance.
Last but not least, the Arduino Nano BLE was connected to an ESP8266-based radio [74] to
enable remote network connectivity, via a Wi-Fi link.

4.2. Neural Network Training

An artificial neural network (ANN) is a kind of machine learning model that is de-
signed to emulate the configuration and functionality of the human brain, comprising
interconnected nodes, or “neurons”, responsible for processing and transmitting informa-
tion [71]. The fundamental phases of a machine-learning model training and deployment
can be summarized into 4 stages as shown in Figure 2. The initial phase involves acquiring
data, a critical step that enables the training of an ANN model, which will impair the entire
system with machine learning capabilities. This includes formatting the data, as well as
splitting it into training and testing sets. The second and third steps detail the training
process. During these stages, the suitable parameters are chosen to train the model by
utilizing the prepared data and any required improvements are made, such as the learning
rate and number of layers. Then using the testing data, the model evaluation is performed.
This stage is crucial to determine whether the model requires modifications and to obtain
an initial assessment of its accuracy. In the fourth step, the trained ANN model is integrated
into the edge device (e.g., microcontroller) to enhance the system’s functionality. The de-
ployment of the optimized model to the edge device involves converting the model into an
appropriate format and integrating it into the device’s software or firmware. The deployed
model should be tested to ensure its correct and accurate operation on the edge device.
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Figure 2. The necessary stages for the machine-learning training of the systems described and
deployment on an edge device.

Firstly, in order to train a neural-network model, it is necessary to gather an adequate
quantity of data for each specific class. The dataset for the water-pump malfunction-
detection system included 5 classes: one for data corresponding to normal operation, three
for simulated failures, and another for data categorized as noise. The length of the sample
was five minutes or more, which is sufficient for this work, given its primary educational
purpose. The gathered data must be divided into a training dataset, employed for training
the neural network, and remaining data should be set aside to test the model’s efficiency.
When the data collected is automatically uploaded to the training set, it is recommended to
allocate approximately 20% of them to the testing dataset. Nevertheless, this percentage
can differ slightly since the total number of samples may not be divided accordingly. For
these models, the split was conducted at a ratio of 78% to 22%, which did not have an
impact on the model’s overall accuracy or effectiveness.

Once the requisite data has been collected and segmented, the subsequent step involves
designing and training the model. This phase entails the incorporation of a processing block
to modify the data and of a learning block that facilitates the selection of the specific neural
network to be trained. The information was gathered using the built-in accelerometer of an
Arduino Nano. To process this type of data, the appropriate block, “Spectral Analysis”, was
chosen since it can analyze continuous motion, such as accelerometer data, and extract the
signal’s frequency and power characteristics over time. In the learning block, we utilized a
classification neural network library implemented with Keras. This library is equipped to
learn patterns from input data and implement them to new data. This library is particularly
well-suited for recognizing audio or categorizing movement, with the latter being the
primary focus of this experiment. Moreover, the window size was configured to be 2000 ms
(equivalent to 2 s), in accordance with the profiles input into the training system, taking into
account the duration of the phenomenon. Similarly, the window increment was established
at 80 ms, and the frequency was set at 100 Hz.

Yet for the water pump malfunction detection system, the processing block produced
33 features, which are then imported as the input layer in the training procedure. The
intermediate layers comprised 10 and 5 neurons, respectively. Thirty training cycles were
set, and the output layer encompassed the 5 classes. Following the training process, Edge
Impulse can store the best performing model in the Quantized (int8) version, suitable for
the Arduino hardware platform.

The same approach was followed for the development of the ANN model for the
water usage alert system. The data related to water flow was transferred to the Edge
Impulse cloud platform and then manually labeled before being automatically divided
into training and testing data. To train the ANN model, a window size of 200 s was set
based on how long someone uses a faucet, with a window increase of 1 s and a frequency
of 1 Hz. Moreover, the “Raw Data” was chosen as the suitable processing block, along
with “Classification (Keras)” as the learning block for the ANN. This allows for the original
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data to be used without any additional processing, retaining as many attributes of the
original data as feasible. Thus, the neural network had an input layer with 200 features,
two hidden layers with 20 and 10 neurons, respectively, and an output layer with three
classes, namely NU, WL, and WW. The model was saved in the quantized version, that
occupies 1.9 KB of RAM and 22.5 KB of flash memory, allowing it to be uploaded to the
Arduino and run in real time. Indeed, the Edge Impulse platform allows to efficiently
experiment with different settings in order to keep the best-performing model. The latter
model can then be downloaded, as code, from the Edge Impulse platform that encompasses
the library and sketches to be compiled and uploaded to the microcontroller using the
Arduino IDE environment.

4.3. On device Integration Details

In the smart faucet case, the flow sensor and the ESP-01 radio module are powered
from the Arduino Nano Sense BLE unit. On the latter device, interrupt signals are enabled
so as to intercept the flow pulses, while the communication with the radio module is
established through its hardware serial interface. Figure 3a depicts details of the prototype
smart faucet system, while Figure 3b highlights the main electronic components of the
water-pump malfunction-detection system.
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operation malfunction-detection system.

In both systems, for simplicity and safety reasons, the power supply is done via the
USB port of Arduino. Nevertheless, the flexible powering options of the main microcon-
troller were exploited to familiarize the students with battery-based variants, offering
improved autonomy using a Li-ion battery of 18,650 type.

To enable real-time alert generation reflecting either pump malfunction or water
misuse event classification, the Edge Impulse platform generated code in the form of an
Arduino library as indicatively shown in Figure 4a, which could be used with the Arduino
Nano 33 BLE Sense board. This flexible option helps to integrate the native machine-
learning model with supplementary algorithms. Figure 4b depicts a screenshot of the
Arduino IDE environment throughout the time of programming.
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The classification outcomes were subsequently accessible to the user through TCP/IP
connection offered by the ESP8266 core of the radio module. Indeed, two separate hardware
variants were used in the experiments, utilizing the ESP8266 chip. For the smart faucet (i.e.,
the water alert) case, a minimal ESP-01 board (Espressif Systems, Shanghai, China) was
connected to the Arduino microcontroller, while for the water pump malfunction detection
case, the NodeMCU board (Espressif Systems, Shanghai, China) was the preferable option.
The ESP-01 comes with preinstalled firmware that offers modem-like communication
commands. This fact makes its connection with the Arduino Nano 33 BLE Sense more
complex, and thus the original code was substituted by a version that supports direct Wi-Fi
and TCP/IP client/server functionality, via the ESP8266WiFi library. The lack of a USB
port on the ESP-01 module requires an additional module for (re)programming it. For
this reason, on the water pump system, the NodeMCU variant of the ESP8266 chip was
used, which is more user-friendly. The NodeMCU board was primarily set up as a small
web server hosting a straightforward HTML page with dynamic content reflecting the
operational status of the water pump. Although more advanced networking methods were
available, they were beyond the objectives of this study.

4.4. Monitoring Arrangements

To receive and inspect remote alerts through Wi-Fi, a basic monitoring application
was created utilizing the MIT App Inventor environment [75]. This application utilized
visual blocks and was designed to be run on an Android smartphone (or other Android
device, e.g., tablet), which are commonly used by modern and especially young users [76].
Various algorithmic flavors utilizing TCP, UDP and HTTP messaging mechanisms were
implemented and tested with the participation of the students [69]. Figure 5a depicts the
smart phone interface design details using the MIT App Inventor environment, while
Figure 5b presents indicative code blocks defining the smart phone application behavior.
Initial experiments involved direct communication between the in situ sensors and the
mobile device of the user. In this case, either the sensor node or the smart phone was
acting as a Wi-Fi access point while the other device was set as a wireless client. At the
next level, a dedicated access point was utilized, i.e., a TP-LINK TL-WR841N device (TP-
LINK, Shenzhen, China). The last set of experiments involved a separate gateway/sink
node, developed using a Raspberry Pi 3 Model B+, to tackle multiple sensors delivering
misuse/malfunction alerts. This node intercepts data statements from the other sensor
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nodes and stores them into files, making them accessible through a TCP/IP-based service.
This task is performed using Python and Linux shell scripts, techniques using IP sockets [77],
and the activation of preexisting on the Raspberry Pi applications like the Apache web
server [78]. Further networking optimization might require services and security/privacy
settings that were beyond the scope of this work.
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5. Results and Evaluation

The people getting involved into the corresponding evaluation study belonged to one
or more of the following potential categories: students that participated in the construction,
programming and training process of the two systems, students that were implementing
small curricular projects of similar character, students that were explained how the pilot
systems work, students that verified the functionality of the two systems by creating distur-
bance events (i.e., water waste or leak events or repositioning the valves of the pumping
system) and by inspecting the corresponding results on their mobile phone screens. After
finishing the above activities, the participants were asked to complete assessment forms
and to provide potential remarks about the role of the proposed experimental systems incor-
porating machine learning techniques. In Section 5.1, technical details of these evaluation
activities are highlighted, while Section 5.2 focuses on the educational counterpart.

5.1. Technical Aspect

Initially, the students assisted the process of data collection for both systems, that
needed to be transferred to the edge impulse platform for the training of the machine
learning models. Figure 6a,b depict the labeled raw data as shown from the environment
of edge impulse during the features’ generation process.

Following the training process, the confusion matrix of the model is generated auto-
matically by the EI platform and the overall percentage accuracy is computed, as well as
the testing accuracy of the model by utilizing data specifically reserved for this purpose
is produced. Accuracy is the most used metric for evaluating classification models, often
accompanied by a table in statistics known as the confusion matrix. Accuracy is the mea-
sure of the extent to which a model’s predictions align with the actual reality, typically
expressed as a percentage. In the realm of predictive analytics, the confusion matrix is a
2 × 2 table, providing information on the counts of true positives, false negatives, false
positives, and true negatives [79–83].
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metric sample data used for training the water-pump malfunction-detection system model.

In the case of the water-misuse neural-network model, according to the EI cloud
environment, the NU category was correctly classified with an accuracy of 77.8%, the
WW categories attained a 100% success rate and similarly the WL category reached 100%
accuracy. These results led to a final model with an expected accuracy of 96.59% utilizing
the testing data set as depicted in Figure 7a. In the next stage, the system was tested with
actual episodes of water consumption (i.e., NU, WW, or WL) by appropriately rotating the
tap head to allow the machine learning engine to classify the flow data gathered in segments
of 200 consecutive values. The analysis of the collected data showed that the accuracy of
the water-consumption prediction model was 91% when tested utilizing user-generated
profiles with the recommended smart water metering system. It is noteworthy that the
model was able to accurately identify unwanted WL profiles, with accuracy rates of up to
100%. However, some incorrect predictions were made, with the ML model confusing an
actual WW situation as NU or WL.
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Figure 7. (a) Estimated performance of the machine-learning model for the smart faucet system;
(b) Equivalent results for the water-pump malfunction-detection model.

Similarly, the accuracy of the system detecting water-pump malfunctions was eval-
uated by analyzing the platform results and conducting experiments with data that was
not used in the training process. The overall accuracy percentage, as reported by the Edge
Impulse, was 98.5%. The system achieved 100% accuracy for the normal operation category,
while the accuracy rate for the air intake category was 97.2%, the accuracy rate for the inlet
choke category was 99.8%, and for the outlet choke category, it was 96.7%, all according to
the EI environment. These resulted to a total model accuracy score of 98.91% based on the
testing dataset as shown in Figure 7b. Furthermore, a secondary assessment was conducted
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in order for the model to be tested on the actual system after classifying 1056 episodes. The
analysis of the collected data showed that the overall accuracy reached 93.02% when the
model was tested for malfunctions created by the students when manipulating the valves
integrated into the system’s design.

The inspection of the systems’ performance was achieved through web interfaces and
applications, as depicted in Figure 8a,b. The students used their smartphones in order
to examine whether the model expected accuracy was reflected to the actual operation
of each system. More specifically, students verified the functionality of the two systems
by creating water misuse events (Figure 9a) via repositioning the valves of the pumping
system (Figure 9b), and monitoring the corresponding results on their mobile phone screens.
The recorded results indicated that 9 over 10 predictions were correct, which is in line with
the performance of each machine-learning system, as explained in [29,30].
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Finally, the students verified the actual performance also in terms of power efficiency
using an accurate amperemeter connected in series with the electronic components of the
sensor node. Each of the two detection systems consumed a few tenths of mA during
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its activity. According to experiments performed inside the university campus, the Wi-Fi
radios were offering a range coverage of 100–150 m, at line-of-sight conditions. More
specifically, the perceived signal strength of the ESP8266 radio was reported to the user
and the connection link could sufficiently transfer data up to the −90 dBm border. Data
rate of a few packets per second was enough to sustain the notification messages from the
in-situ device toward the user. Although the focus of this study is more put on the machine
learning functionality aspect of the proposed malfunction/misuse detection systems, these
performance data is also necessary to be mentioned, as they are essential for understanding
any IoT approach.

5.2. Educational Aspect

University students (both undergraduate and postgraduate) took part in all the stages
of the development of the proposed systems, from the initial planning and design to the
implementation, and final evaluation. The students engaged in those activities (55 par-
ticipants in total), ranged from beginners (63.6% of them) to more experienced (36.4% of
them), depending on their involvement in STEM activities, whether as part of their curricu-
lum or extracurricular pursuits during the ten-month period of study. These participants
were anonymously and consensually interviewed, through electronic forms [84] in Likert
scale [85] questions to evaluate the entire process. An illustrative set of initial results, which
are being collected and processed, is depicted in Figures 10–16. In the following charts,
the bar height (vertical axis) illustrates the proportion of individuals with a particular
level of agreement regarding the statement depicted above the chart. Blue bars refer to
the water alert module and green bars pertain to the water pump fault detection system.
The horizontal axis represents the characterization of opinion groups by a numerical scale
ranging from 1 to 5, where the numbers 1 represent “Strongly Disagree”, 2 stands for
“Disagree”, 3 denotes “Neutral”, 4 indicates “Agree”, and 5 signifies “Strongly Agree”.

In all instances, the configuration was kept as open and inexpensive as possible to
demonstrate high modularity and reusability of the units. This approach enables various
educationally meaningful experimentation activities [63]. The survey results suggest that
involvement in the entire activity was helpful for comprehending fundamental hardware
and software topics, as well as for understanding the role of embedded systems (Figure 11a),
and the proposed activities exhibit to be highly relevant to their courses at the university
(Figure 10a). More specifically, most of the participants expressed that the activities acquaint
them with machine learning and networking basics (Figures 10b and 11b, respectively),
which are of great importance for giving intelligence to common systems.
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Moreover, the respondents found that the articulated character of the systems was
more understandable (Figure 12a), while at the same time, the diverse implementation
options were emphasized (Figure 12b). Similarly, participants’ viewpoints regarding the
contribution of the presented activity to their soft skills acquisition were very positive.
The involvement in the proposed activities improved students’ communication and team
working skills (Figure 13a) and enhanced students’ confidence in their educators’ efficacy
(Figure 13b).

It is noteworthy that the detailed hardware and software configurations of the project
served as lens, highlighting the challenges in the ongoing upgrade process. Based on the
feedback from the respondents, the overall activities boosted their confidence in completing
a task according to given specifications (Figure 14a), while improving their ability to model
and solve real-world problems (Figure 14b). Significantly for these benefits, besides the
Arduino programming community and the user-friendly Edge Impulse platform, was the
facilitation of the MIT App Inventor cloud-based environment, enabling code sharing and
rapid prototyping, along with the raspberry pi, which supports various programming
sessions and allows for examining the behavior of the embedded system.

As explained, in Figure 15a, participants believe that this initiative enhances social
awareness regarding the conservation of water worldwide, and a better standardized
variant of the system could alleviate water wastage issues in agriculture. (Figure 15b),
which are of great importance, as explained in the previous sections. Finally, it is worth
highlighting that most participants believed that similar topics should be included in
the university courses curricula (Figure 16a), while they also believe that the proposed
activities triggered students’ interests and were pertinent to the skills required for their
future professional careers. (Figure 16b).

The suggested approach was adjusted to introduce and foster communication among
students about the fundamentals of machine learning, which is an essential process for
many agricultural operations and are connected with other contemporary technological
methods of the digital era, such as networking. It must be noted that, based on the
literature review and the current state of agricultural management, it can be inferred that
there are limited specialized educational courses addressing these concerns [41]. The
findings presented align with and build upon previous educational discoveries in the
field [63,66,86], as they fulfill the objectives of agri-food professionals involved in the shift
towards sustainable agriculture. Indeed, according to the study presented in [87], upcoming
professionals require skills that foster an attitude based on diversity and the inclusion of
various information, methods, and experiences, along with the ability to respond and
proactively engage in a dynamic world.

5.3. Further Discussion

Throughout the activities presented, the instructors maintained a supportive and
unobtrusive role, offering guidance and advice when requested. During the laboratory
lessons, professors aimed to capture students’ interests by gradually introducing topics
in terms of complexity and rewarding students’ daily improvement. The fact that the
more experienced students, serving as mentors, was also of paramount significance. The
optimistic attitude towards the different technical challenges in the process of upgrading
water equipment proved to be the most effective paradigm, fostering further creativity
and improvement.

Some non-machine-learning critical parts should be programmed and optimized
independently and the entire program (sketch) for the Arduino Nano 33 BLE Sense unit
should be kept as straightforward as possible. This is because compiling sketches for the
Arduino Nano 33 BLE Sense unit requires extra time than those intended for the standard
Arduino Uno platform. Furthermore, considering the implementation of the artificial neural
network (ANN) model generated by Edge Impulse, the compilation duration variability
was extended, i.e., to sometimes exceed a 15-min period. For these reasons, the decision
being taken to utilize a second, inexpensive, and faster-to-program Arduino-based device
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(such as the NodeMCU board), to accomplish the auxiliary tasks with minimal interaction
with the Arduino Nano 33 BLE Sense unit, facilitated the experiments.

Furthermore, favoring a slight overfitting of the neural-network models aimed the
students to understand the connection between the data used for training and the final
behavior. Additionally, the simplified models aided the students in comprehending the
entire training process and the individual stages being necessary. These settings allowed
them to experiment with diverse features and generate more than one machine-learning
model variants to select the most suitable one, in reasonable time and processing cost from
an educational approach perspective. In general, as the possibility of experiencing failures
in either the educational or the technical settings of the activities being discussed is always
present, the overall approach should be kept as simple as possible.

Moreover, a challenge in this rapidly evolving area is the capability of using and
being familiar with new technologies. For this reason, potential educators getting involved
should be able to proceed beyond the narrow limits of their specialty, in order to organize
and assist student teams, and to provide advice for solving the difficulties that arise. Added
to this, they should be able to keep meticulous records and documentation of the overall
process, a practice that fosters the reproducibility of the good practices being experienced.
The latter attitude is also helpful for not losing valuable educational and technical resources
typically acquired from the cloud, which are frequently liable to drastic changes due to
their innovative character.

The selection of components was not as optimal as possible from a commercial pro-
duction perspective, i.e., trying to find a good compromise between cost minimization,
decent system performance, and educational friendliness. The latter (and most important)
objective was favoring well-documented components with high modularity and reusability
potential and comparatively easy assembling. In this regard, the utilization of the Arduino
Nano 33 BLE Sense, the Edge Impulse platform, the MIT App Inventor and the Arduino
IDE environment was fully justified.

In this regard, incorporating Wi-Fi technologies and smart phones was a good practice
from the educational point of view, as young people tend to adore these devices and are
familiar with the corresponding wireless network settings. Nevertheless, for the future,
realistic IoT experiences would require the engagement of more optimized technologies,
such as LoRaWAN radios (LoRa) [88], and the implementation of sleeping/waking-up
functionality on the sensor nodes, along with a more fluent monitoring software, providing
access beyond the limits of the university laboratory wireless local area network (WLAN).

It is worth mentioning that extremely useful feedback, referring to the systems being
investigated, was provided by the students that are traditionally being more capable for
unbiased thoughts, compared to their professors. More specifically, some participants
proposed the system to incorporate functions that stop the pump from working, through a
relay, on malfunction detection, or to close the water supply to the faucet via an electric
valve, on water waste or leak events. The subject of efficiently powering the smart systems
being installed in situ, was also a fruitful field for inquiries, as students proposed solutions
utilizing the water flow itself (via a micro turbine) for generating the necessary current
for the smart faucet system, or solar panels solution for both systems and even for their
actuating part (i.e., for the pump, the relays, and the valves).

By harnessing the capabilities of machine learning and artificial intelligence, we can
not only monitor water preservation more effectively but also significantly improve the
availability of pertinent information. These advanced technologies will enable us to analyze
vast datasets in real-time, identify patterns, and make predictions related to water usage
and conservation practices. This enhanced level of data-driven insights can empower
decision makers, researchers, and environmentalists to devise more informed strategies
for sustainable water management. Ultimately, the integration of machine learning and AI
systems in monitoring water preservation not only increases efficiency but also lays the
foundation for smarter, more adaptive water-resource management in the face of evolving
environmental challenges.
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The directions for implementing an affordable water usage alert system and water
pump fault detection system, despite being in their early stages, can be beneficial for
various real-world scenarios in both urban and rural areas, which is an encouraging
outcome of the research conducted. To expand the scope of the research, the proposed
systems and methodology will be further optimized and evaluated from both technical
and educational perspectives. This will provide a more comprehensive set of results and
practical solutions for various real-world applications. In this direction, the development
of a commercial standards version for the discussed water alert module is being considered
and pump’s fault detection system will be a significant priority. Plans involve additional
system enhancements, utilizing similar cost-effective components, and/or implementing
other structures following a similar upgrading approach. The motivation is to enable the
students of today and professionals of the future to experiment with a plethora of real-world
challenges that they will face in their careers and contribute to a more sustainable future.

6. Conclusions

In this paper, two systems are demonstrated aiming to orchestrate educationally mean-
ingful activities, for higher education, focused on water preservation and sustainability. In
greater detail, a retired water pump for agricultural premises and a faucet were utilized
and transformed into smart IoT systems, with the assistance of machine learning and
embedded low-cost microcontrollers with networking capabilities, graphical user interfaces
and smartphone devices. The greatest challenge was to form the necessary paradigm
without sacrificing the real-world application suitability potential that these systems have
and simultaneously to keep implementation reproducibility and cost at reasonable levels.
Widely available hardware and software components were selected exhibiting easy-to-use
character and fluent documentation.

According to the initial survey findings, the case being presented suggest that the ap-
proach is effective in achieving the increase of social awareness about water conservation while
enhancing students’ understanding of IoT and ML matters that are crucial for their future
careers. The proposed approach assisted the participants in the educational activities to ac-
quire multidisciplinary benefits, i.e., gaining more technical knowledge while simultaneously
implementing applications that contribute to sustainability objectives. University students
of little technological background were assisted to demystify cutting-edge technologies, and
to bridge the gap between small-sized educational constructions and real-size systems. Ac-
cording to the survey findings, similar activities should be incorporated into the curricula of
educational institutions and foster the future professional careers of the participants.
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Platforms System Designed to Educate Students within Digitalization and the Industry 4.0 Paradigm. Sustainability 2021, 13, 12396.
[CrossRef]

42. Laupichler, M.C.; Aster, A.; Perschewski, J.-O.; Schleiss, J. Evaluating AI Courses: A Valid and Reliable Instrument for Assessing
Artificial-Intelligence Learning through Comparative Self-Assessment. Educ. Sci. 2023, 13, 978. [CrossRef]

43. Su, J.; Yang, W. Artificial intelligence in early childhood education: A scoping review. Comput. Educ. Artif. Intell. 2022, 3, 100049.
[CrossRef]

44. Casal-Otero, L.; Catala, A.; Fernández-Morante, C.; Taboada, M.; Cebreiro, B.; Barro, S. AI literacy in K-12: A systematic literature
review. Int. J. STEM Educ. 2023, 10, 29. [CrossRef]

45. Ng, D.T.K.; Leung, J.K.L.; Su, M.J.; Yim, I.H.Y.; Qiao, M.S.; Chu, S.K.W. AI Literacy in K-16 Classrooms; Springer International
Publishing: Berlin/Heidelberg, Germany, 2023.

46. Southworth, J.; Migliaccio, K.; Glover, J.; Reed, D.; McCarty, C.; Brendemuhl, J.; Thomas, A. Developing a model for AI Across the
curriculum: Transforming the higher education landscape via innovation in AI literacy. Comput. Educ. Artif. Intell. 2023, 4, 100127.
[CrossRef]

47. Laupichler, M.C.; Aster, A.; Schirch, J.; Raupach, T. Artificial intelligence literacy in higher and adult education: A scoping
literature review. Comput. Educ. Artif. Intell. 2022, 3, 100101. [CrossRef]

48. Garcia Lopez, P.; Montresor, A.; Epema, D.; Datta, A.; Higashino, T.; Iamnitchi, A.; Barcellos, M.; Felber, P.; Riviere, E. Edge-centric
computing: Vision and challenges. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 37–42. [CrossRef]

49. Dineva, K.; Atanasova, T. Systematic Look at Machine Learning Algorithms–Advantages, Disadvantages and Practical Applica-
tions. Int. Multidiscip. Sci. GeoConference SGEM 2020, 20, 317–324.

50. European Commission; Directorate-General for Communications Networks, Content and Technology; Blind, K.; Muto, S.; Pätsch,
S.; Schubert, T. The Impact of Open Source Software and Hardware on Technological Independence, Competitiveness and Innovation in the
EU Economy: Final Study Report; Publications Office: Luxembourg, 2021. Available online: https://data.europa.eu/doi/10.2759/
430161 (accessed on 15 December 2023).

51. Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 6 December 2021).
52. Wenger, E.; McDermott, R.A.; Snyder, W. Cultivating Communities of Practice: A Guide to Managing Knowledge; Harvard Business

School Press: Boston, MA, USA, 2002.
53. Corlu, M.; Capraro, R.M.; Capraro, M.M. Introducing STEM Education: Implications for Educating Our Teachers for the Age of

Innovation. Educ. Sci. 2014, 39, 74–85.
54. Hallström, J.; Schönborn, K.J. Models and modelling for authentic STEM education: Reinforcing the argument. Int. J. STEM Educ.

2019, 6, 22. [CrossRef]

https://doi.org/10.3390/s23020839
https://www.ncbi.nlm.nih.gov/pubmed/36679636
https://doi.org/10.3389/fcomm.2021.762201
https://www.jstor.org/stable/90021575
https://doi.org/10.1108/IJSHE-12-2019-0356
https://en.unesco.org/themes/education/sdgs/material
https://doi.org/10.1108/IJSHE-04-2021-0167
https://doi.org/10.1016/j.jclepro.2013.03.034
https://doi.org/10.3390/su13137129
https://doi.org/10.3390/su12219069
https://doi.org/10.3390/electronics11060855
https://doi.org/10.3390/su152115187
https://doi.org/10.3390/su132212396
https://doi.org/10.3390/educsci13100978
https://doi.org/10.1016/j.caeai.2022.100049
https://doi.org/10.1186/s40594-023-00418-7
https://doi.org/10.1016/j.caeai.2023.100127
https://doi.org/10.1016/j.caeai.2022.100101
https://doi.org/10.1145/2831347.2831354
https://data.europa.eu/doi/10.2759/430161
https://data.europa.eu/doi/10.2759/430161
https://sdgs.un.org/goals
https://doi.org/10.1186/s40594-019-0178-z


Sustainability 2024, 16, 3261 24 of 25

55. Fisher-Maltese, C.; Zimmerman, T.D. A garden-based approach to teaching life science produces shifts in students’ attitudes
toward the environment. Int. J. Environ. Sci. Educ. 2015, 10, 51–66.

56. Stubbs, E.A.; Myers, B.E. Multiple Case Study of STEM in School-based Agricultural Education. J. Agric. Educ. 2015, 56, 188–203.
[CrossRef]

57. Borges, J.; Dias, T.G.; Cunha, J.F. A new group-formation method for student projects. Eur. J. Eng. Educ. 2019, 34, 573–585.
[CrossRef]

58. Portuguez Castro, M.; Gómez Zermeño, M.G. Challenge Based Learning: Innovative Pedagogy for Sustainability through
e-Learning in Higher Education. Sustainability 2020, 12, 4063. [CrossRef]

59. Gutiérrez-Martínez, Y.; Bustamante-Bello, R.; Navarro-Tuch, S.A.; López-Aguilar, A.A.; Molina, A.; Álvarez-Icaza Longoria, I. A
Challenge-Based Learning Experience in Industrial Engineering in the Framework of Education 4.0. Sustainability 2021, 13, 9867.
[CrossRef]

60. van den Beemt, A.; Vázquez-Villegas, P.; Gómez Puente, S.; O’Riordan, F.; Gormley, C.; Chiang, F.-K.; Leng, C.; Caratozzolo, P.;
Zavala, G.; Membrillo-Hernández, J. Taking the Challenge: An Exploratory Study of the Challenge-Based Learning Context in
Higher Education Institutions across Three Different Continents. Educ. Sci. 2023, 13, 234. [CrossRef]
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