China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers
Abstract
:1. Introduction
2. Methods
2.1. Goal and Scope Definition
2.2. Inventory Analysis
2.3. Impact Analysis
2.4. Scenario Analysis
2.4.1. Scenario Definition for Power Grid Decarbonization
2.4.2. Different Transport Scenarios
3. Results and Discussion
3.1. Future Carbon Footprint of Renewable Infrastructure Manufactured in Various Countries
3.2. The Impact of the Chinese Electricity Decarbonization Pathway on the Product Carbon Footprint
3.3. Carbon Footprint Analysis of the International Trade Transportation for Renewable Infrastructure
3.4. Limitations of This Study
4. Prospect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- IPCC. Global Warming of 1.5 °C; An Ipcc Special Report; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Huang, M.-T.; Zhai, P.-M. Achieving Paris Agreement Temperature Goals Requires Carbon Neutrality by Middle Century with Far-Reaching Transitions in the Whole Society. Adv. Clim. Change Res. 2021, 12, 281–286. [Google Scholar] [CrossRef]
- Guo, H.-D.; Zhang, L.; Zhu, L.-W. Earth Observation Big Data for Climate Change Research. Adv. Clim. Chane. Res. 2015, 6, 108–117. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C.; Dong, B.; Gu, G.; Chen, R.; Li, Y.; Zou, H.; Zhang, W.; Li, Q. Carbon Emissions from Energy Consumption in China: Its Measurement and Driving Factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Bataille, C.; Waisman, H.; Colombier, M.; Segafredo, L.; Williams, J.; Jotzo, F. The Need for National Deep Decarbonization Pathways for Effective Climate Policy. Clim. Policy 2016, 16, S7–S26. [Google Scholar] [CrossRef]
- Kut, P.; Pietrucha-Urbanik, K. Bibliometric Analysis of Renewable Energy Research on the Example of the Two European Countries: Insights, Challenges, and Future Prospects. Energies 2023, 17, 176. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Rak, J. Water, Resources, and Resilience: Insights from Diverse Environmental Studies. Water 2023, 15, 3965. [Google Scholar] [CrossRef]
- Zhang, S.; Ueno, K.; Dokko, K.; Watanabe, M. Recent Advances in Electrolytes for Lithium–Sulfur Batteries. Adv. Energy Mater. 2015, 5, 1500117. [Google Scholar] [CrossRef]
- Papadopoulos, V.; Knockaert, J.; Develder, C.; Desmet, J. Investigating the Need for Real Time Measurements in Industrial Wind Power Systems Combined with Battery Storage. Appl. Energy 2019, 247, 559–571. [Google Scholar] [CrossRef]
- Arent, D.J.; Green, P.; Abdullah, Z.; Barnes, T.; Bauer, S.; Bernstein, A.; Berry, D.; Berry, J.; Burrell, T.; Carpenter, B. Challenges and Opportunities in Decarbonizing the US Energy System. Renew. Sustain. Energy Rev. 2022, 169, 112939. [Google Scholar] [CrossRef]
- Xu, H.; Chen, B.; Tan, P.; Sun, Q.; Maroto-Valer, M.M.; Ni, M. Modelling of a Hybrid System for On-Site Power Generation from Solar Fuels. Appl. Energy 2019, 240, 709–718. [Google Scholar] [CrossRef]
- Rabaia, M.K.H.; Abdelkareem, M.A.; Sayed, E.T.; Elsaid, K.; Chae, K.-J.; Wilberforce, T.; Olabi, A. Environmental Impacts of Solar Energy Systems: A review. Sci. Total Environ. 2021, 754, 141989. [Google Scholar] [CrossRef] [PubMed]
- Ren, D. The Impact of EU Carbon Border Adjustment Mechanism on the Development of New Energy in China and Suggestions for Response. China Energy 2022, 4, 21–28. [Google Scholar]
- Melin, H.E.; Rajaeifar, M.A.; Ku, A.Y.; Kendall, A.; Harper, G.; Heidrich, O. Global Implications of the EU Battery Regulation. Science 2021, 373, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chalvatzis, K.J.; Pappas, D. Life Cycle Greenhouse Gas Emissions from Power Generation in China’s Provinces in 2020. Appl. Energy 2018, 223, 93–102. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic Life Cycle Assessment (Lca) of Renewable Energy Technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- Emmott, C.J.M.; Ekins-Daukes, N.J.; Nelson, J. Dynamic Carbon Mitigation Analysis: The Role of Thin-Film Photovoltaics. Energy Environ. Sci. 2014, 7, 1810–1818. [Google Scholar] [CrossRef]
- Llamas-Orozco, J.A.; Meng, F.; Walker, G.S.; Abdul-Manan, A.F.; MacLean, H.L.; Posen, I.D.; McKechnie, J. Estimating the Environmental Impacts of Global Lithium-Ion Battery Supply Chain: A Temporal, Geographical, and Technological Perspective. PNAS Nexus 2023, 2, pgad361. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Sacchi, R.; Terlouw, T.; Siala, K.; Dirnaichner, A.; Bauer, C.; Cox, B.; Mutel, C.; Daioglou, V.; Luderer, G. Rospective EnvironMental Impact asSEment (premise): A streamlined Approach to Producing Databases for Prospective Life Cycle Assessment Using Integrated Assessment Models. Renew. Sustain. Energy Rev. 2022, 160, 112311. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management-Life Cycle Assessment-Requirements and Guidelines. Standardization, International Organization: Geneva, Switzerland, 2006.
- Xue, N.; Lu, J.; Gu, D.; Lou, Y.; Yuan, Y.; Li, G.; Kumagai, S.; Saito, Y.; Yoshioka, T.; Zhang, N. Carbon Footprint Analysis and Carbon Neutrality Potential of Desalination by Electrodialysis for Different Applications. Water Res. 2023, 232, 119716. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in Electrical Energy Storage System: A Critical Review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Lu, J.; Tang, J.; Shan, R.; Li, G.; Rao, P.; Zhang, N. Spatiotemporal Analysis of the Future Carbon Footprint of Solar Electricity in the United States by a Dynamic Life Cycle Assessment. iScience 2023, 26, 106188. [Google Scholar] [CrossRef] [PubMed]
- IEA. World Energy Outlook 2023: Executive Summary; IEA: Paris, France, 2023. [Google Scholar]
- van Vuuren, D.P.; Kriegler, E.; O’Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; et al. A New Scenario Framework for Climate Change Research: Scenario Matrix Architecture. Clim. Change 2013, 122, 373–386. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y.; Teng, F.; Tian, C.; Zheng, X.; Zhao, X. Pathway and Policy Analysis to China’s Deep Decarbonization. Chin. J. Popul. Resour. Environ. 2017, 15, 39–49. [Google Scholar] [CrossRef]
- Jiang, K.; He, C.; Dai, H.; Liu, J.; Xu, X. Emission Scenario Analysis for China under the Global 1.5 °C Target. Carbon Manag. 2018, 9, 481–491. [Google Scholar] [CrossRef]
- Li, H.; Cui, X.; Hui, J.; He, G.; Weng, Y.; Nie, Y.; Wang, C.; Cai, W. Catchment-Level Water Stress Risk of Coal Power Transition in China under 2 °C/1.5 °C Targets. Appl. Energy 2021, 294, 116986. [Google Scholar] [CrossRef]
- Que, Z.; Wang, S.; Li, W. Potential of Energy Saving and Emission Reduction of Battery Electric Vehicles with Two Type of Drivetrains in China. Energy Procedia 2015, 75, 2892–2897. [Google Scholar] [CrossRef]
- Wang, Q.-Z.; Chen, J.-M.; Tseng, M.-L.; Luan, H.-M.; Ali, M.H. Modelling Green Multimodal Transport Route Performance with Witness Simulation Software. J. Clean. Prod. 2020, 248, 119245. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Liu, Y.; Liu, J.; Hu, X.; Hu, J.; Wan, Y.; Wang, X.; Ma, J.; Wang, X. Consumption-Driven Freight Turnover of Interprovincial Trade and Related Air Pollution Emissions in China from 2007 to 2012. Environ. Pollut. 2023, 318, 120914. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Du, S.; Deng, C.; Shen, P.; Xie, M.; Zhao, C.; Chen, C.; Liu, X. Carbon Emissions in China’s Steel Industry from a Life Cycle Perspective: Carbon Footprint Insights. J. Environ. Sci. 2025, 148, 650–664. [Google Scholar] [CrossRef]
- Marimuthu, C.; Kirubakaran, V. Carbon Pay Back Period for Solar and Wind Energy Project Installed in India: A Critical Review. Renew. Sustain. Energy Rev. 2013, 23, 80–90. [Google Scholar] [CrossRef]
- Wang, C.; Chen, B.; Yu, Y.; Wang, Y.; Zhang, W. Carbon Footprint Analysis of Lithium Ion Secondary Battery Industry: Two Case Studies from China. J. Clean. Prod. 2017, 163, 241–251. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Guan, D.; Meng, J.; Liu, Z.; Xiang, S.; Yang, H.; Fu, X.; Hu, X.; Yang, Q. The Volume of Trade-Induced Cross-Border Freight Transportation Has Doubled and Led to 1.14 Gigatons CO2 Emissions in 2015. One Earth 2022, 5, 1165–1177. [Google Scholar] [CrossRef]
- Spielmann, M.; Scholz, R. Life Cycle Inventories of Transport Services: Background Data for Freight Transport (10 pp). Int. J. Life Cycle Assess. 2005, 10, 85–94. [Google Scholar] [CrossRef]
- Lu, J.; Shan, R.; Kittner, N.; Hu, W.; Zhang, N. Emission Reductions from Heavy-Duty Freight Electrification Aided by Smart Fleet Management. Transp. Res. Part D Transp. 2023, 121, 103846. [Google Scholar] [CrossRef]
- Guo, X.; He, J.; Lan, M.; Yu, H.; Yan, W. Modeling Carbon Emission Estimation for Hinterland-Based Container Intermodal Network. J. Clean. Prod. 2022, 378, 134593. [Google Scholar] [CrossRef]
- Verma, A.; Schmidt-Vogt, D.; De Alban, J.D.T.; Lim, C.L.; Webb, E.L. Drivers and mechanisms of forest change in the Himalayas. Glob. Environ. Change 2021, 68, 102244. [Google Scholar] [CrossRef]
- An, M.; Sun, X. Carbon Footprints of Solar Panels in China Provinces Based on Different Production and Waste Treatment Scenarios. J. Clean. Prod. 2024, 435, 140453. [Google Scholar] [CrossRef]
- Fan, J.-L.; Zhang, H.; Zhang, X. Unified Efficiency Measurement of Coal-Fired Power Plants in China Considering Group Heterogeneity and Technological Gaps. Energy Econ. 2020, 88, 104751. [Google Scholar] [CrossRef]
- Qiu, S.; Lei, T.; Wu, J.; Bi, S. Energy Demand and Supply Planning of China through 2060. Energy 2021, 234, 121193. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Griffiths, S. The Cultural Barriers to a Low-Carbon Future: A Review of Six Mobility and Energy Transitions across 28 Countries. Renew. Sustain. Energy Rev. 2020, 119, 109569. [Google Scholar] [CrossRef]
- Zhao, N.; You, F. Can Renewable Generation, Energy Storage and Energy Efficient Technologies Enable Carbon Neutral Energy Transition? Appl. Energy 2020, 279, 115889. [Google Scholar] [CrossRef]
- Perera, A.; Hong, T. Vulnerability and Resilience of Urban Energy Ecosystems to Extreme Climate Events: A Systematic Review and Perspectives. Renew. Sustain. Energy Rev. 2023, 173, 113038. [Google Scholar] [CrossRef]
- Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The Lithium-Ion Battery: State of the Art and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308. [Google Scholar] [CrossRef]
- Xia, C.; Zheng, H.; Meng, J.; Li, S.; Du, P.; Shan, Y. The Evolution of Carbon Footprint in the Yangtze River Delta City Cluster during Economic Transition 2012–2015. Resour. Conserv. Recycl. 2022, 181, 106266. [Google Scholar] [CrossRef]
- Qi, T.; Winchester, N.; Karplus, V.J.; Zhang, X. Will Economic Restructuring in China Reduce Trade-Embodied CO2 Emissions? Energy Econ. 2014, 42, 204–212. [Google Scholar] [CrossRef]
- Sheng, Y.; Wang, Q. Influence of Carbon Tariffs on China’s Export Trade. Environ. Sci. Pollut. Res. 2022, 29, 24651–24659. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Goldstein, D. Understanding China’s Renewable Energy Technology Exports. Energy Policy 2013, 52, 417–428. [Google Scholar] [CrossRef]
- Buira, D.; Tovilla, J.; Farbes, J.; Jones, R.; Haley, B.; Gastelum, D. A Whole-Economy Deep Decarbonization Pathway for Mexico. Energy Strategy Rev. 2021, 33, 100578. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Z.; Wang, X.; Xue, X. Transportation De-Carbonization Pathways and Effect in China: A Systematic Analysis Using Stirpat-Sd Model. J. Clean. Prod. 2021, 288, 125574. [Google Scholar] [CrossRef]
- Evers, V.; Kirkels, A.F.; Godjevac, M. Carbon Footprint of Hydrogen-Powered Inland Shipping: Impacts and Hotspots. Renew. Sustain. Energy Rev. 2023, 185, 113629. [Google Scholar] [CrossRef]
- Ahsan, N.; Hewage, K.; Razi, F.; Hussain, S.A.; Sadiq, R. A Critical Review of Sustainable Rail Technologies Based on Environmental, Economic, Social, and Technical Perspectives to Achieve Net Zero Emissions. Renew. Sustain. Energy Rev. 2023, 185, 113621. [Google Scholar] [CrossRef]
- Net Zero by 2050: A Roadmap for the Global Energy Sector. 2021. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 15 March 2024).
- Shafique, M.; Azam, A.; Rafiq, M.; Luo, X. Life Cycle Assessment of Electric Vehicles and Internal Combustion Engine Vehicles: A Case Study of Hong Kong. Res. Transp. Econ. 2022, 91, 101112. [Google Scholar] [CrossRef]
- Li, W.; Bai, H.; Yin, J.; Xu, H. Life Cycle Assessment of End-of-Life Vehicle Recycling Processes in China—Take Corolla Taxis for Example. J. Clean. Prod. 2016, 117, 176–187. [Google Scholar] [CrossRef]
- Jingsun 144 Half-Cell 182 mm 570 w Mono Solar Panel. Available online: https://www.jingsun-energy.com/Jingsun-144-Half-cell-182mm-570W-Mono-Solar-Panel-pd46370033.html (accessed on 15 March 2024).
- High Efficience Half Cut Mono Solar Panel 570 w. Available online: https://www.sunketsolar.com/standard-mono-solar-panel/59373483.html (accessed on 15 March 2024).
- Jinko Tiger Neo 570 w Half-Cut—Jkm570n-72hl4-V. Available online: https://suministrosdelsol.com/en/panels-from-505-to-700w/1015-jinko-tiger-neo-570w-half-cut-jkm570n-72hl4-v.html (accessed on 15 March 2024).
- Vestas V150 4.2 Megawatt (Mw) Wind Turbine Generator. Available online: https://www.enelgreenpower.com/content/dam/enel-egp/documenti/impianti/flat-rocks-wind-farme-stage-1-project/resources/Wind%20Turbine%20Factsheet%20for%20Flat%20Rocks%20Wind%20Farm%20Stage%201.pdf (accessed on 15 March 2024).
- 3.6 mw Series Wind Turbine. Available online: http://shanghaielectric-smec.com/1-3-3-wind-turbines/ (accessed on 15 March 2024).
- Hw82 1.5 Mw. Available online: https://www.thewindpower.net/turbine_en_969_hewind_hw82-1.5-mw.php (accessed on 15 March 2024).
- Lithium Ion Batteries: Energy Density? Available online: https://thundersaidenergy.com/downloads/lithium-ion-batteries-energy-density/ (accessed on 15 March 2024).
- Li-on Vs. Lead Acid. Available online: https://www.ultralifecorporation.com/PrivateDocuments/WP_li-ion-vs-lead-acid-WEB_1.pdf (accessed on 15 March 2024).
- EVBox. Electric Car Battery Weight Explained. Available online: https://blog.evbox.com/ev-battery-weight (accessed on 15 March 2024).
Category | Unit | Power Consumption | Unit | Electricity Carbon Footprint | Other Carbon Footprint |
---|---|---|---|---|---|
Wind turbines | kWh/MW | 475,459.48 | kgCO2-eq/MW | 249,252.61 | 597,021.17 |
Photovoltaic panels | kWh/kWp | 3051.04 | kgCO2-eq/kWp | 1758.86 | 468.72 |
Lithium battery | kWh/kg | 10.41 | kgCO2-eq/kg | 5.94 | 2.18 |
Abbreviation | Category | Detailed Description |
---|---|---|
PDS1 | SSP1 + 1.5 °C+ 100% CCS | Low-carbon scenario: this scenario is to follow the sustainable development path SSP1 under the 1.5 °C target and match 100% CCS for thermal power. |
PDS2 | SSP2 + 2 °C+ 50% CCS | Medium-carbon scenario: this scenario is an intermediate development pathway, SSP1, under the 2 °C target, and 50% CCS is matched for thermal power. |
PDS3 | SSP5 + NCT + 0%CCS | High-carbon scenario: This scenario uses a stagnant approach with no GHG mitigation measures. |
Production | Sale | Method of Transportation | ||
---|---|---|---|---|
SH | EU | IS | DRs + IRs | DTs + IRs |
US | IS | |||
Japan | IS | |||
India | IS | DRs + Irs | DTs + IRs | |
XJ | EU | DRs + IS | DTs + IS | IRs |
US | DRs + IS | DTs + IS | ||
Japan | DRs + IS | DTs + IS | ||
India | DRs + IS | DTs + IS | IRs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Xiao, X.; Han, M.; Shan, R.; Gu, D.; Hu, T.; Li, G.; Rao, P.; Zhang, N.; Lu, J. China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers. Sustainability 2024, 16, 3387. https://doi.org/10.3390/su16083387
Tang J, Xiao X, Han M, Shan R, Gu D, Hu T, Li G, Rao P, Zhang N, Lu J. China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers. Sustainability. 2024; 16(8):3387. https://doi.org/10.3390/su16083387
Chicago/Turabian StyleTang, Jing, Xiao Xiao, Mengqi Han, Rui Shan, Dungang Gu, Tingting Hu, Guanghui Li, Pinhua Rao, Nan Zhang, and Jiaqi Lu. 2024. "China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers" Sustainability 16, no. 8: 3387. https://doi.org/10.3390/su16083387
APA StyleTang, J., Xiao, X., Han, M., Shan, R., Gu, D., Hu, T., Li, G., Rao, P., Zhang, N., & Lu, J. (2024). China’s Sustainable Energy Transition Path to Low-Carbon Renewable Infrastructure Manufacturing under Green Trade Barriers. Sustainability, 16(8), 3387. https://doi.org/10.3390/su16083387