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Abstract: Climate conditions have a significant impact on the growth of vegetation in terrestrial
ecosystems, and the response of vegetation to climate shows different lag effects with the change
in spatial pattern and category of the ecosystem. Exploring the interaction mechanism between
climate and vegetation growth is helpful to promote the sustainable development of the regional
ecological environment. Using normalized vegetation index (NDVI) and meteorological data, based
on univariate linear regression and partial correlation analysis, this study explores the temporal
and spatial pattern and change trend of vegetation cover in regions and node cities along the “six
economic corridors”, and analyzes the environmental stress of vegetation growth and the lag effect of
climate response. This study shows that there are great differences in the overall vegetation coverage
along the “six economic corridors”. The vegetation coverage in Southeast Asia is the best and that in
central and West Asia is the worst. The vegetation coverage in the study area shows an improvement
trend, accounting for 39.6% of the total area. There are significant differences in the lag effect of
vegetation response and the main climate factors affecting vegetation growth, which is related to
the diversity of vegetation and climate characteristics. In this study, we selected regions along the
“six economic corridors” that exhibit large latitude and altitude gradients, diverse climate types,
and significant seasonal changes and spatial differences in climate conditions as our research areas.
Additionally, we considered the impact of different regions and various types of vegetation on their
response to climate change. This is of great significance for gaining a deeper understanding of the
response mechanism of global climate change and vegetation ecology. Furthermore, our research
can provide valuable information to support the ecological environment protection of different
typical vegetation against extreme climates, ultimately contributing to the sustainable development
of “the Belt and Road”.

Keywords: six economic corridors; environmental stress; lag effect; remote sensing

1. Introduction

The Global Climate Change and Terrestrial Ecosystem Response (GCTE) is a focal
area of research within the International Geosphere-Biosphere Programme (IGBP) that
has garnered significant attention from the global scientific community and society at
large [1,2]. Vegetation plays a crucial role in Earth’s terrestrial ecosystems, intricately
interconnected with atmospheric, soil, and water elements [3]. Changes in vegetation
type and coverage over space and time are influenced by terrestrial ecosystems and serve
as comprehensive indicators for monitoring ecological shifts [3–8]. Therefore, within the
context of global climate change, comprehending the spatial and temporal dynamics of
terrestrial vegetation coverage and investigating the dynamic impacts of climate factors
on it (examining alterations in surface vegetation coverage and climate factors over time
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and space, elucidating their interdependent relationship) hold paramount importance
for gaining deeper insights into the mechanisms governing global climate change and
vegetation ecology [9].

Investigating the spatiotemporal dynamics of vegetation requires the support of long-
term data, and remote sensing technology, with its advantages of continuous observation
and multiple spatiotemporal scales, provides an effective means for this purpose [10].
Among these technologies, the Normalized Difference Vegetation Index (NDVI) calculated
from different spectral reflectance values of remote sensing satellites can effectively reflect
the growth status of regional vegetation [11,12]. It is an excellent indicator for monitoring
vegetation coverage and vigor of terrestrial ecosystems and has been widely used in
research on vegetation dynamics at regional or global scales [13,14]. In recent years, the
most commonly used NDVI remote sensing datasets include GIMMS NDVI [15], MODIS
NDVI [16], and SPOT-VGT NDVI [17]. Although MODIS NDVI and SPOT-VGT NDVI
have higher spatial resolution, their time series are shorter. On the other hand, the GIMMS
NDVI dataset has a long time span, wide coverage, and strong ability to reflect vegetation
changes [18]. Therefore, using the GIMMS NDVI dataset for long-term monitoring and
driving force analysis of vegetation coverage in large-scale regions has obvious advantages.

Climate is a crucial factor influencing the growth of vegetation, and vegetation ac-
tivities and annual changes are impacted by climate change, particularly in the context
of global warming [19]. Precipitation, temperature, and radiation are significant climatic
factors that drive changes in vegetation. Variations in water and heat conditions have a sub-
stantial impact on physiological functions and distribution density of vegetation, leading
to alterations in vegetation structure [20,21]. To investigate spatial and temporal changes in
vegetation cover and its response to climatic factors, numerous scholars have conducted
studies on dynamic changes in vegetation cover based on NDVI data [13,20,22,23]. Initially,
these studies focused on the influence of specific climate factors on vegetation growth. For
instance, Zhou et al. demonstrated that rising temperatures can enhance photosynthesis
in vegetation [24]; Jiapaer et al. indicated that rainfall can alter soil aeration conditions,
increase soil moisture, thereby affecting plant growth [25]; Jiang et al. pointed out that
solar radiation is the primary climate factor impacting NDVI changes in South China [26].
However, there is inconsistency regarding the correlation between hydrothermal factors
and vegetative growth across different regions. Some scholars believe precipitation plays an
important role while others argue that temperature has a more pronounced effect on vegeta-
tive growth than precipitation [27–30]. Nevertheless, it remains consistent that temperature,
precipitation, and solar radiation are the main climatic factors influencing variations in
NDVI [31,32]. Later, as more research was conducted on various land uses [21], vegetation
zoning [28], and climate zoning [33], researchers discovered that different types of vege-
tation respond differently to the same climate factors [11]. Additionally, they found that
vegetation in different regions also exhibits significant differences in response to climate
factors. However, most studies have focused on the interannual scale and have overlooked
the influence of climate factors during different seasons on various growth stages of vegeta-
tion. Furthermore, only a few studies have considered the variation in vegetation response
to climatic seasons and often solely concentrate on the direct impact of climate change on
vegetation growth without evaluating the delayed effect of climate change on adjacent
seasons. An increasing number of studies have indicated a hysteresis effect in the response
of vegetation growth to climate. These studies clearly demonstrate that concurrent climatic
conditions may not necessarily drive vegetation growth and that early climatic factors may
exert a greater influence [11,34]. Therefore, it is essential to consider the hysteresis effect
when exploring environmental stress on vegetation. Moreover, when studying areas with
substantial latitude and altitude gradients, diverse climate types, and notable seasonal and
spatial variations in climate conditions, it is crucial to account for the influence of different
regions and various types of vegetation.

These six economic corridors are collaborative economic zones planned by China and
the countries along “the Belt and Road”. While these corridors aim to promote economic
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development, they also have a significant impact on the ecological environment of the
regions they pass through. The majority of countries along these corridors are developing
nations and emerging economies, facing various challenges such as environmental pollution
and ecological degradation due to industrialization and urbanization. Vegetation plays a
crucial role in providing regional ecological services, including soil and water conservation,
climate regulation, disaster prevention and mitigation, protection of ecosystem diversity, as
well as enhancing the overall ecological landscape value.

In light of this, this study utilizes GIMMS NDVI data from 1986 to 2015 to examine
the spatiotemporal dynamics of vegetation coverage in six corridors and node cities. It
combines global high-resolution climate reanalysis data to analyze the environmental
pressure on vegetation growth at the pixel scale and hysteresis effect. Additionally, it
seeks to understand the response mechanism and spatial differences between NDVI and
climate factors based on different typical vegetation types. The research objectives include
(1) analyzing the changes in NDVI and climate factors in six corridor areas; (2) investigating
the correlation between NDVI and climatic factors; (3) exploring the time lag effect of
NDVI on climatic factors and the difference in response of NDVI to climatic factors in
different vegetation types. Understanding the potential impact of long-term climate change
on terrestrial ecosystems along the six economic corridors of “the Belt and Road”, as well
as exploring response mechanisms of different vegetation types along these corridors, is
crucial for understanding how vegetation ecosystems respond to global climate change.
This research provides information support for ecological environment protection of differ-
ent typical vegetations in response to extreme climates, ultimately supporting sustainable
development efforts within “the Belt and Road”.

The remaining sections of this study are organized as follows: Section 2 offers a de-
tailed description of the research methodology, including data collection and data analysis
techniques. Section 3 gives the empirical results. Section 4 provides an extensive discussion.
Finally, Section 5 provides conclusions.

2. Materials and Methods
2.1. Materials
2.1.1. Climate Data

The monthly temperature and precipitation data used in this study were obtained from
the Centre for Climate Research, University of East Anglia, UK data (CRU TS v4.01) with a
spatial resolution of 0.5◦ × 0.5◦, this dataset obtained by interpolating observations from
more than 4000 meteorological stations [35]. Monthly solar radiation data were derived
from the CRUNCEP V7 dataset, which was reanalyzed by the NATIONAL Center for
Environmental Prediction (NCEF) from the CRU TS3.21 database with a spatial resolution
of 0.5◦ × 0.5◦.

2.1.2. NDVI

The NDVI data were obtained from the GIMMS NDVI3g dataset provided by the
Global Monitoring and Modeling Study Group (GIMMS) of the National Aeronautics and
Space Administration (NASA) with a temporal resolution of 15 days, a spatial resolution
of 8 km × 8 km, and a time series of 1982–2015 [36]. The dataset has been processed with
radiometric correction, geometric correction, and atmospheric correction to ensure the
quality of the data [36]. To eliminate the influence of clouds and noise, the maximum
synthesis method (MVC) was used to synthesize monthly NDVI data and annual NDVI
data separately, after which the Savitzky–Golay filter (S–G filter) was adopted to smooth
and de-noise the data [37,38]. The monthly NDVI data were resampled to 0.5◦ to maintain
the same resolution as the meteorological data.

2.1.3. Land Cover Data

MODIS land cover data (MCD12C1) was obtained from the NASA Land Processes
Distributed Data Archive Center (LPDAAC) with a spatial resolution of 0.05◦ [39]. This
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dataset classifies land use types into 17 categories, of which we extracted the vegetation
category (Figure 1), and subsequent studies were conducted on the vegetation category in
order to eliminate the influence of non-vegetation.
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Figure 1. Vegetation types.

2.2. Methods

This study explored vegetation trends, environmental stresses and lag effects in coun-
tries along the six corridors using NDVI, temperature, precipitation and radiation for
30 years from 1986 to 2015.

2.2.1. Univariate Linear Regression Analysis

The annual maximum NDVI and time pixel by pixel were selected for linear regression
analysis. The fitted slope was used to characterize the vegetation growth, slope > 0
indicates that the vegetation tends to improve, the greater the value, the more pronounced
the improvement effect, and vice versa is degradation [40]. The calculation formula can be
described as:

slopej = ∑m
1

n × ∑n
1 (i × NDVI I)− ∑n

1 (NDVIi)

n × ∑n
1 (i2)− [∑n

1 NDVIi]
2 , (1)

where slopej represents the slope value of the regression equation for the jth pixel, m rep-
resents the total number of pixels, n is the total number of years studied, i.e., n = 30,
i represents the ith year, and NDVIi represents the annual maximum NDVI value in ith year.

2.2.2. Partial Correlation Analysis

The 30-year time series data were extracted from the corresponding pixels of monthly
NDVI, temperature, precipitation and radiation data, resampling to 0.5◦, respectively, and
the interannual change curves were constructed. Translated meteorological data, as shown
in Figure 2, m represents the length of translational data, and each translation represents a
lag of one month.

The lag effect on the monthly scale generally does not exceed one quarter [34,41], so the
value of m ranges from 0 to 3. The bias correlation coefficients of NDVI and meteorological
factors were calculated separately [42]. r2

max indicates the maximum bias correlation
coefficient, and r2

max was used to characterize the environmental stress of vegetation and
m was used to characterize the lag month.
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The partial correlation calculation formula can be described as:

r2
12,34 =

R2
1(2,3,4) − R2

1(3,4)

1 − R2
1(3,4)

, (2)

where r2
12,34 represents the partial correlation coefficient between variables 1 and 2; R2

1(2,3,4)
represents the coefficient of determination of the regression analysis between variable 1 and
variables 2, 3, and 4; R2

1(3,4) represents the coefficient of determination of the regression
analysis between variable 1 and variables 3 and 4.

The t-test was utilized to assess the significance of the partial correlation coefficients
in this study, and the significance level α was set at 0.05, and the pixels that did not pass
the significance test were excluded.

3. Results
3.1. Vegetation Distribution and Trend Analysis

The spatial distribution of the mean value of the annual maximum NDVI over the
30-year period from 1986 to 2015 is shown in Figure 3. It can be seen that the overall
vegetation cover along the “six economic corridors” varies greatly, with better vegetation
cover in Southeast Asia and along the southern Siberian Plain and Europe, and most of
the NDVI in this region is above 0.8; followed by southeastern China and South Asia,
with NDVI between 0.6 and 0.8, among which the vegetation cover in southeastern China
is slightly better than that in South Asia. The vegetation cover in Southeast China is
slightly better than that in South Asia; the vegetation cover in Central Asia, West Asia
and the non-vegetation-to-vegetation transition area of the Qinghai–Tibet Plateau is poor,
with NDVI below 0.5 in most areas. Central Asia is deeply inland, less influenced by the
ocean, and has a temperate continental climate with less precipitation, while West Asia
is influenced by the subtropical high pressure and the trade wind belt, forming a tropical
desert climate with the same scarce precipitation, which is the fundamental reason for its
sparse vegetation. According to the classification statistics of the mean NDVI in 30 years,
the vegetation coverage in this region is generally good, and the areas with NDVI > 0.8
account for 35.1%, which is the largest proportion. The area of 0.7–0.8 accounted for 23.1%,
the area of 0.5–0.7 accounted for 25.3%, and the area of less than 0.5 accounted for only
16.5%. The text continues here.

The change in NDVI in the study area from 1986 to 2015 is analyzed by univariate
linear regression. Univariate linear regression aims to analyze the overall change over the
past 30 years, which greatly weakens the impact of abnormal data and can truly reflect the
evolution trend of vegetation cover over a long period of time [43,44]. Understanding the
changing trend of NDVI is essential for grasping the temporal and spatial variations in
vegetation cover within the study area. This knowledge holds significant value and practical
significance for the preservation of the ecological environment [45]. The spatiotemporal
variation trend of NDVI is shown in Figure 4, and the statistical variation trend is shown
in Table 1, where the variation range is the product of the trend and the total years. In
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the countries along the “six economic corridors”, the areas with essentially unchanged
vegetation cover accounted for the largest proportion, up to 40.1%. 39.6% of the regions
showed slight improvement, moderate improvement and obvious improvement, among
which South Asia, southeast China and Siberia showed the most obvious improvement.
The reason for the trend increase in vegetation cover in high latitudes may be that global
warming promotes photosynthesis and prolongs the growing season of plants in this
region [46]. The reason for the vegetation improvement in southeast China and South
Asia may be that the government pays more attention to ecological protection, such as
China’s the Grain for Green project and Pakistan’s afforestation program. The area with
degradation trend accounts for 20.3%. In Southeast Asia, although the vegetation coverage
is very high, there is a slight trend of degradation. This may be attributed to measures such
as deforestation and reclamation aimed at expanding the planting area for cash crops and
food crops in Southeast Asian countries, and large-scale development of forest resources
and export logs in pursuit of temporary economic benefits [47].
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Table 1. Statistics of NDVI changes for countries along the “six economic corridors” from 1986 to 2015.

Slope Range Change Range Types Area Proportion
(%)

<−0.009 <−0.27 Severe degradation 0.5
−0.009~−0.0045 −0.27~−0.135 Moderate degradation 1.5
−0.0045~−0.001 −0.135~−0.03 Mild degradation 18.3
−0.001~0.001 −0.03~0.03 Almost no change 40.1
0.001~0.0045 0.03~0.135 Minor improvement 35.0
0.0045~0.009 0.135~0.27 Moderate improvement 4.1

>0.009 >0.27 Significant improvement 0.5

The “six economic corridors” are economic belts with the goal of interconnection and
interoperability that are supported by node cities along “the Belt and Road”, and jointly
built with countries along the route [48]. The analysis of the ecological foundation will con-
tribute to advancing the sustainable development of the regional ecological environment
and provide substantial support for establishing a green “the Belt and Road”. Therefore, a
buffer of 100 km was made for the “six economic corridors”, and the mean value of NDVI
in 30 years was calculated for the six regions. The findings indicate that the vegetation
coverage of the China–Indochina–Peninsula Economic Corridor is superior, and the mean
value of NDVI is 0.83; the second is the Bangladesh China–India–Myanmar Economic
Corridor, which has an average NDVI of 0.79. This is followed by the China–Mongolia–
Russia Economic Corridor, with an average NDVI of 0.78. The New Eurasian Land Bridge
has an average NDVI value of 0.69. On the other hand, the vegetation coverage of the
China–Pakistan Economic Corridor and China–Central Asia–West Asia Economic Corridor
is notably lower, with average NDVI values of 0.44 and 0.42, respectively, indicating poorer
vegetation coverage in these areas compared to the other corridors mentioned above. The
variation in annual NDVI maximum over time was further examined. Figure 5 illustrates
the trend of NDVI variation in six regions over the past 30 years, from 1986 to 2015. It is
evident that there were significant differences in vegetation coverage along the six eco-
nomic corridors, with an overall upward trend. The NDVI of the China–Mongolia–Russia
Economic Corridor and the New Eurasian Land Bridge, located in a high latitude area, ex-
hibited significant fluctuations over time, indicating a slight upward trend. The vegetation
coverage of the China–Central Asia–West Asia Economic Corridor, Bangladesh–China–
India–Myanmar Economic Corridor, and China–Indochina Peninsula Economic Corridor
exhibited a slight fluctuation increase. The most obvious improvement in vegetation cover
was the China–Pakistan Economic Corridor. Several regions experienced obvious NDVI
trough in 2008, which may be because 2008 was one of the 10 warmest years since 1850, and
extreme weather and natural disasters occurred frequently around the world, especially in
Asia, which inhibited the growth of vegetation [49].

Node cities play a crucial role in the development of economic corridors and serve as
the primary link for interconnection. Based on the existing research [50], 61 node cities were
selected in the passing area of the “six economic corridors” (Figure 4), and the nodal cities
were used as the center to make a 30-km buffer zone to analyze the mean value of NDVI and
its changing trend of surrounding vegetation in 30 years. Improvement and degradation
are determined according to slope plus or minus. Fifteen of the buffer zones are in non-
vegetation areas and are not analyzed, while 20 of the remaining 46 zones show degradation
trend (Table 2). Among them, the node cities along the China–Mongolia–Russia Economic
Corridor and the New Eurasian Land Bridge in the high-latitude region generally show a
degradation trend. The vegetation cover of node cities along China–Indochina Peninsula
Economic Corridor and Bangladesh–China–India–Myanmar economic corridor has an
obvious improvement trend. It has been shown that the Silk Road Economic Belt as a whole
showed a warming trend from 1980 to 2014, while precipitation mainly decreased [51]; the
increase in temperature and decrease in precipitation contributed to the growth of forest
ecosystems [44], so Southeast Asia and South Asia mostly showed an improvement. The



Sustainability 2024, 16, 3303 8 of 18

high-latitude region of Siberia is located in the hinterland of the continent, and the reduction
in precipitation will inhibit the growth of vegetation, which may be the reason for the
decreasing trend of vegetation cover in the high-latitude region. The vegetation cover of the
three capital cities (Moscow, Berlin, and Warsaw) in high latitudes, has shown an improving
trend; the dominant factors considered in vegetation cover at different spatial scales are
different, and the combined influence of climatic and non-climatic (human activities, etc.)
factors should be considered at national or urban scales [52]; the expansion of cities will
have some impact on vegetation cover, which is mostly negative in developing countries.
However, some studies have shown that urban sprawl can also have a positive impact on
the environment with increased management of urban green spaces [53]. Therefore, the
impact of human activities on ecology is not solely negative; in fact, it may even contribute
to the improvement of the ecological environment as economic development reaches a
certain level [5].
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Table 2. NDVI and its change trend statistics of node cities.

Node City NDVI Slope Node City NDVI Slope

Zhengzhou 0.6720 −0.0028 Erzurum 0.5390 0.0012
Luoyang 0.7177 0.0015 Bursa 0.7223 0.0005

Xi’an 0.7356 −0.0033 Diyarbakir 0.5560 0.0055
Aktogay 0.5118 0.0004 Istanbul 0.6819 −0.0004
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Table 2. Cont.

Node City NDVI Slope Node City NDVI Slope

Karaganda 0.4376 0.0008 Mandalay 0.5204 0.0005
Astana 0.5142 −0.0009 Yangon 0.6720 0.0032

Ulyanovsk 0.7934 −0.0041 Chattogram 0.8403 0.0012
Smolensk 0.7857 0.0011 Calcutta 0.7498 0.0018
Warsaw 0.7416 0.0010 Kunming 0.7572 0.0025
Poznan 0.6738 −0.0002 Nanning 0.7458 0.0014
Berlin 0.7720 0.0008 Ha Tinh 0.0012 0.0063

Utrecht 0.7725 −0.0006 Ninh Binh 0.0017 0.0068
Rotterdam 0.7258 −0.0011 Phang-Nga 0.9110 0.0007

Bishkek 0.5928 −0.0028 Kashgar 0.4569 −0.0027
Shymkent 0.5996 −0.0001 Islamabad 0.6278 0.0017

Almaty 0.3559 0.0002 Lahore 0.7424 0.0039
Tashkent 0.5057 0.0035 Ulan Bator 0.4515 −0.0008
Ashgabat 0.4785 0.0010 Ulan-Ude 0.5727 −0.0034

Turkmenabat 0.1803 −0.0024 Irkutsk 0.7410 −0.0018
Mary 0.3960 −0.0012 Krasnoyarsk 0.7676 −0.0005

Tehran 0.2994 −0.0023 Novosibirsk 0.7973 0.0006
Tabriz 0.3230 0.0019 Chita 0.8280 −0.0015

Ankara 0.4240 0.0024 Moscow 0.8822 0.0007

3.2. Environmental Stress Analysis

The maximum partial correlation coefficients of NDVI and temperature, precipitation
and radiation were calculated by the method of selecting the maximum partial correlation
coefficient to analyze the vegetation stress by climate, and the lag effect of vegetation re-
sponse to climate was also considered. The value range of the partial correlation coefficient
was between −1 and 1, and a negative number indicated a negative correlation and a
positive number indicated a positive correlation, and the larger the value, the higher the
correlation. t-test was used to test the significance of the partial correlation coefficient,
and the significance level α was set as 0.05. When p > 0.05, the partial correlation was
considered insignificant, as shown in Figure 5.

The results showed that temperature, precipitation and radiation simultaneously
control vegetation growth in high latitudes, but the effect of precipitation on vegetation
growth was weaker than that of air temperature and radiation. In South Asia and Southeast
Asia, vegetation growth was negatively correlated with precipitation and radiation, and
positively correlated with air temperature (Figure 6). In Central Asia and West Asia, there
was a weak negative correlation with precipitation and a weak positive correlation with
radiation, while air temperature mostly failed the significance test, indicated that non-
climatic factors, such as human activities, extreme weather and natural disasters, should be
considered in the analysis of vegetation cover in Central Asia and West Asia.

Different types of vegetation exhibit varied responses to climate, and the driving
factors of vegetation growth are closely linked to plant physiological characteristics and
their corresponding climatic environment [11]. The average partial correlation coefficients
of NDVI with temperature, precipitation, and radiation in evergreen coniferous forests
were 0.37, −0.04, and 0.60, respectively. The evergreen coniferous forests were mainly
distributed in the high altitude area of middle latitude. As the temperature in this area
was relatively low, temperature and radiation became the main stress factors for its growth
and were not sensitive to precipitation change. Deciduous coniferous forests were mainly
distributed in high latitude area, so radiation and temperature were the main climate
driving factors for its growth, and the average partial correlation coefficient was 0.70 and
0.51, respectively. Meanwhile, the growth of deciduous coniferous forest was affected by
precipitation, and the average partial correlation coefficient was 0.36. Evergreen broad-
leaved forests were widely distributed in tropical rainforests in low-dimensional areas. Due
to sufficient precipitation and sunshine in this area, there was no significant correlation
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between radiation and vegetation growth, with an average partial correlation coefficient
of −0.06. However, the increase in precipitation will inhibit vegetation growth, with an
average partial correlation coefficient of −0.21. Shrub, savanna and grassland were not
sensitive to precipitation, and the mean partial correlation coefficients were 0.07, 0.17
and 0.15, respectively. The irrigation system provided water supply for farmland, so
precipitation had no direct effect on the growth of farmland, with a mean bias correlation
coefficient of −0.01. Deciduous broadleaf and mixed forests were affected by temperature,
precipitation and radiation.
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The mean partial correlation coefficients of NDVI with temperature, precipitation and
radiation in the node cities were further extracted as shown in Table 3, where Nan is not
passing the significance test. The vegetation cover around cities is influenced by human
activities, such as the reduction in vegetation cover area brought by urban expansion. From
the table, it can be seen that the partial correlation between NDVI and climatic factors
in some cities shows insignificant and the partial correlation coefficient is lower than the
value of non-urban areas in the same region, which indicates that when considering the
drivers of urban vegetation cover change, not only meteorological factors can be introduced,
but also human activity coercion accounts for a large proportion. The cities of Akduka,
Karaganda, Astana, Ufa, Warsaw, Rotterdam, Ulaanbaatar, Karasnoyarcos, Novosibirsk,
Chita, and Moscow are located along the New Asia–Europe Continental Bridge Economic
Corridor and the China–Mongolia–Russia Economic Corridor, and are located in areas
with relatively high latitudes, so they are more influenced by temperature and radiation.
Central Asia and West Asia are deep in the continental hinterland, with scarce precipitation
and mainly arid and semi-arid climate. The vegetation growth in cities such as Shimkent,
Almaty, Tashkent, Mare, Tehran, Tabriz, Ankara, Erzurum, and Diyarbakır along the China–
Central Asia–West Asia Economic Corridor show the opposite trend to the temperature,
among which the NDVI of Shimkent, Almaty, Mare, Tabriz, and The skewed correlation
between NDVI and precipitation in Ankara did not pass the significance test, indicating that
precipitation inhibits vegetation growth in this region and vegetation cover changes may
be more influenced by human activities. The China–South China Economic Corridor and
the Bangladesh–China–India–Myanmar Economic Corridor are mostly located in Southeast
Asia, where the tropical rainforest climate and tropical monsoon climate are dominant, with
abundant sunshine and high temperatures throughout the year, and the cities of Myitkyina,
Mandalay, and Chittagong have negative correlations between temperature and radiation
and NDVI. These results describe the specific spatial pattern of environmental stress on
vegetation growth and the main meteorological factors of vegetation stress in nodal cities,
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which provide a reference for understanding the causes of climate change-driven vegetation
growth and promoting sustainable regional ecological development.

Table 3. Partial correlation coefficient between NDVI and meteorological factors in node cities.

Node City Temperature Precipitation Radiation Node City Temperature Precipitation Radiation

Zhengzhou 0.39 0.32 0.39 Myitkyina −0.40 0.62 −0.32
Luoyang 0.35 0.51 0.45 Mandalay −0.48 0.77 −0.60

Xi’an 0.27 Nan 0.35 Chattogram −0.04 0.80 −0.63
Lanzhou 0.43 0.48 0.39 Calcutta 0.00 0.00 0.06
Aktogay 0.04 0.50 0.78 Kunming −0.37 0.48 −0.25

Karaganda 0.18 0.55 0.78 Nanning 0.35 0.46 0.23
Astana 0.22 0.63 0.76 Thanh Hoa Nan 0.07 0.29

Ufa −0.11 0.64 0.79 Dong Hoi Nan 0.17 0.19
Ulyanovsk 0.18 0.62 0.78 Ninh Binh Nan −0.11 Nan
Smolensk Nan 0.66 0.80 Bien Hoa Nan −0.30 0.19
Warsaw Nan 0.36 0.68 Phang-Nga −0.29 0.00 0.17

Rotterdam 0.13 0.40 0.74 Kashgar Nan 0.33 0.54
Yinchuan 0.45 0.61 0.67 Islamabad −0.28 0.52 0.31
Chimkent −0.46 Nan 0.42 Lahore −0.31 Nan −0.25

Almaty −0.31 Nan 0.69 Ulan Bator 0.46 0.65 0.61
Tashkent −0.40 0.20 0.53 Ulan Ude Nan 0.41 0.47

Mary −0.51 Nan 0.53 Irkutsk 0.41 0.62 0.70
Tehran −0.14 0.26 0.73 Krasnoyarsk 0.47 0.55 0.68
Tabriz −0.26 Nan 0.73 Novosibirsk 0.25 0.62 0.73

Ankara −0.33 Nan 0.46 Chita 0.37 0.57 0.67
Erzurum −0.36 0.60 0.79 Moscow 0.23 0.59 0.83

Diyarbakir −0.29 −0.30 0.39

3.3. Lag Effect Analysis

Based on the long-term GIMMS NDVI3g time series and CRU meteorological data, we
obtained the lag effect of vegetation response to temperature, precipitation, and radiation.
Regional statistics were then conducted according to different vegetation types. The
results show that the lag effect of the same vegetation type on the response of different
meteorological elements is different, and the lag effect of different vegetation types on the
response of the same meteorological elements is different.

The lag effect of vegetation growth on temperature response is illustrated in Figure 7a.
It is evident that vegetation growth in the middle and high latitudes (30 N–90 N) exhibits
the strongest correlation with temperature during the same period, without any apparent
lag effect. However, in low latitude areas (0–30 N) such as Southeast Asia and South Asia,
the lag effect was more than 2 months in most regions. Those who failed the significance test
were mostly located in Central Asia and South Asia. The temperature decreases from the
equator to the poles, and the appropriate temperature for vegetation growth needs increases
with the increase in latitude. Therefore, in the middle and high latitudes, most vegetation
does not show the lag effect of temperature response, and the vegetation is significantly
affected by the temperature in the same month, while in the areas with high temperature
all year round, the response of vegetation to temperature has the lag effect. In some arid
and semi-arid areas (such as Central Asia and West Asia), the increase in temperature will
accelerate soil water evaporation, lead to drought, and inhibit the growth of vegetation.
There is no lag effect of vegetation on temperature in this area. Most forest ecosystems have
no lag effect on temperature. The proportion of evergreen coniferous forest, deciduous
coniferous forest, deciduous broad-leaved forest, mixed forest and shrub forest that do not
show lag effect is 92%, 100%, 87%, 94% and 97%, respectively. Evergreen broad-leaved
forest showed a long time lag for temperature, with no lag accounting for 14%, lag for
3 months accounting for 41%, and an average lag of 1.9 months. In addition, farmland also
shows a lag effect in response to temperature, with a lag of 3 months accounting for 35%,
with an average lag of 1.3 months.
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The lag effect of vegetation growth on precipitation response is illustrated in Figure 7b.
Southeast Asia, South Asia, West Asia, and Central Asia all exhibit a short lag in response
time to precipitation. However, the reasons for this phenomenon may vary. Most areas
of Southeast Asia and South Asia have abundant precipitation and inhibit the growth
of vegetation, while Central Asia and West Asia are dominated by arid and semi-arid
climate, with scarce precipitation and a lag of more than one month, which shows that
the vegetation growth in these regions is directly controlled by water. At the same time, it
demonstrates that vegetation growth in arid and semi-arid areas is primarily influenced by
the precipitation of the previous month rather than the current month. Studies have shown
that the response time lag of the grassland ecosystem to precipitation in arid and semi-arid
areas is one month [54]. The response of most forest ecosystems to precipitation showed a
long time lag. The deciduous coniferous forest lagged for 2 months accounting for 46%,
and the lagged for 3 months accounting for 48%, with an average lag of 2.4 months; in
deciduous broad-leaved forest, 41% lagged for 2 months and 33% lagged for 2 months,
with an average lag of 2 months; the mixed forest lagged for two months, accounting for
32%, and two months, accounting for 54%, with an average lag of 2.3 months.

The lag effect of vegetation growth on radiation response is illustrated in Figure 7c. It
is observed that the lag effect tends to be longer in the middle and high latitudes, typically
lasting 2–3 months. This suggests that the radiation intensity during the initial 2–3 months
plays a crucial role in vegetation growth. This may be attributed to the relatively low
average radiation levels during the growing season in these regions compared to others.
Consequently, vegetation growth necessitates more solar radiation for photosynthesis,
and the early months of radiation facilitate carbon sequestration through photosynthesis,
thereby providing favorable conditions for vegetation growth during this period. The
deciduous broadleaf forest, mixed forest and shrub forest all showed lagging effects, with
an average lag of 2.2 months, 1.9 months and 2.7 months, respectively; grassland also
showed lagging effects, with a lag of 3 months accounting for 48%; compared with these
vegetation, the lagging effect of evergreen broadleaf forest was relatively weak, with no
lagging phenomenon accounting for 27%, with an average lag of 1.4 months, and evergreen
broadleaf forest was mainly distributed in the low-latitude region, which has sufficient light,
which will play a certain inhibitory effect on the growth of vegetation, and the radiation in
that month directly affects the growth of vegetation.
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4. Discussion

The study area demonstrates a slight improvement in vegetation coverage, with high-
latitude regions showing a more significant trend of vegetation enhancement (Figure 4).
The growth of vegetation in this locality is primarily influenced by temperature and radia-
tion (Figure 6) [55]. As a result, the increase in temperature in high-latitude regions plays a
crucial role in enhancing vegetation coverage, aligning with the prevailing perspective that
global warming is causing substantial changes in vegetation across most Northern Hemi-
sphere regions [3]. However, urban centers located in high latitude areas generally exhibit
a degradation trend (Table 2), indicating that factors beyond climate also impact vegetation
coverage around cities. Therefore, when promoting economic corridor development, it is
essential to carefully manage the interaction between economic and social progress and
ecological conservation, tailoring strategies to specific contexts to effectively advance the
green “the Belt and Road” [48,56].

The response of vegetation within the “six economic corridors” to climate variables
demonstrates spatial diversity, aligning with findings from prior studies [17,57]. Factors
like soil composition, vegetation species, soil moisture levels, and elevation play a role
in shaping the distribution of temperature, precipitation, and radiation. Consequently,
vegetation displays varying responses to climate elements across diverse climatic zones,
geographical areas, and seasonal variations, resulting in unique regional attributes [29].

In the research process, we conducted an analysis of the lag effect of vegetation
response to climate factors and identified the main driving factors for different vegetation
types. Our results indicate that the lag effect varies for the same vegetation type in response
to different meteorological elements, as well as for different vegetation types in response to
the same meteorological elements (Figure 7) [58]. Vegetation growth in high latitude areas is
primarily influenced by radiation and temperature [59]. In Southeast Asia, precipitation and
radiation during the same period inhibit vegetation growth without showing a lag effect.

There are two primary driving factors for vegetation growth. The first factor is
climate [60,61], which provides the necessary conditions for vegetation growth. The second
factor is human activities and natural disturbances, such as agricultural irrigation, land use
change, and natural disasters [62,63]. However, since our focus is primarily on studying the
response of vegetation growth to climate factors, we will not analyze the impact of human
activities and natural disasters on regional vegetation growth in this study. In addition to
climate factors, NDVI is also influenced by other factors such as soil type, soil moisture,
altitude, and terrain. Therefore, it should be comprehensively analyzed in conjunction
with these other factors [64,65]. In areas where there are significant changes in vegetation
growth characteristics, it may be beneficial to consider using higher spatial resolution data
and incorporating more influencing factors into the analysis [66].

We focused on examining the lag effect between vegetation index and climate factors,
which reflects the correlation and time delay of vegetation response to climate factors over a
long time scale. However, our study did not differentiate the varying responses of vegetation
growth to different climate conditions [67]. For instance, both water limitation and water
abundance occur simultaneously on a global scale and have distinct impacts on vegetation
growth [68], thus future research should consider these factors separately when investigating
the relationship between vegetation and climate. Furthermore, the degree of correlation be-
tween vegetation and climate change fluctuates over time, and the influence of environmental
factors varies at different stages, leading to differing response times as well [69].

This study investigated the impact of a single factor on vegetation growth. Changes in
vegetation growth are typically the result of interactions between multiple factors, which
could be further explored in future research [70,71]. Previous studies have demonstrated
that the explanatory power of the interaction between various factors on NDVI changes
is significantly greater than that of any single factor alone. The underlying mechanisms
of the delayed effect of climate on vegetation change are not fully understood; however,
related studies have suggested that warming-induced greening may increase vegetation
transpiration, leading to a reduction in soil water content [72]. Additionally, warming
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accelerates snowmelt runoff and diminishes soil water supply in subsequent seasons,
thereby influencing vegetation growth.

This study mainly focused on the universal laws of vegetation response to climate
change; however, vegetation activity exhibits complexity in response to climate change.
Studies have indicated that as temperatures rise, the impact of temperature on vegeta-
tion activities becomes increasingly pronounced [73]. Elevated temperatures can enhance
photosynthesis until reaching the optimal threshold [74], beyond which it may intensify
vegetation respiration, nutrient depletion, water evapotranspiration, and hinder dry mat-
ter accumulation [75]. Seasonal variations also influence vegetation responses to climate
change, with temperature increases in winter and spring fostering photosynthesis, ex-
tending the growth period, and supporting vegetation growth and nutrient accumulation.
Conversely, rising autumn temperatures may have a detrimental effect on NDVI [38]. The
effects of maximum and minimum temperatures on vegetation activities vary across dif-
ferent regions, with some studies suggesting a positive correlation between maximum
temperature and vegetation NDVI in humid, cold northern areas, and a negative correlation
in temperate, arid regions [60]. The relationship between NDVI and minimum temperature
exhibits greater complexity [60]. Moisture levels play a regulatory role in vegetation activity,
with increased moisture potentially inhibiting vegetation through heightened cloud cover
and relative humidity [76]. Consequently, there is a call for more localized investigations
into the intricate interplay between vegetation and climate.

To enhance the investigation of vegetation response along the “six economic corridors”
to climate variables, this research utilized extensive NDVI data spanning from 1986 to 2015.
While this study benefitted from a substantial time frame and sample size, a limitation arose
due to the potential saturation of NDVI in regions with dense vegetation cover [77], leading
to reduced sensitivity in areas like Southeast Asia. Although the utilization of Enhanced
Vegetation Index (EVI) data could address this issue, the current availability of EVI data is
limited to the MODIS product, which commenced in 2000 and offers a significantly shorter
temporal coverage compared to the NDVI dataset employed in this analysis. Prospects for
future research improvement lie in the advancement of EVI-related products.

5. Conclusions

Understanding the relationship between regional changes in NDVI and climate factors
is essential for predicting regional vegetation changes and effectively managing ecological
restoration [70]. In this study, we utilized the GIMMS NDVI3g dataset from 1986 to 2015
and meteorological data from the CRU dataset to conduct univariate linear regression and
partial correlation analysis. This allowed us to examine the temporal and spatial distri-
bution patterns of vegetation cover, environmental stress, and the lag effect of vegetation
growth response to environmental stress in our study area. Additionally, we analyzed the
trend of vegetation change and identified the main climate driving forces around node
cities. Based on the results in this work, the following main conclusions were summarized:

(1) The vegetation coverage in the study area is generally good, with high-value areas
having an average annual NDVI greater than 0.8 accounting for 35.1% of the total,
which is the largest proportion. The area with an annual average NDVI greater than
0.7 and less than 0.8 accounted for 23.1%, while the area with an annual average
NDVI greater than 0.5 and less than 0.7 accounted for 25.3%. Only 16.5% of the
area had an annual average NDVI less than 0.5. However, there are significant
regional differences in vegetation coverage, with Southeast Asia having the best
coverage and mostly averaging above 0.8 in terms of annual NDVI; Central Asia and
West Asia have the worst coverage, with most areas averaging below 0.5 annually.
Specifically, the China–Indochina Peninsula Economic Corridor has the best vegetation
coverage, with an average NDVI of 0.83; followed by the Bangladesh–China–India–
Myanmar Economic Corridor at a mean NDVI of 0.79; then by the China–Mongolia–
Russia Economic Corridor at a mean NDVI of 0.78; New Eurasian Continental Bridge
Economic Corridor at a mean NDVl of 0.69; finally, the China–Pakistan Economic
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Corridor and China–Central Asia–West Asia Economic Corridor have particularly
poor vegetation coverage, averaging only 0.44 and 0.42, respectively, in terms of their
annual NDVI values.

(2) The majority of the area exhibited relatively stable vegetation coverage, representing
the largest proportion at 40.1%. Approximately 39.6% of the regions displayed varying
degrees of improvement, with the most significant enhancements observed in South
Asia, southeastern China, and high latitude Siberia. Conversely, 20.3% of the area
showed a trend of degradation, with Southeast Asia experiencing a slight decline in
vegetation coverage. The China–Mongolia–Russia Economic Corridor and the New
Eurasian Continental Bridge Economic Corridor demonstrated a slight improvement
trend. The vegetation cover in the China–Central Asia–West Asia Economic Corridor,
the Bangladesh–China–India–Myanmar Economic Corridor, and the China–Indochina
Peninsula Economic Corridor exhibited a slight fluctuation increase. Notably, the most
pronounced improvement in vegetation cover was observed in the China–Pakistan
Economic Corridor.

(3) In regions with high latitudes, vegetation growth is influenced by air temperature,
precipitation, and radiation, with precipitation having a relatively weaker impact
compared to air temperature and radiation. In South Asia and Southeast Asia, vegeta-
tion growth is negatively associated with precipitation and radiation, while positively
correlated with air temperature. Central Asia and West Asia exhibit a weak negative
correlation with precipitation and a weak positive correlation with radiation, with
most temperature data not meeting significance thresholds. Evergreen coniferous
forests are predominantly found in high-altitude areas of middle latitudes, where
temperature and radiation are the primary stressors affecting growth, with average
partial correlation coefficients of 0.37 and 0.60, respectively, and limited sensitivity
to precipitation changes. Deciduous coniferous forests, prevalent in high-latitude
regions, are primarily driven by radiation and air temperature, with average partial
correlation coefficients of 0.70 and 0.51, respectively. Precipitation also influences the
growth of deciduous coniferous forests, with an average partial correlation coefficient
of 0.36. Evergreen broad-leaved forests, found in tropical rainforests in low-lying ar-
eas, experience inhibited growth with increased precipitation, indicated by an average
partial correlation coefficient of −0.21. Deciduous broad-leaved forests and mixed
forests face combined stress from air temperature, precipitation, and radiation. Further
analysis of urban areas along these lines reveals that factors influencing changes in
urban vegetation cover include meteorological conditions as well as human activities.

(4) The response of the same vegetation type to different meteorological elements is
different, and the response of different vegetation types to the same meteorological
elements is also different. With the exception of evergreen broad-leaved forests, most
forest ecosystems do not exhibit a hysteresis effect on air temperature. On average,
the response of evergreen broad-leaved forests to air temperature lags behind by
1.9 months. Similarly, farmland typically shows a lagged response to air temperature,
with an average delay of 1.3 months. In terms of precipitation, most forest ecosystems
demonstrate a prolonged time lag in their response. Deciduous coniferous forests,
for example, exhibit an average time lag of 2.4 months in response to precipitation,
while deciduous broad-leaved forests and mixed forests show average delays of
2 and 2.3 months, respectively. Furthermore, the response of deciduous broad-leaved
forests, mixed forests, and shrub forests to radiation is delayed by an average of 2.2,
1.9, and 2.7 months, respectively. Grasslands exhibit a response lag of 2.4 months
to radiation. In contrast, evergreen broad-leaved forests show a relatively shorter
response lag to radiation, with an average delay of 1.4 months.
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