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Abstract: Prioritizing the development of public transport is an effective way to improve the sus-
tainability of the transport system. In recent years, bus passenger flow has been declining in many
cities. How to reform the operating mode of the public transportation system is an important issue
that needs to be solved. An autonomous modular bus (AMB) is capable of physical coupling and
uncoupling to flexibly adjust vehicle capacity as well as provide high-quality service under unbal-
anced passenger demand conditions. To promote AMB adoption and reduce the operating cost of the
bus route, this paper presents a joint optimization method to simultaneously determine the AMB
dispatching plan, charging plan, and charging infrastructure configuration scheme. Then, a mixed-
integer programming model is formulated to minimize the operating costs of the bus route. A hybrid
intelligent algorithm combining enumeration, cloning algorithm, and particle swarm optimization
algorithm is designed to resolve the formulated model. Subsequently, an actual bus route is taken
as an example to validate the proposed method. Results indicate that the developed method in this
paper can reduce the operating costs and operational energy consumption of the route compared
with the real route operating plan. Specifically, the reduction ratio of the former is 23.85%, and the
reduction ratio of the latter is 5.92%. The results of this study validate the feasibility and advantages
of autonomous modular transit service, contributing positively to the sustainable development of the
urban public transportation system.

Keywords: autonomous modular bus; vehicle scheduling; charging infrastructure configuration;
collaborative optimization; public transportation sustainability

1. Introduction

Prioritizing the promotion of public transportation is a proven way to reduce emissions
from transport and improve the sustainability of society [1,2]. Recently, bus passenger flow
has continued to decline in many cities. How to reform the operating mode of the public
transportation system to improve the travel efficiency of passengers and reduce the operat-
ing costs of bus companies has become a vital issue for the current public transportation
system. Nowadays, an emerging approach to urban public transportation, autonomous
modular buses (AMBs), has attracted much attention [3,4]. The AMBs are electrically
powered buses equipped with autonomous driving capabilities, which can operate inde-
pendently on a specific route and physically couple and uncouple as operationally needed.
This means that the spatiotemporal heterogeneity of passenger demand can be solved
by adjusting the number of AMBs performing different trips [5–7]. Furthermore, it is
permissible to specify which vehicle provides energy during the trip when several AMBs
are coupled to perform a trip together. Generally, only the first vehicle of the coupled
AMBs provides energy, and no energy is consumed by other vehicles. In such a case, when
the first AMB has insufficient electricity, a group of AMBs can continue to perform a trip
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by replacing the first AMB with the other one of the residual AMBs. During operation,
the AMB with insufficient electricity can also return to the charging station for recharging
individually. To sum up, AMBs can provide higher quality transit services at lower energy
consumption and operating costs by adjusting vehicle capacity to change their service
supply. The adoption of AMBs will significantly decrease environmental pollution, thus
promoting the realization of a sustainable urban public transportation system.

From the above description, it is clear that the AMB dispatching problem not only
involves assigning the trips in the timetable to the vehicles, but also arranging the order of
AMBs that perform the same trip. Therefore, the dispatching methods for conventional fuel
buses and electric buses are not suitable to be implemented in AMBs. The formulation for
the AMB dispatching plan and charging plan is more complicated. On the one hand, due to
the size constraints, the battery capacity of the AMB is limited and the battery needs to be
recharged frequently during the daytime. On the other hand, which vehicle provides energy
during the trip determines the state of charge (SOC) of each vehicle when several AMBs
are connected together, and subsequently affects the AMB dispatching plan and charging
plan. In addition, charging infrastructure configuration schemes also interact with the
AMB dispatching plan and charging plan. Considering any of these problems individually
may result in a sub-optimal transit system operating scheme [8]. Therefore, the integrated
optimization of the AMB dispatching plan, charging plan, and charging infrastructure
configuration plan is of great significance for a better transit system operation, and achieves
the goals of reducing the operation costs of the modular transit network system (MTNS)
and improving the theory of MTNS operation planning.

Hence, this study presents a collaborative optimization method to determine the AMB
dispatching plan, charging plan, and charging infrastructure configuration plan. The main
contributions of this study are as follows: (i) The SOC of the AMB is quantified under the
condition that the first vehicle of the coupled AMBs provides energy during the entire trip.
(ii) Considering the time-of-use tariff, we establish a nonlinear mixed-integer programming
model that minimizes the operating costs. (iii) We use a combination of enumeration,
cloning algorithm (CA), and particle swarm optimization (PSO) for designing a hybrid
intelligent algorithm to solve the model and determine the AMB dispatching plan, charging
plan, battery capacity, AMB fleet size, and number of chargers.

The structure of the paper is as follows: Section 2 reviews related literature discussing
the integrated optimization of vehicle dispatching and charging infrastructure configuration
and flexible capacity design for transit services. Section 3 describes the establishment
process for the cooperative optimization model of AMB dispatching, charging scheduling,
and charging infrastructure configuration and solution algorithm. Section 4 provides a case
study on the basis of an actual bus route. Section 5 illustrates the research conclusions.

2. Literature Review

This study concentrates on the integrated optimization of vehicle dispatching and
charging infrastructure configuration for the bus route operating AMB. Therefore, this
paper discusses related work in terms of integrated optimization of vehicle dispatching
and charging infrastructure configuration and flexible capacity design for transit services.

2.1. Integrated Optimization of Vehicle Dispatching and Charging Infrastructure Configuration

Recently, the EB transport planning process has become increasingly important as
the electrification of urban public transport continues to advance [9–13]. Integrated plan-
ning for multi-problems increases the complexity and difficulty of solving the problem
exponentially, compared with the step-by-step planning for a single problem. However,
integrated planning can not only further decrease the transit system’s operational costs, but
also enhance the transit service’s efficiency [14]. Hence, more and more researchers focus on
the integrated optimization of two or more problems in the EB transport planning process,
for instance, the integration of vehicle dispatching and charging infrastructure configu-
ration [15,16]. Among them, charging infrastructure configuration includes the charging
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station location, number of chargers, battery capacity equipped in vehicles, etc. [17,18]
Targeting the minimization of the overall operating costs, Wang et al. [19] and Hu et al. [20]
collaboratively optimized the EB charging plan, number of chargers, and charging station
location. Liu et al. [21] presented a collaborative optimization model for finding the optimal
EB charging station location, number of chargers, charger power, and EB charging plan
aimed at minimizing the costs of passengers’ waiting time and the EB system’s operating
costs. McCabe et al. [22] presented an approach to concurrently determine the EB charger
location, EB charging plan, and number of chargers by optimizing the tradeoff between the
investment costs of charging facilities and operational performance. Aiming at minimizing
total operational costs, He et al. [8] formulated a joint optimization model to determine the
EB dispatching plan, EB charging plan, and charging infrastructure planning.

In addition, infrastructure configuration schemes interact with each other [23,24]. For
instance, the number of chargers and the charging station location affect the EB charging
plan, thus influencing the fleet size [25,26]. Aiming at minimizing the overall implemen-
tation costs, Ke et al. [27] established a model to find the optimal EB fleet size, number
of chargers, and battery capacity. Liu et al. [28] formulated an optimal model to simulta-
neously determine the battery capacity and fast-charging station deployment plan under
energy consumption uncertainty. He et al. [29] developed an EB fast-charging station de-
ployment approach aimed at minimizing the electricity demand charges, battery acquisition
costs, energy storage systems construction costs, and fast-charging stations construction
costs. Alwesabi et al. [30] formulated a joint optimization model to concurrently deter-
mine the battery capacity and dynamic wireless charging facilities’ location. Considering
integrated photovoltaic and energy storage systems, Liu et al. [31] presented a charging
station planning model aimed at minimizing the charging infrastructure construction costs,
charging costs, EB acquisition costs, and carbon emission costs.

2.2. Flexible Capacity Design for Transit Services

AMBs can be physically coupled or uncoupled as operationally required, thus enabling
the provision of transit services with flexible capacity [3,32–35]. Chen et al. [36] and Chen
et al. [37] determined the optimal departure frequency of AMBs and vehicle capacity
under oversaturated traffic by employing discrete modeling and continuous modeling
approaches, respectively. Shi et al. [38] concentrated on the collaborative optimization
of the departure frequency and the length of AMB for each trip for shared corridors to
minimize operating costs and passengers’ waiting time. Considering time-dependent travel
demand, Ji et al. [6] presented a bi-objective (minimizing passengers’ waiting time and
total empty seats of AMBs) optimization model to simultaneously determine the timetable,
vehicle formation, and AMB dispatching plan. Aiming at minimizing the travel time costs
of passengers and operational costs, Pei et al. [39] formulated a joint model to find the
optimal vehicle capacity and headway in a modular transit network system (MTNS). Tian
et al. [40] formulated a collaborative optimization model to concurrently determine the
intermediate special stations’ location and capacity in an MTNS. Considering temporal
dependencies on passenger demand and limited availability of the AMBs at stations, Tian
et al. [41] established an AMB dispatching and vehicle formation integrated optimization
model to minimize passengers’ waiting time costs, bus companies’ operating costs, and
re-balancing costs of the AMBs. Khan et al. [4] designed a stop-skipping strategy leveraging
physical coupling and uncoupling features of AMBs to minimize the passengers’ travel time.
Aiming at minimizing the AMB system’s overall operating costs, Liu et al. [7] established a
collaborative optimization model to find the optimal timetable, AMB dispatching plan, and
vehicle formation. This model permitted the AMB to uncouple from one vehicle and couple
to another vehicle in either direction on a bi-directional route. Guo et al. [42] applied AMBs
to customized on-demand bus services and designed a two-phase method to determine the
optimal AMB routing plan and charging plan.

The aforementioned studies have offered some suggestions for the operation and plan-
ning strategy of AMBs. However, the charging scheduling of AMBs was not considered
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in the aforementioned studies. There are significant differences in the development of a
charging plan between AMBs and conventional electric buses. Investigating the charging
scheduling of AMBs is imperative. Therefore, this paper proposes a collaborative optimiza-
tion method for concurrently determining the AMB dispatching plan, charging plan, fleet
size, number of chargers, and battery capacity, with the goal of minimizing operating costs.

3. Methodology
3.1. Problem Description

In this study, one trip refers to the process of an AMB departing from the upbound
departure station of a route to the upbound terminal station (i.e., the outbound departure
station) and back to the upbound departure station (i.e., the outbound terminal station).
Let i (i = 1, 2, . . . , I) represent the trip number on the route, where I is the total number of
trips scheduled to operate every day. Let U represent the total number of AMBs deployed
on the route and u (u = 1, 2, . . . , U) denote the AMB number. Let B denote the battery
capacity configured on AMBs. The charging station for AMBs is located at the upbound
departure station on the route and is constructed with R chargers. Let r (r = 1, 2, . . . , R)
denote the charger number. It is worth noting that a trip can be performed by multiple
AMBs. We assume the energy is provided by the first AMB when multiple AMBs are
coupled together to serve a trip. Figure 1 gives an example of three AMBs coupling
together to serve a trip.
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The 0–1 variables xu
i and yu

i are used to represent the relationship between AMB u
and trip i. If AMB u serves trip n and AMB u is the first vehicle, then xu

i = 1 and yu
i = 0;

if AMB u serves trip n and AMB u is not the first vehicle, then xu
i = 0 and yu

i = 1;
otherwise, xu

i = yu
i = 0. If AMB u serves trip j after completing trip i, then hu

i,j = 1;
otherwise, hu

i,j = 0. Furthermore, if the first trip AMB u needs to perform is trip j, then
hu

0,j = 1; otherwise, hu
0,j = 0.

The 0–1 variable du
i is used to indicate whether AMB u is charged after serving trip i.

If AMB u charges after serving trip i, then du
i = 1; otherwise, du

i = 0. Here we discretize
time domain into consecutive time steps k ∈ {1, 2, . . . , K}. The following 0–1 variables
are introduced to obtain the charging start time and end time of AMB. If AMB u starts
charging in time step k after serving trip i, then du,start

i,k = 1; otherwise, du,start
i,k = 0. If AMB

u ends charging in time step k after serving trip i, then du,end
i,k = 1; otherwise, du,end

i,k = 0.
If AMB u is charged in time step k after serving trip i, then du

i,k = 1; otherwise, du
i,k = 0.

3.2. Battery State of Charge of Autonomous Modular Bus Calculation

The AMB starts operation with a battery SOC of SOCmax. The battery SOC is always
within the interval [SOCmin, SOCmax] during operation [43]. The calculation of battery SOC
of AMB u at the beginning of the trip j (SOCu

j ) can be discussed in the following three
conditions, under the mode that the first vehicle of the coupled AMBs provides energy
during the entire trip.
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Case 1: The first trip AMB u needs to perform is trip j, i.e., hu
0,j = 1. Under this

condition, SOCu
j can be calculated as follows:

SOCu
j = SOCmax, hu

0,j = 1 (1)

Case 2: AMB u performs trip j after completing trip i and AMB u is the first vehicle
when serving trip i, i.e., xu

i = 1 and hu
i,j = 1. Under this condition, SOCu

j can be calculated
as follows:

SOCu
j = SOCu

i −
Wi
B

× 100%, xu
i = 1 and hu

i,j = 1 (2)

where Wi is the energy consumption of trip i, kWh; SOCu
i is battery SOC of AMB u at the

beginning of the trip i, %.
Wi is expressed as follows [44]:

ln Wi = −8.3743 + 0.5523 ln L + 0.7814 ln Mi + 0.3543 ln Ti + 0.0077
∣∣ξi − 23.7

∣∣ (3)

where L denotes the distance of one trip, km; Mi represents the total weight of the vehicle
on trip i, kg; Ti is trip i’s travel time, min; ξi is the average ambient temperature during
operation of trip i, ◦C.

For the AMB dispatching problem in this study, the calculation of Mi is as follows:

Mi = τi Mpas +
I

∑
i = 1

(xu
i + yu

i )(Mbus + MB) (4)

MB = 1000(B/η) (5)

where τi is trip i’s average number of passengers, pax; Mpas is the average passenger mass,
kg; Mbus is the weight of an AMB (without battery), kg; MB is the weight of one battery, kg;
η is battery energy density, Wh/kg.

Case 3: AMB u performs trip j after completing trip i and AMB u is not the first vehicle
when serving trip i, i.e., yu

i = 1 and hu
i,j = 1. Under this condition, SOCu

j can be calculated
as follows:

SOCu
j = SOCu

i , yu
i = 1 and hu

i,j = 1 (6)

3.3. Objective Function Formulation

The objective of the collaborative optimization model formulated in this paper is to
minimize the operational costs, including the charger deployment costs Z1, AMB body
(without battery) acquisition costs Z2, battery acquisition costs Z3, and charging costs Z4.

(1) Charger deployment costs calculation

The charger deployment costs are determined by the average daily acquisition costs
of a charger cpile (CNY) and the number of chargers. The calculation method of charger
deployment costs Z1 is as follows:

Z1 = cpileR (7)

(2) AMB body acquisition costs calculation

The AMB body acquisition costs are determined by the average daily acquisition costs
of an AMB body cAMB (CNY) and the number of AMBs on the route. The AMB body
acquisition costs Z2 can be calculated as follows:

Z2 = cAMBU (8)
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(3) Battery acquisition costs calculation

Battery acquisition costs are determined by the average daily costs of acquisition per
kWh of battery cbattery (CNY), battery capacity, and the number of AMBs. The calculation
of battery acquisition costs Z3 is as follows:

Z3 = cbatteryUB (9)

(4) Charging costs calculation

The charging costs of AMBs are determined by charging times and time-of-use tariff.
The calculation method of charging costs Z4 is

Z4 =
U

∑
u = 1

I

∑
i = 1

K

∑
k = 1

du
i,kckP
60

(10)

where ck is the electricity price of time step k, CNY/kWh; P is charger power, kW.

3.4. Model Formulation

Aiming at minimizing the operation costs, a collaborative optimization model is
established using battery capacity (B), AMB fleet size (U), number of chargers (R), AMB
dispatching plan (xu

i , yu
i , and hu

i,j), and AMB charging plan (du
i and du

i,k) as optimization
variables. The model is established as follows:

min Z = Z1 + Z2 + Z3 + Z4 (11)

s.t.
U

∑
u = 1

xu
i = 1, ∀i (12)

U

∑
u = 1

nbus(xu
i + yu

i ) ≥ Nreq
i , ∀i (13)

hu
i,j

(
tend
i +

K

∑
k = 1

k
(

du,end
i,k − du,start

i,k

)
− tstart

j

)
≤ 0, ∀u, i, j (14)

xu
i

(
SOCu

i −
Wi
B

× 100%
)
≥ SOCmin (15)

K

∑
k = 1

du,start
i,k = du

i , ∀i, u (16)

K

∑
k = 1

du,end
i,k = du

i , ∀i, u (17)

K

∑
k = 1

k
(

du,end
i,k − du,start

i,k

)
≤ B ×

(
SOCmax − (SOCu

i −
Wi
B

× 100%)

)
× 60/P, if du

i = 1, ∀i (18)

U

∑
u = 1

I

∑
i = 1

du
i,k ≤ R, ∀k (19)

xu
i , yu

i , hu
i,j, du

i ∈ {0, 1} (20)

xu
i + yu

i = 1, if hu
i,j = 1 (21)

xu
j + yu

j = 1, if hu
i,j = 1 (22)

Bmin ≤ B ≤ Bmax (23)
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B, R, U ∈ N+ (24)

where nbus is the rated passenger load of an AMB, pax; Nreq
i is the maximum number of

cross-sectional passengers for trip i, pax; tend
i is trip i’s ending time; tstart

j is trip j’s starting
time; Bmin and Bmax are the allowable minimum and maximum battery capacity for AMBs,
respectively, kWh.

Equation (12) indicates that each trip has exactly one AMB to provide energy.
Equation (13) ensures that the boarding demand of passengers is satisfied for each trip.
Equation (14) represents the time feasibility constraint that ensures AMB u is able to per-
form trip j on time after finishing trip i. Equation (15) is the power constraint that ensures
the battery’s SOC of AMB u remains greater than SOCmin after finishing trip i. Equation (16)
expresses that if AMB u is charged after completing trip i, it must start charging at a certain
time step k. Equation (17) implies that if AMB u is charged after completing trip i, it
must end charging at a certain time step k. Equation (18) depicts the maximum charg-
ing time constraint of AMB, ensuring that the battery’s SOC of AMB can never exceed
SOCmax. Equation (19) ensures the number of AMBs in charging cannot be greater the
number of chargers at any time. Equations (20)–(24) present the optimization variables’
value constraints.

3.5. Solution Algorithm

A nonlinear mixed-integer programming model with a large number of dimensions is
developed in this paper. The PSO algorithm exhibits a fast convergence speed when solving
nonlinear and multi-dimensional optimization problems. However, PSO easily converges
prematurely and falls into the local optimal solution, leading to slow convergence at a later
stage. Introducing CA into PSO can increase the population diversity and overcome the
problem of being trapped in the local optimal solution during the multi-peak optimization
process, and can thus obtain the global optimal solution.

In addition, feasible schemes for charging infrastructure configuration are relatively
limited compared to feasible AMB dispatching plans and charging plans. Accordingly,
we use a combination of enumeration, CA, and PSO for designing a hybrid intelligent
algorithm to address the developed model. Specifically, we first use the enumeration
method to provide feasible charging infrastructure configuration schemes for battery
capacity, AMB fleet size, and number of chargers. Then, the hybrid intelligent algorithm
combining CA and PSO is employed to solve the optimal AMB dispatching plan and
charging plan for each feasible charging infrastructure configuration scheme, and obtain
the bus route’s operating costs. Finally, the bus route’s operating costs for the feasible
schemes are compared and the minimum costs charging infrastructure configuration plan,
AMB dispatching plan, and charging plan are output.

The hybrid intelligent algorithm is designed with the following specific steps.
Step 1: Determine the feasible charging infrastructure configuration plans by enumer-

ation, including the feasible fleet size Ufea (Ufea = Ufea, min, Ufea, min+1, . . . , Ufea, max − 1,
Ufea, max), number of chargers Rfea (Rfea = Rfea, min, Rfea, min+1, . . . , Rfea, max − 1, Rfea, max),
and battery capacity BRfea

fea (BRfea
fea = BRfea

fea, min, BRfea
fea, min + 1, . . . , BRfea

fea, max − 1, BRfea
fea, max).

Step 2: Solve the AMB dispatching plan and charging plan using a hybrid intelligent
algorithm combining CA and PSO for each charging infrastructure configuration plan
under the combination of Ufea, Rfea, and BRfea

fea .
Step 2.1: Set the number of iterations to s = 0. Let the maximum number of iterations

to S and the population size to E.
Step 2.2: Generate the initial population. The population contains E particles generated

randomly in the parameter space. Each particle has two attributes: velocity and position.
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The optimization variables xu
i , yu

i , and du
i are all 0–1 matrices of I × U. Therefore, the

search space G = 3I × U. The velocity space and position space of the particle swarm are
both matrices of S × G. As a dependent variable, the value of hu

i.j can be obtained implicitly
by optimizing the aforementioned variables.

Step 2.3: Calculate the affinity θe of particle e. The calculation method is as follows:

θe = 1/(Ze,1 + Ze,2 + Ze,3 + Ze,4) (25)

where Ze,1, Ze,2, Ze,3, and Ze,4 are the charger deployment costs, AMB body acquisition
costs, battery acquisition costs, and charging costs for the feasible solution represented by
particle e, respectively, CNY.

Step 2.4: Update the optimal position Fe,best searched by particle e up to now and the
optimal position Fbest,all searched by the whole particle swarm until now.

Step 2.5: Determine whether s ≥ S. If yes, proceed to Step 2.11; otherwise, proceed to
Step 2.6.

Step 2.6: Update the velocity and position of all particles based on Equations (26) and (27).
And restrict the velocity not to exceed the boundary [−Vmax, Vmax]

ve,g(s + 1) = ωve,g(s) + c1r1
(

Fe,best − fe,g(s) + c2r2(Fbest,all − fe,g(s)
)

(26)

fe,g(s + 1) = fe,g(s) + ve,g(s + 1) (27)

where ve,g(s + 1) and fe,g(s + 1) are the velocity and position in the g-th dimension of the
s + 1-st generation particle e, respectively; c1 and c2 represent acceleration constants; ω
denotes the inertia weight; r1 and r2 are random numbers between [0, 1].

Step 2.7: Select τ particles with high affinity and write them to the set Am. The
remaining E − τ particles are written to the set Ar.

Step 2.8: Cloning. Sort the particles by affinity from highest to lowest and select ς
particles with the highest affinity in Am to clone. The higher the affinity, the more particles
will be cloned.

Step 2.9: Mutation. Sort the cloned particles according to the affinity from high to low.
The mutation rate becomes smaller with the increase in affinity.

Step 2.10: Recalculate the affinity of each particle after mutation according to
Equation (25). Select τ particles with high affinity to write into the set Am, and return to
Step 2.3.

Step 2.11: Export the optimal AMB dispatching plan and charging plan under the
charging infrastructure configuration plan of Ufea, Rfea, and BRfea

fea .
Step 3: Compare the route operating costs of all feasible schemes.
Step 4: Output the minimum operating costs scheme, i.e., the optimal AMB dispatching

plan, charging plan, and charging infrastructure configuration plan.

4. Case Study
4.1. Data Investigation

In this subsection, an actual electric bus route in a specific city in China was adopted as
the research object and the data from 14 March 2023 were utilized to validate the established
method. The route consists of 19 stations, as illustrated in Figure 2. Chargers were deployed
in Terminal I. As described in Section 2.1, the process of the AMB running from Terminal
I to Terminal II and returning to Terminal I is one trip. The operating mileage of one trip
is 17.3 km. The departure time of the first and last trips of the route is 5:30 and 20:30,
respectively. The operating time is divided into nine operating periods and the specific
operational information of each period is listed in Table 1. The city implements a time-
of-use tariff policy, and the related information is presented in Table 2. Table 3 gives the
average temperatures for each hour during operation.
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Figure 2. Layout of the real route.

Table 1. The specific operational information of each period.

Index Time Period Headway (min) Number of Trips Travel Time (min)

1 5:30–6:30 6 10 53
2 6:30–8:30 5 24 58
3 8:30–10:00 6 15 55
4 10:00–15:00 8 38 53
5 15:00–16:00 6 10 58
6 16:00–17:30 5 18 63
7 17:30–18:30 6 10 58
8 18:30–19:30 8 8 53
9 19:30–20:30 10 7 50

Table 2. Time-of-use tariff schedule.

Index Time Period Electricity Price (CNY/kWh)

1 6:00–9:00 1.0866
2 9:00–11:30 1.3574
3 11:30–15:30 1.0866
4 15:30–21:00 1.3574
5 21:00–23:00 1.0866
6 23:00–6:00 0.8158

Table 3. Average temperatures for each hour during operation.

Index Time Period Average
Temperature (◦C) Index Time Period Average

Temperature (◦C)

1 05:00–06:00 −3 9 14:00–15:00 3
2 06:00–07:00 −3 10 15:00–16:00 2
3 07:00–08:00 −2 11 16:00–17:00 1
4 08:00–09:00 0 12 17:00–18:00 0
5 09:00–10:00 1 13 18:00–19:00 −2
6 10:00–11:00 2 14 19:00–20:00 −3
7 11:00–12:00 2 15 20:00–21:00 −4
8 13:00–14:00 3

The maximum number of cross-sectional passengers on each trip is listed in Appendix A.
Referring to the actual condition, we assume that the AMBs are equipped with LiFePO4
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batteries. The battery system energy density (η) is 140.13 Wh/kg. In actual operation, the
rated passenger load for an electric bus on the route is 77, the mass of the bare vehicle
(without battery) is 9190 kg, and the purchase costs (without battery) are 522,490 CNY.
The rated passenger load for an AMB is 10 [5], thus assuming that the bare mass of an
AMB (without battery) is 1193.5 kg (10/77 × 9190 kg), and the purchase costs (without
battery) are 67,855.8 CNY (10/77 × 522,490 CNY). The average daily acquisition costs
of the infrastructure can be obtained by dividing the acquisition costs by the useful life.
The charger acquisition costs are 100,000 CNY and the acquisition costs of the battery are
1400 CNY per kWh. The charger can be used for 10 years. The battery’s useful life is
6 years [29]. Table 4 shows the values of other parameters in the developed model.

Table 4. Values of some parameters of the developed model.

Parameter Value Parameter Value

cpile 27.4 CNY SOCmin 20%
cAMB 30.98 CNY SOCmax 95%

cbattery 0.639 CNY Bmin 10 kWh
P 120 kW Bmax 60 kWh

Mpas 60 kg

4.2. Optimization Results and Analysis

We used Python 3.8.2 to address the formulated model. For the optimal solution
obtained, the route operating costs Z = 4794.302 CNY, the AMB fleet size U = 98, the
battery capacity B = 16 kWh, and the number of chargers R = 1. Among them, the charger
deployment costs are 27.4 CNY, AMB body acquisition costs are 3036.04 CNY, battery
acquisition costs are 1001.952 CNY, and charging costs are 728.91 CNY. It can be seen
that the AMB body acquisition costs are the largest expenditure in the route operation,
constituting 63.33% of the total operating costs. The charger deployment costs, battery
acquisition costs, and charging costs account for 0.57%, 20.90%, and 15.20% of the overall
route operating costs, respectively. The charging of AMBs all takes place at night after the
end of operation. The AMB dispatching plan is displayed in Table 5.

Table 5. AMB dispatching plan.

Trip No. AMB No. Wi (kWh) Trip No. AMB No. Wi (kWh)

1 1–2–3–4–5–6 7.13 71 96–67–28–36 5.01
2 7–8–24–10–11–12–13 8.08 72 21–18–19–20 5.08
3 15–14–16 4.22 73 32–33–34–30–31 5.86
4 74–18–19–20–21–22–23 8.08 74 17–60–57–58–59–73 6.86
5 9–25–26–27 5.19 75 65–66–25–63–64–29 6.84
6 28–29–30–31–32–33–34–35 9.03 76 26–43–70–71–83–69–48 7.68
7 36–37–38–39 5.11 77 56–61–55 3.97
8 40–41–42–43 5.28 78 15–52–53–54–14 5.97
9 44–45–46 4.14 79 11–12–9 4.03

10 47–48–1–2–3–4–5–6 8.95 80 10–84–40–47 4.93
11 49–7–8–9–10–11–12–13 9.32 81 68–37–38–39 4.95
12 50–51–52–53–54–14–15–16 9.29 82 3–2–35 3.91
13 55–56–57–58–59–60–61 8.41 83 45–46–81–82 4.91
14 62–17–18–19–20–21–22–23 9.25 84 79–80–78 3.99
15 63–64–65–66–24–25–26–27 9.24 85 76–77–75–16–50 5.88
16 29–30–31–32–33–34 7.45 86 90–86–87–88–89 5.86
17 35–67–28–36–37–38–39–68 9.20 87 95–91–92–93–94 5.85
18 41–40–69–42–43–70–71 8.26 88 42–27–22–23–51 6.10
19 72–73–74–75–76–77 7.34 89 85–1–41–72 5.25
20 78–79–80–81–82–44–45–46 9.23 90 22–62–17 4.13
21 4–5–6 4.30 91 20–21–18–19 5.13
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Table 5. Cont.

Trip No. AMB No. Wi (kWh) Trip No. AMB No. Wi (kWh)

22 48–83–84–47–85–1–2–3 9.15 92 39–68–37–38 5.09
23 13–49–7–8–9–10–11–12 9.22 93 65–29–44–64 5.11
24 16–50–51–52–53–54–14–15 9.23 94 5–49–7–6–4 6.17
25 61–55–56–57–58–59–60 8.31 95 31–66–25–63 5.15
26 22–62–17–18–19–20–21 8.38 96 58–59–73–74–60–57 7.20
27 25–63–64–65–66–24 7.38 97 53–54–14–15–52 6.16
28 30–31–32–33–34 6.39 98 64–29–26–63 5.37
29 67–28–36–37–38–39–68 8.10 99 69–48–3–2–35 6.37
30 71–83–69–42–43–70 7.30 100 82–45–46–81–11–12–9 8.38
31 75–76–77 4.07 101 89–90–86–41–72–65–30 8.34
32 74–73 3.10 102 10–84–40–47 5.27
33 81–82–44–45–46 6.20 103 32–33–34 4.31
34 40–84–47–85–1 6.23 104 94–95–91–85–1–56–61–55 9.22
35 9–10–11–12 5.21 105 19–20–21–18–79–80–78 8.40
36 80–78–79 4.14 106 23–25–27–22–51–22–62–17 9.29
37 51–52–53–54–14–15 7.04 107 38–39–68–37–56–61 7.33
38 22–23–25–27 5.12 108 97–96–67–28–36–55–8 8.34
39 57–58–59–60 5.13 109 98–42–43–70–71–83–76 8.36
40 34–30–31–32–33 6.14 110 59–45–74–60–57–58–77–50 9.31
41 18–19–20–21 5.02 111 54–46–15–52–53–16 7.52
42 37–38–39–68 5.19 112 4–5–49–7–6 6.51
43 70–71–83–69–42–43 7.04 113 87–31–66–26–63–81 7.39
44 66–25–63–64–65–29 7.00 114 88–69–48–3–2–35 7.53
45 46–81–82–44–45 6.03 115 92–64–29–10–63–82 7.40
46 6–4–5 4.12 116 93–45–46–81–11–12–33 8.15
47 8–13–49–7 5.19 117 73–89–90–86–41–72–65–30 9.09
48 2–3–35–41–72 6.03 118 14–19–20–21–18–79–80–78 9.08
49 96–67–28–36 5.02 119 75–11–12–9–32–84 7.17
50 12–9–10–11 4.92 120 44–40–47–61–55 6.33
51 17–61–55 4.02 121 24–94–95–91–85–1–56 8.26
52 33–34–30–31–32 5.96 122 83–34–42–43–70–71–23 8.38
53 37–38–39 4.06 123 85–27–22–51–22 6.44
54 52–53–54–14–15 5.93 124 54–62 3.08
55 84–40–47–85–1 5.98 125 88–68–37 4.32
56 27–22–23–26–51 5.94 126 38–56 3.03
57 60–57–58–59–73–74 6.82 127 76–97–96–67–28 6.11
58 43–70–71–83–69–42–48 7.76 128 98–36 2.85
59 45–46–81–82–44 6.03 129 92–61 3.03
60 77–75–76–16–50 5.89 130 64–36–55–8–61 6.25
61 64–66–25–63–65–29 6.89 131 18–4–5–49–7 6.16
62 56–2–35–41–72 5.94 132 69–6–46–15 5.17
62 21–18–19–20 4.97 133 77–57–58 4.10
64 86–87–88–89–90 5.98 134 95–52–53–16 5.17
65 91–92–93–94–95 5.96 135 25–46–81 4.01
66 79–80–78–22–62–17 6.82 136 3–29–10–63–82–45–11 7.90
67 68–37–38–39 5.05 137 90–86–41–72–65 6.10
68 11–12–9–10 5.08 138 39–21–79 4.12
69 6–4–5–49–7 5.96 139 65–44–40 4.02
70 56–61–55–8–13 5.93 140 20–88–68–37 5.21

The suboptimal solution is used to compare with the above optimal solution in this
paper. In the suboptimal solution, the route operating costs Z = 4810.822 CNY, the AMB
fleet size U = 98, the battery capacity B = 16 kWh, and the number of chargers R = 2.
Among them, the charger deployment costs are 54.8 CNY, AMB body acquisition costs are
3036.04 CNY, battery acquisition costs are 1001.952 CNY, and charging costs are 718.03 CNY.
Compared with the suboptimal solution, the charging costs of the optimal solution are
increased by 10.88 CNY. This is because the charging of AMBs occurs in both the nighttime
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tariff shoulder period and off-peak period, i.e., 21:00–23:00 and 23:00–6:00. While in the
suboptimal solution, the charging of AMBs only occurs in the nighttime tariff off-peak
period, i.e., 23:00–6:00. However, the optimal solution reduces the charger deployment
costs by 27.4 CNY. Hence, we chose to deploy one charger in the charging station.

We compare the vehicle dispatching plan, charging plan, and charging infrastructure
configuration between the proposed method (Plan A) and the current plan using EBs for
route operation (Plan B) to verify the effectiveness of the method proposed in this paper.

Plan A: Use AMBs to serve the given trips.
Plan B: Use EBs to serve the given trips. The mass and the purchase costs of the bare

EB (without battery) are 9190 kg and 522,490 CNY, respectively. The capacity of an EB is
77 passengers.

As can be seen in Table 6, the route operating costs in Plan A are reduced by 5.92%,
equivalent to 301.77 CNY, compared to Plan B. It is apparent that the major reason for the
reduction in the route operating costs in Plan A is the significant decrease in the charging
costs. This is due to the significant reduction in the route operating energy consumption
in Plan A compared to Plan B. The daily route operating energy consumption in Plan B
is 1155.79 kWh, whereas the daily route operating energy consumption in Plan A is only
880.16 kWh. Compared to Plan B, the daily route operating energy consumption in Plan A is
reduced by 23.85%, approximately equal to 275.63 kWh. Figure 3 illustrates the operational
energy consumption for each trip. It is observed that the trip energy consumption of Plan
A in the off-peak hours is much lower than that of Plan B. This is because Plan A is able to
flexibly adjust the number of vehicles to perform a trip according to passenger demand.
During low passenger demand periods, fewer AMBs are needed to complete a trip, vehicle
weight is reduced, and thus, trip energy consumption is reduced.

Table 6. Comparison of results under two plans.

Plan Plan A Plan B

U 98 13
B (kWh) 16 120

R 1 2
Z (CNY) 4794.302 5096.07
Z1 (CNY) 27.4 54.8
Z2 (CNY) 3036.04 3101.54
Z3 (CNY) 1001.952 996.84
Z4 (CNY) 728.91 942.89
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Similarly, as Plan A can flexibly adjust the vehicle capacity of each trip according to
passenger demand, the utilization of vehicles in Plan A also increases, especially during
off-peak hours. Figure 4 depicts the utilization of vehicles for each trip.
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Moreover, we find that the trip energy consumption in Plan A is likely to be higher
than that in Plan B, and utilization of vehicles may be lower than that in Plan B during
peak hours. This is because the rated passenger load of a vehicle in historical operations is
77, i.e., the maximum historical passenger demand for one trip is 77 passengers, whereas
the rated passenger load of an AMB is 10. Plan A will equip eight AMBs for one trip when
passenger demand is in the range of [71, 77] during peak hours. In this case, the vehicle
weight and vehicle capacity for one trip in Plan A are larger than in Plan B, resulting in
higher trip energy consumption and lower utilization of vehicles.

5. Conclusions

The emergence of AMBs is of great significance in enhancing the sustainability of
the urban public transportation system. This study develops a collaborative optimization
method for bus route operating AMBs to concurrently determine the AMB dispatching
plan, charging scheduling plan, and charging infrastructure configuration scheme, under
the circumstance that the first vehicle of the coupled AMBs provides energy during the
entire trip. A hybrid intelligent algorithm was designed to resolve the established model.
Numerical experiments were carried out utilizing the data of an actual EB route. The
findings are as follows:

(i) The collaborative optimization method developed in this paper can flexibly adjust the
number of vehicles to perform a trip according to passenger demand, leading to lower
vehicle weight during off-peak hours. It realizes decreased trip energy consumption,
improved vehicle utilization, and reduced route operating costs.

(ii) Utilizing AMB for bus routes can effectively reduce daily operating costs and opera-
tional energy consumption, compared to using conventional EB. The former can be
reduced by 5.92%, approximately 301.77 CNY. The latter can be reduced by 23.85%,
approximately equal to 275.63 kWh.

However, there are some limitations to this study. We neglected the impact of ambient
temperature on people’s choice of public transport traveling mode [45]. The coupling and
decoupling operations of AMBs at any stops were not considered. Future work is required
to further discuss the above issues to address the spatial fluctuations in passenger demand,
which can further promote the realization of a sustainable urban public transportation
system. In addition, for future research, the proposed collaborative optimization method
can be potentially extended to multiple routes and multiple charging modes (e.g., multiple
vehicles of the coupled AMBs providing energy jointly during the trip). An exact efficient
solution algorithm will be studied in the future.
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Appendix A

Table A1. The maximum number of cross-sectional passengers on each trip.

Trip No.
Maximum Number of

Cross-Sectional
Passengers (Pax)

Trip No.
Maximum Number of

Cross-Sectional
Passengers (Pax)

Trip No.
Maximum Number of

Cross-Sectional
Passengers (Pax)

1 53 48 42 95 35
2 64 49 31 96 60
3 30 50 31 97 45
4 64 51 28 98 36
5 35 52 45 99 44
6 77 53 30 100 67
7 31 54 43 101 65
8 40 55 46 102 31
9 26 56 44 103 28
10 72 57 51 104 72
11 77 58 63 105 68
12 75 59 49 106 76
13 68 60 41 107 52
14 73 61 55 108 65
15 72 62 44 109 66
16 58 62 34 110 73
17 74 64 46 111 59
18 63 65 45 112 49
19 55 66 51 113 52
20 76 67 38 114 60
21 29 68 40 115 53
22 71 69 45 116 64
23 75 70 43 117 76
24 76 71 36 118 75
25 66 72 40 119 52
26 70 73 42 120 49
27 57 74 56 121 63
28 47 75 55 122 70
29 61 76 62 123 50
30 59 77 27 124 17
31 21 78 48 125 30
32 20 79 30 126 19
33 42 80 34 127 43
34 44 81 35 128 11
35 39 82 24 129 19
36 28 83 33 130 48
37 52 84 28 131 43
38 34 85 43 132 34
39 35 86 42 133 24
40 48 87 41 134 40
41 31 88 42 135 24
42 40 89 40 136 63
43 55 90 27 137 44
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Table A1. Cont.

Trip No.
Maximum Number of

Cross-Sectional
Passengers (Pax)

Trip No.
Maximum Number of

Cross-Sectional
Passengers (Pax)

Trip No.
Maximum Number of

Cross-Sectional
Passengers (Pax)

44 53 91 34 138 28
45 42 92 32 139 23
46 29 93 33 140 40
47 40 94 46
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