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Abstract: Ecosystem service flows are critical linkages between ecological supply and
human demand. As a vital component of ecosystem services, water yield service is essen-
tial for human survival and development. Therefore, it is of great significance to explore
the supply–demand relationship of water yield service and its spatial flow process. This
study investigates the supply–demand dynamics and spatial flow of water yield service
in the transnational area of Tumen River (2000–2020), utilizing the InVEST model and the
miniature delivery-path-mechanism model. The results show the following: (1) From 2000
to 2020, the supply of water yield service in the Tumen River Basin exhibited a spatial dis-
tribution pattern of “low center, high surrounding”, with significant spatial heterogeneity
in the distribution of supply and demand. (2) Despite the substantial surplus of water yield
service in the study area, the ecosystem service supply–demand ratio (ESDR) shows an
overall declining trend. The dominant spatial mismatch type is high-supply–low-demand
(HL type) zones, primarily located in mountainous and hilly areas, accounting for over
40% of the total identified pixel types. (3) Driven by economic and social development,
the spatial scope of water yield service flow has gradually expanded. Supply-side flows
initially increased before declining, while demand-side flows followed the opposite trend.
By mapping ecosystem service flows, this study provides a reference and basis for estab-
lishing the regional ecological compensation mechanism and promoting integrated water
resource management, both of which are crucial for the long-term sustainable development
of the basin.

Keywords: ecosystem service flows; water yield service; Tumen River Basin

1. Introduction
Ecosystem services refer to the various benefits that natural ecosystems provide to

humans, including supporting, provisioning, regulating, and cultural services [1]. These
services are directly linked to human well-being and serve as a bridge between natural
ecosystems and socioeconomic systems [2–4]. Water resources, essential for human survival
and development, are increasingly threatened in the context of global climate change and
population growth [5–7]. As a crucial ecosystem service provided by aquatic ecosystems,
water yield service plays a vital role in regional water security [8]. The concept of ecosystem
service flow (ESF) emerged from the relationship between the supply and demand of
ecosystem services, focusing on the entire process of how services flow from the supply
sides (SPAs) to the demand sides (SBAs) [9,10]. Research on ESF is pivotal for addressing
key questions in ecosystem service management, such as where benefits are generated,
to what extent they are utilized, and by whom [11,12]. Water yield service flow has
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become a prominent area of ESF research due to its clear flow nature [13,14]. Therefore,
strengthening dynamic research on water yield service flow is critical for understanding
its development trends, identifying effective and rational water resource management
strategies, and promoting the sustainable and balanced cycle of water resource utilization.

Several studies have explored water ecosystem service flows. Serna-Chavez et al.
(2014) proposed a framework to quantify water yield service flow and assess global varia-
tions [15]. Datry et al. (2018) proposed a conceptual model to assess the multiple ecosystem
services of intermittent water bodies, extending it to ecosystem service flows [16]. Qin et al.
(2019) integrated ecosystem service flows into water security simulations using a simplified
Service Path Attribution Network (SPANs) model [17]. This approach simulated future
water flow scenarios in the lower Yellow River and compared them to the current water
security situation, offering a systematic evaluation of regional water security. Garau et al.
(2021) applied participatory mapping methodologies to analyze water ecosystem service
flows in the Mediterranean Muga River Basin in Spain from a stakeholder perspective [18].
Wang (2022) developed a network model to assess water ecosystem service flows in the
Wuding River Basin [19]. Zou et al. (2022) used a freshwater ecosystem service flow
model to simulate the impacts of land use changes on freshwater ecosystem services in the
Lianshui River Basin [20]. Zhang J et al. (2023) applied the breakpoint model to analyze
multiple ecosystem service flows, including water yield service, in the Huangshui River
Basin and its surrounding areas [9]. De Jesus Crespo et al. (2023) used the socio-ecological
network (SEN) framing to quantify the flow of water purification services in reservoirs
on the island of Puerto Rico [21]. However, these studies face limitations in capturing the
spatiotemporal dynamics of water ecosystem service flows, as well as in the allocation of
service amounts between the supply and demand sides. Inspired by the SPANs model, Su
et al. (2024) developed the miniature delivery-path-mechanism model, which successfully
simulates and quantifies ecosystem service flows in the Hangzhou Bay area [22]. Based on
the “supply–flow–demand” framework, this model focuses on the ecosystem service flow
and is suitable for simulating various service flows. One of its key advantages is the ability
to distinguish between different flows from the supply and demand sides, providing a
more comprehensive understanding of the supply–demand relationship and the develop-
ment trends of ecosystem service flows. Therefore, the miniature delivery-path-mechanism
model holds great potential for comprehensively evaluating ecosystem service flows.

The transnational area of Tumen River, located at the tri-junction of China, North
Korea, and Russia, is a key ecological functional zone in Northeast Asia and a strategic hub
connecting the “Land Silk Road” and the “Polar Silk Road” [23,24]. Since the launch of
the Belt and Road Initiative, increased regional cooperation among China, North Korea,
South Korea, Japan, and Russia has fostered rapid socioeconomic growth, cross-border
tourism, and international trade in the basin. However, urbanization and population
growth have placed significant pressure on water resources, leading to declining wa-
ter availability, deteriorating quality, and increased risks to regional water security and
human well-being [25,26].

Recent studies have focused on water yield service flow in the Tumen River Basin.
Zhang et al. (2022) used the InVEST model to simulate water yield service in the basin
from 1990 to 2019 [25]. The analysis revealed that precipitation and actual evapotranspira-
tion were the dominant natural factors affecting water yield service. Zhang et al. (2023)
combined the InVEST and LUSD-urban models to assess the indirect impacts of urban
expansion on ecosystem services, including in the Tumen River Basin [27]. Qi et al. (2023)
used the SWAT model to quantify blue and green water resources in the Tumen River Basin
from 2015 to 2020, examining the water resource supply–demand balance [28]. Jin et al.
(2023) analyzed the impact of land use change on six ecosystem services in the cross-border
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Tumen River area, revealing a positive correlation between water yield service and net pri-
mary productivity (NPP) [26]. However, most studies focus primarily on the supply side of
water yield service, with limited research on the demand side and related supply–demand
patterns. Additionally, existing research of water yield service in the Tumen River Basin is
static, with little evaluation of the temporal dynamics of water yield service flow and its
spatial delivery pathways.

This study aims to investigate the dynamic characteristics of water yield service flow
in the Tumen River Basin through an integrated approach that combines the InVEST model,
water demand model, ESDR model, and miniature delivery-path-mechanism model. First,
we integrated the water yield module of the InVEST model with the water demand model
to quantify the supply and demand of water yield service across the basin from 2000 to
2020 and analyze their spatiotemporal variation. Then, the ESDR model and bivariate local
Moran’s I index were used to analyze the imbalance between supply and demand and
its spatial matching pattern. Finally, the miniature delivery-path-mechanism model was
introduced to simulate and quantify the flow of water yield service in the Tumen River
Basin. Based on these results, this study proposes strategies and recommendations for
achieving sustainable development in this transnational region.

2. Materials and Methods
2.1. Study Area

The Tumen River Basin (Chinese section), located at the tri-junction of China, North
Korea, and Russia, is a transboundary river of regional significance in Northeast Asia. It
originates from the eastern slopes of the Changbai Mountains’ main peak and extends
525 km northward, flowing through China’s Jilin Province (including Helong, Longjing,
Tumen, and Hunchun cities), North Korea’s Ryanggang and North Hamgyong provinces,
and Russia’s Primorsky Krai before draining into the Sea of Japan at the Russia–North
Korea border (Figure 1).
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Figure 1. The study area.

The basin is characterized by diverse and complex terrain, primarily comprising moun-
tains, hills, and plains. It spans a total area of 33,200 km2, with approximately 22,600 km2

located on the Chinese side. The region experiences a typical temperate continental climate,
with average annual temperatures ranging from 2 ◦C to 6 ◦C and annual precipitation
between 400 and 650 mm. Summers are warm and humid, while winters are cold and
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dry [29–31]. The basin boasts a favorable natural environment and plays a crucial role in
the ecological network of Northeast Asia. It is home to diverse flora and fauna, including
endangered species such as the Siberian tiger and Amur leopard. It also serves as an
important migratory bird habitat and is a key ecological functional zone in China, as well
as a pilot area for the national park system [32].

Between 2000 and 2020, the study area experienced rapid economic growth and urban
expansion. The GDP increased from 13.43 billion yuan in 2000 to 72.69 billion yuan in
2020, reflecting a growth of 441.25% (Yanbian Prefecture Statistical Yearbook, 2020 [33]). The
urban land area expanded from 260.64 km2 in 2000 to 422.22 km2 in 2020, placing increased
pressure on regional water resources. Furthermore, from 1960 to 2016, the average annual
runoff depth in the Tumen River Basin showed a decreasing trend. The contributions of
climate change and human activities to the reduction in runoff were 26.26% and 73.74%,
respectively [34]. Between 2015 and 2020, both blue and green water resources in the Tumen
River Basin exhibited distinct seasonal characteristics. The average annual volume of blue
and green water resources was 11.716 billion m3, with blue water at 3.014 billion m3 and
green water at 8.702 billion m3. The available blue water resources were insufficient to
meet demand, and the supply–demand imbalance was particularly prominent in years
with low precipitation [28]. Therefore, it is imperative to simulate and quantify the flow
of water yield service in this region, as this will provide a foundation for enhancing the
sustainability of regional water resources and improving human well-being.

2.2. Materials

The data used in this study include land use/land cover, precipitation, potential
evapotranspiration, elevation, soil properties, bedrock depth, available soil water capac-
ity, and socioeconomic data (Table 1). Land use/land cover (LULC) data for the years
2000, 2010, and 2020 were obtained from the National Catalogue Service for Geographic
Information. The data were classified into six categories: cropland, woodland, grassland,
wetland, water body, and urban land. The 30 m Digital Elevation Model (DEM) data were
sourced from the US Geological Survey (USGS) Earth Explorer. Precipitation and poten-
tial evapotranspiration data were acquired from the 1 km monthly precipitation dataset
for China (1901–2023) of the National Qinghai–Tibet Plateau Scientific Data Center and
processed into annual data using ArcGIS. Soil data were obtained from the Harmonized
World Soil Database (HWSD). Bedrock depth and soil water holding capacity data, with a
resolution of 250 m, were obtained from ISRIC. Socioeconomic data, including population
data, GDP data, water consumption data, and river runoff data, were incorporated into the
analysis. Population data were obtained from the World Pop Dataset (100 m resolution)
and corrected using ArcGIS 10.8.2 and other software, along with demographic data. Water
consumption data, GDP data, and demographic data for correction were sourced from the
Statistical Yearbook and the Yanbian Prefecture Bureau of Statistics. Annual runoff data were
taken from the Jilin Provincial Water Resources Bulletin. All data were projected using a
transverse Mercator projection.

Table 1. Data sources.

Data Type Resolution Year Sources

LULC Data 30 m 2000–2020 GlobeLand30 (https://www.webmap.cn/commres.
do?method=globeIndex, accessed on 24 June 2024)

Precipitation Data 1 km 2000–2020 https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0
f2-4d18-b28f-5cee413766a2, accessed on 22 June 2024

Potential Evapotranspiration
Data 1 km 2000–2020

https://data.tpdc.ac.cn/zh-hans/data/8b11da09-
1a40-4014-bd3d-2b86e6dccad4,

accessed on 22 June 2024

https://www.webmap.cn/commres.do?method=globeIndex
https://www.webmap.cn/commres.do?method=globeIndex
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2
https://data.tpdc.ac.cn/zh-hans/data/8b11da09-1a40-4014-bd3d-2b86e6dccad4
https://data.tpdc.ac.cn/zh-hans/data/8b11da09-1a40-4014-bd3d-2b86e6dccad4
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Table 1. Cont.

Data Type Resolution Year Sources

DEM Data 30 m — https://earthexplorer.usgs.gov/

Soil Data 1 km —
https://www.fao.org/soils-portal/soil-survey/soil-

maps-and-databases/harmonized-world-soil-
database-v12/en/, accessed on 22 June 2024

Bedrock Depth Data 250 m —
https://data.isric.org/geonetwork/srv/eng/catalog.
search#/metadata/bfb01655-db81-4571-b6eb-3caae8

6c037a, accessed on 4 October 2024

Available Soil Water
Capacity Data 250 m —

https://data.isric.org/geonetwork/srv/eng/catalog.
search#/metadata/e33e75c0-d9ab-46b5-a915-cb344

345099c, accessed on 7 September 2024

Socioeconomic Data — 2000–2020

Statistical Yearbook, Yanbian Korean Autonomous
Prefecture Statistics Bureau, Jilin Provincial Water

Resources Bulletin, WorldPop Dataset
(https://www.worldpop.org/)

2.3. Methods

This study adopts the “supply–flow–demand” framework to assess water yield ser-
vice flow in the Tumen River Basin (Figure 2). First, we quantify water yield supply and
demand from 2000 to 2020 using the InVEST model and ArcGIS, identifying their spa-
tiotemporal patterns. Next, we evaluate spatial mismatches by combining the ecosystem
service supply–demand ratio (ESDR) with bivariate local Moran’s I analysis to pinpoint
regions of imbalance. Finally, the miniature delivery-path-mechanism model simulates
dynamic water yield service flow, tracing their pathways from ecological sources to human
settlements. This integrated approach provides valuable insights for optimizing water
resource sustainability in response to evolving socioeconomic and environmental pressures.

Sustainability 2025, 17, x FOR PEER REVIEW 6 of 20 
 

 

Figure 2. Flowchart. 

2.3.1. The Supply of Water Yield Service 

The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, de-

veloped by the Natural Capital Project at Stanford University, is an open-source tool for 

systematically assessing ecosystem services such as water yield, carbon storage, soil re-

tention, and habitat quality [35]. This study utilizes the InVEST annual water yield mod-

ule to calculate the water supply in the Tumen River Basin based on the water balance 

principle. The specific calculation formula is as follows: 

( )
( ) 1 ( )

( )

AET x
Y x P x

P x

 
= − 
 

 (1) 

In Equation (1), Y(x) represents the annual water yield of pixel x, AET(x) is the actual 

annual evapotranspiration of pixel x, and P(x) is the annual precipitation on pixel x. The 

specific calculation formula is as follows: 

1/

( ) ( ) ( )
1 1

( ) ( ) ( )

w
w

AET x PET x PET x

P x P x P x

  
= + − +  

   

 (2) 

In Equation (2), AET(x) is the potential evapotranspiration on pixel x, and 𝒲 is the 

non-physical parameter that characterizes the natural climate–soil properties. 

Figure 2. Flowchart.

https://earthexplorer.usgs.gov/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/bfb01655-db81-4571-b6eb-3caae86c037a
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/bfb01655-db81-4571-b6eb-3caae86c037a
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/bfb01655-db81-4571-b6eb-3caae86c037a
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/e33e75c0-d9ab-46b5-a915-cb344345099c
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/e33e75c0-d9ab-46b5-a915-cb344345099c
https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/e33e75c0-d9ab-46b5-a915-cb344345099c
https://www.worldpop.org/


Sustainability 2025, 17, 4637 6 of 18

2.3.1. The Supply of Water Yield Service

The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, de-
veloped by the Natural Capital Project at Stanford University, is an open-source tool for
systematically assessing ecosystem services such as water yield, carbon storage, soil reten-
tion, and habitat quality [35]. This study utilizes the InVEST annual water yield module to
calculate the water supply in the Tumen River Basin based on the water balance principle.
The specific calculation formula is as follows:

Y(x) =
(

1 − AET(x)
P(x)

)
·P(x) (1)

In Equation (1), Y(x) represents the annual water yield of pixel x, AET(x) is the actual
annual evapotranspiration of pixel x, and P(x) is the annual precipitation on pixel x. The
specific calculation formula is as follows:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

(
PET(x)

P(x)

)w]1/w

(2)

In Equation (2), AET(x) is the potential evapotranspiration on pixel x, and w is the
non-physical parameter that characterizes the natural climate–soil properties.

w(x) is expressed using the formula proposed by Donohue et al. (2012) [36], calculated
as follows:

w(x) =
AWC(x)× Z

P(x)
+ 1.25 (3)

In Equation (3), AWC(x) is the available water content of plants on pixel x, and Z is
Zhang coefficient, an empirical constant usually ranging from 1 to 30. Based on studies
by Xiang et al. (2020), Zhang X et al. (2021), and Huang et al. (2023), we continuously
adjusted the Zhang coefficient and compared the resulting simulated water yield with the
annual runoff data reported in the Jilin Province Water Resources Bulletin [37–39]. Through
this process, we identified the optimal parameter value. The final parameter values are
summarized in Table 2.

Table 2. Verification of water yield and Zhang coefficients used.

Year Simulated Water Yield (109 m3) Observed Water Yield (109 m3) Relative Error Zhang Coefficient

2000 8.492 8.609 −1.357% 1.14
2010 6.210 6.281 −1.130% 1.76
2020 6.303 6.393 −1.412% 1.29

This study follows the research of Wang et al. (2024) and An et al. (2025) and
sets the biophysical parameters based on the actual conditions of the study area, as
shown in Table 3 [40,41].

Table 3. Biophysical parameters of water yield module.

Lucode LULC Description LULC Vegetation Kc Root Depth (mm)

10 Cropland 1 0.65 2200
20 Woodland 1 0.9 7000
30 Grassland 1 0.7 2500
50 Wetland 0 1 100
60 Water Body 0 1 100
80 Urban Land 0 0.25 100
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2.3.2. The Demand of Water Yield Service

Following established methodologies, total water demand was calculated as the sum of
four sectors: agricultural, domestic, industrial, and public/ecological uses [42–44]. Demand
quantification integrated LULC and population distribution data. The specific calculation
formula is as follows:

Wd = Wagr + Wpop + Wind + Wpub (4)

In Equation (4), Wd denotes the water requirement for permeate services. Wagr, Wpop,
Wind, and Wpub represent agricultural water, residential water, industrial water, and pub-
lic/ecological water, respectively.

2.3.3. Ecosystem Service Supply–Demand Ratio

The ESDR integrates ecosystem service supply (ESS) and human demand (ESD) to
assess their spatial equilibrium [42]. The formula is as follows:

ESDR =
ESS − ESD
ESS + ESD


> 0 Oversupply
= 0 Supply and demand balance
< 0 Demand outstrips supply

(5)

In Equation (5), ESS and ESD are the actual supply and demand of ecosystem
services, respectively.

2.3.4. Spatial Matching of Water Yield Service Demand and Supply

The bivariate Local Indicators of Spatial Association (LISA) is an indicator used to
analyze spatial data of different regions or units in the study area, reflecting the degree and
significance of spatial differences between each region or unit and its surrounding areas [45].
The bivariate local Moran’s I index captures five types of spatial agglomeration, namely,
“high–high match”, “low–low match”, “high–low mismatch”, “low–high mismatch”, and
“not significant”. In this study, a 500 m × 500 m grid was established to collect statistics
on the supply and demand of water yield service in the study area. The data were then
analyzed using the Geoda model. The specific calculation formula is as follows:

Ii =
(xi ∑ x)

n∑i(xi − x)2 ∑
j

wij(xi − x) (6)

In Equation (6), n is the number of pixels; xi is the raster value of pixel i; x is the
average value of the pixel i; wij is the spatial weight matrix.

2.3.5. Simulation and Quantification of Water Yield Service Flow

Due to gravitational and topographic influences, water resources naturally flow via
rivers, streams, and artificial channels from upstream (higher elevations) to downstream
(lower elevations) [22,46]. Consequently, water yield service flow is unidirectional: the
supply sides (SPAs) located downstream cannot transfer surpluses to the demand sides
(SBAs) upstream. Based on this, we combined the regional water system and DEM data
to simulate water yield service flow by using the natural river channel as the flow path
(Figure A1).

Building on Su et al. (2024) [22], we applied the miniature delivery-path-mechanism
model to quantify flow and interactions between supply and demand sides. The model
distinguishes two flow components (Figure 3):
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For demand sides D0: SBAs receive water surpluses routed through these pathways.

D0 _ flow = w0R′
0 + w1R′

1 + w2R′
2 (7)

R′



R′
0 = S0/(w0D0 + w1D1 + w1D1)

D0, D1, D2 are all demands o f S1

R′
1 = S1/(wg1Dg1 + wg2Dg2 + . . .)

Dg ∈ all demands o f S1

R′
2 = S2/(wm1Dm1 + wm2Dm2 + . . .)

Dm ∈ all demands o f S2

(8)

For supply sides S0: Surplus water from SPAs propagates downstream along desig-
nated pathways to meet SBAs’ demands.

S0 _ flow = w0R0 + w1R1 + w2R2 (9)

R



R0 = D0/(w0S0 + w1S1 + w1S1)

S0, S1, S2 are all supplies o f D0

R1 = D1/(wk1Sk1 + wk2Sk2 + . . .)
Sk ∈ all supplies o f D1

R2 = D2/(wn1Sn1 + wn2Sn2 + . . .)
Sn ∈ all supplies o f D2

(10)

In Equations (7) to (10), S represents the service surplus on the supply side (SPAs). D
represents the service deficit on the demand side (SBAs). w is the Gaussian decay function.
The specific calculation formula is as follows:

w(dmn) =
e−

1
2×( dmn

do )
2
− e−

1
2

1 − e−
1
2

(dmn < d0) (11)

In Equation (11), dmn is the flow path between supply and demand, d0 is the maximum
flow distance, and d0 is set to 200 km according to the actual situation of the study area.

3. Results
3.1. Characteristics of Temporal and Spatial Variation in the Water Yield Service Supply
and Demand
3.1.1. Temporal and Spatial Variation in Water Yield

In 2020, the Tumen River Basin exhibited a distinct spatial pattern of water yield, char-
acterized by lower values in the central areas and higher values in the peripheral regions
(Figure 4 and Table 4). The total annual water yield across the basin was 6.303 × 109 m3,
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with an average areal yield of 2.790 × 105 m3/km2. Sub-basin analysis identified the Gaya
River sub-basin as the largest contributor, accounting for 1.617 × 109 m3 (25.7% of total
yield) and a unit-area yield of 2.505 × 105 m3/km2. This was followed by the Hunchun
River (1.326 × 109 m3, 21.0%) and Burhatong River (1.013 × 109 m3, 16.1%), while the
Mijiang River contributed the least (0.217 × 109 m3).
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Table 4. Water yield at regional and sub-basin scales.

Basin

Year Total Water Yield (109 m3) Average Water Yield (105 m3/km2)
Ratio (%)2000 2010 2020 2000 2010 2020

Burhatong River 1.340 1.128 1.013 3.233 2.720 2.443 −24.421
Gaya River 2.285 1.343 1.617 3.539 2.080 2.505 −29.213

Hailan River 1.050 0.988 0.812 3.626 3.411 2.804 −22.653
Hongqi River 0.456 0.526 0.409 3.810 4.394 3.415 −10.360

Hunchun River 1.850 1.070 1.326 4.652 2.691 3.334 −28.326
Mjiang River 0.311 0.178 0.217 4.069 2.328 2.837 −30.278

Tumen River Mainstream Basin 1.200 0.978 0.909 3.806 3.101 2.882 −24.279
TRB 8.492 6.210 6.303 3.759 2.749 2.790 −25.782

Between 2000 and 2020, the basin experienced a marked decline in water yield, par-
ticularly in the central and northern regions (Figure 4 and Table 4). Total annual yield
decreased by 25.8%, from 8.492 × 109 m3 to 6.303 × 109 m3, accompanied by a reduction
in areal yield of 0.969 × 105 m3/km2. Sub-basin trends revealed substantial losses: the
northeastern Mijiang River sub-basin recorded the steepest decline (−30.3%, with areal
yield reduced by 1.232 × 105 m3/km2), followed by the northern Gaya River. In contrast,
the Hongqi River sub-basin exhibited the smallest reduction (−10.2%).

3.1.2. Temporal and Spatial Variation in Water Demand

In 2020, the demand for water yield service in the Tumen River Basin exhibited a dis-
tinct spatial pattern, with higher values in the central areas and lower values in the periph-
eral regions (Figure 5). The total water demand for the entire basin was 0.413 × 109 m3, with
an average demand of 0.183 × 105 m3/km2 (Table A1). The annual water demand across the
basin was 0.413 × 109 m3, corresponding to a mean areal demand of 0.183 × 105 m3/km2.
Sub-basin analyses identified the Burhatong River sub-basin as the primary demand
hotspot, accounting for 0.138 × 109 m3 (33.4% of total demand) and a unit-area demand of
0.333 × 105 m3/km2. This was followed by the Hailan River (0.087 × 109 m3, 20.9%) and
the Gaya River (0.083 × 109 m3, 20.1%). In contrast, the Mijiang River sub-basin exhibited
minimal demand (0.001 × 109 m3).
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Between 2000 and 2020, the basin experienced a gradual decline in water demand,
with the most significant reductions occurring in the central regions (Figure 5 and Table A1).
The total annual demand decreased by 11.4%, from 0.467 × 109 m3 to 0.413 × 109 m3,
accompanied by a reduction in the per-unit demand intensity of 0.024 × 105 m3/km2.
Sub-basin trends revealed that the Gaya River sub-basin experienced the steepest demand
decline (a 15.6% reduction). The Hailan River and Tumen River Mainstream basin showed
more moderate reductions. In contrast, the Hongqi River sub-basin was the only area
where demand increased, rising by 17.1%.

3.2. Analysis of Supply and Demand Relationship of Water Yield Service
3.2.1. Temporal and Spatial Changes in Water Yield Service Supply–Demand Ratio

In 2020, the Tumen River Basin exhibited a distinct supply–demand imbalance: low
ESDR values clustered in urban and cropland areas, whereas forests and grasslands main-
tained comparatively high ratios (Figures 6 and A2), underscoring greater water resource
pressures in developed landscapes. Between 2000 and 2020, the basin maintained an overall
water yield surplus, yet its mean ESDR declined from 0.896 to 0.877 (Table 5). Notably, the
spatial extent of areas with ESDR values in “0–0.5” expanded by 23%, primarily within
middle and lower sub-basins. Concurrently, the number of townships experiencing imbal-
ances (ESDR < 0) first increased from 15 (2000) to 21 (2010) but later decreased to 16 (2020),
reflecting improved water management interventions in recent years.
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Table 5. Water surplus at the regional and sub-basin scales.

Sub-Basin

Year Total Water Surplus (109 m3) Average Water Surplus (105 m3/km2)
Ratio (%)2000 2010 2020 2000 2010 2020

Burhatong River 1.188 0.972 0.875 2.865 2.346 2.110 −26.354
Gaya River 2.186 1.254 1.534 3.386 1.943 2.376 −29.826

Hailan River 0.948 0.895 0.725 3.275 3.089 2.505 −23.494
Hongqi River 0.454 0.524 0.407 3.795 4.377 3.397 −10.472

Hunchun River 1.789 1.002 1.268 4.498 2.520 3.188 −29.110
Mjiang River 0.310 0.177 0.216 4.050 2.310 2.819 −30.392

Tumen River Mainstream Basin 1.151 0.930 0.865 3.650 2.948 2.743 −24.849
TRB 8.026 5.753 5.889 3.553 2.547 2.607 −26.618

3.2.2. Analysis of Spatial Matching Pattern of Water Yield Service Supply and Demand

In 2020, the Tumen River Basin was dominated by high-supply–low-demand mismatch
zones (HL type), concentrated in the southern and northeastern regions (Figure 7, Table 6).
These areas covered 24,487 pixels (49.8% of all categorized pixels), reflecting significant
spatial disparities. Low-supply–low-demand match zones (LL type) were secondary,
occupying 13,632 pixels (27.7%) in northern areas. High-supply–high-demand clusters (HH
type) and low-supply–high-demand mismatches (LH type) were sporadically distributed
in the central and eastern basins.
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Table 6. Statistics on spatial matching types.

Type
Number of Pixels for Each Spatial

Matching Type Ratio (%)

2000 2010 2020 2000 2010 2020

High–high 4339 5695 5275 9.085 11.709 10.725
Low–low 12,404 19,700 13,632 25.972 40.504 27.717
Low–high 5130 3733 5789 10.741 7.675 11.770
High–low 25,886 19,509 24,487 54.201 40.111 49.788

Sum 47,759 48,637 49,183 100 100 100

Between 2000 and 2020, spatial mismatch patterns shifted markedly (Figure 8 and
Table 6). The prevalence of HL-type zones initially declined from 54.2% (2000) to 40.1%
(2010) before rebounding to 49.8% (2020). LL-type zones gradually expanded into the
northeast, while LH-type and HL-type zones remained stable, fluctuating within 1% of
their original coverage.
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3.3. Water Yield Service Flow Analysis

Between 2000 and 2020, the Tumen River Basin exhibited consistent yet evolving
dynamics in water yield service flow (Figure 8). By 2020, service flows remained muted in
the northern and southern reaches while rising markedly in the eastern and western sectors.
Supply-side contributions fell sharply—from 0.025 × 109 m3 in 2000 to 0.017 × 109 m3

in 2020—with a brief peak in 2010 (Table 7). Notably, San Daowan Township (Yanji
City) remained the largest supply contributor in 2020 (0.0037 × 109 m3, 21.7%), followed
by Mingyue and Laotougou townships. Conversely, demand-side flows climbed from
4.363 × 109 m3 in 2000 to 4.515 × 109 m3 in 2020. Jinghe Subdistrict (Hunchun City) alone
absorbed 30.6% of the basin’s water demand, outstripping other urban centers such as
Xinhua (22.4%) and Xiangshang (13.1%) subdistricts in Tumen City. These shifts reflect
growing urban pressures in demand hotspots alongside constrained supply capacities in
upstream zones, underscoring the need for spatially adaptive management strategies.

Table 7. Statistics on water yield service flow related information.

2000 2010 2020

Supply-side townships 41 44 46
Demand-side townships 14 20 16

Supply-side flow (109 m3) 0.025 0.042 0.017
Demand-side flow (109 m3) 4.363 4.253 4.515

4. Discussion
4.1. Analysis of Water Yield Service Supply–Demand Dynamics in Key Urban Areas

In this study, we paid special attention to the changes in supply and demand of water
yield service in economically developed and populous areas in the study area, using Yanji
City as a focal example. As the political and economic core of Yanbian Prefecture, Yanji
exemplifies the challenges of balancing growth with water sustainability. From 2000 to
2020, the city’s water yield decreased by 27.3% (from 0.579 × 109 m3 to 0.421 × 109 m3),
while demand declined marginally (9.2%, from 0.094 × 109 m3 to 0.086 × 109 m3). These
trends are deeply tied to land use transformations: urbanization expanded by 61.8%, re-
placing vital grasslands (−34.1%) and croplands (−7.7%). Impervious surfaces in new
urban areas increased local runoff, boosting urban water yield by 61.8%, while grassland
and cropland losses reduced infiltration capacity, exacerbating basin-wide supply short-
ages. This is consistent with the results of Aneseyee et al. (2022), Shi et al. (2022), and
Cui et al. (2021) [47–49].
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On the demand side, socioeconomic dynamics—most notably, population growth and
industrial restructuring—have shaped water use patterns, echoing the conclusions of Wang
X et al. (2023) [50]. Between 2000 and 2020, Yanji’s population rose by 43.2% (from 389,500 to
557,830), driving a 63.4% surge in domestic water consumption (to 0.0219 × 109 m3 in 2020).
In contrast, industrial water use dropped by 55.1% (from 0.037 × 109 m3 to 0.016 × 109 m3).
This is due to the optimization and adjustment of the industrial structure. After 2010, under
the guidance of the national concept of “ecological civilization construction” and Yanbian
Prefecture’s “ecological prefecture” strategy, Yanji City actively promoted the optimization
and upgrading of the industrial sector, regulated high-water-consuming and high-pollution
industries, and achieved a significant decline in industrial water consumption.

4.2. Analysis of Influencing Factors of Regional Water Yield Service Flow

This study dynamically simulates water yield service flow in the Tumen River Basin
using the miniature delivery-path-mechanism model. The primary objective is to explore
the complex water yield supply and demand relationship in the region, specifically fo-
cusing on the origins and destinations of water yield service flow. Building upon this,
we further investigate the factors influencing water yield service flow in the region, aim-
ing to provide scientific support for the management and optimization of regional water
resources. Existing studies indicate that the flow of ecosystem services results from the
combined effects of natural and human factors [10,51]. Analyzing the main driving factors
of water yield service flow can provide a solid foundation for making sustainable water
management decisions.

We quantified the influence of nine factors on regional water yield service flow using
the Geographical Detector method (Figure 9). These factors encompass both human and
natural aspects: population density (Population), gross national product (GDP), land
use/land cover (LULC), Normalized Difference Vegetation Index (NDVI), precipitation
(Pre), evapotranspiration (Pet), plant available water content (PAWC), bedrock depth,
elevation (DEM), and slope. The results show that, among the human factors, population
density has the greatest explanatory power for the flow of water yield service in the region,
while LULC has the least. Among the natural factors, NDVI has the greatest explanatory
power, while bedrock depth has the least. The factor interaction detection reveals that
population density interacts most significantly with other influencing factors, producing
the largest q-value. This suggests that population density is the dominant factor influencing
the flow of regional water yield service. In regions with rapid economic growth and high
population density, the demand for water resources increases. When local supply fails to
meet this demand, external support is sought, which significantly promotes the flow of
water yield service.

As an important ecological functional zone in Jilin Province, water security in the
Tumen River Basin is a critical prerequisite for ensuring regional ecological safety. Therefore,
greater emphasis must be placed on the management and protection of water resources. In
water resource management, it is crucial not only to consider the impact of natural factors
on regional water security but also to recognize the significant role of human activities.
Establishing a comprehensive water resource management framework that integrates both
natural and human factors is essential. Through data monitoring and analysis, the flow
of water resources should be assessed in real time to ensure that policies are scientifically
grounded and effective.



Sustainability 2025, 17, 4637 14 of 18

Sustainability 2025, 17, x FOR PEER REVIEW 15 of 20 

local supply fails to meet this demand, external support is sought, which significantly 

promotes the flow of water yield service. 

As an important ecological functional zone in Jilin Province, water security in the 

Tumen River Basin is a critical prerequisite for ensuring regional ecological safety. There-

fore, greater emphasis must be placed on the management and protection of water re-

sources. In water resource management, it is crucial not only to consider the impact of 

natural factors on regional water security but also to recognize the significant role of hu-

man activities. Establishing a comprehensive water resource management framework that 

integrates both natural and human factors is essential. Through data monitoring and anal-

ysis, the flow of water resources should be assessed in real time to ensure that policies are 

scientifically grounded and effective. 

Figure 9. Interaction detection for water yield ecosystem service flow. (a) 2000; (b) 2010; (c) 2020. 

4.3. Limitations and Future Perspectives 

This study has several limitations. First, the analysis of water yield service supply 

was conducted using the InVEST model, which focuses solely on surface water, neglecting 

groundwater resources. This omission may result in an underestimation of the total water 

resources in the region. Second, when quantifying water demand, the study was con-

strained by the available data. It only considered industrial, agricultural, residential, and 

urban public/ecological water uses, excluding other forms of water use across both human 

activities and natural ecosystems. Finally, in the simulation and quantification of water 

yield service flow, the study was limited by data acquisition and quantification con-

straints, incorporating only natural river channels as the flow paths for water yield ser-

vice. It did not account for infrastructure such as artificial canals or reservoirs, leading to 

an incomplete representation of the flow paths of water yield service in the study area. 

Future studies will aim to incorporate multi-source data, including remote sensing 

data and statistical datasets, to provide a more comprehensive assessment and quantifi-

cation of the supply and demand for water yield service. Additionally, we plan to adopt 

(a) (b) 

(c)

Figure 9. Interaction detection for water yield ecosystem service flow. (a) 2000; (b) 2010; (c) 2020.

4.3. Limitations and Future Perspectives

This study has several limitations. First, the analysis of water yield service supply
was conducted using the InVEST model, which focuses solely on surface water, neglecting
groundwater resources. This omission may result in an underestimation of the total
water resources in the region. Second, when quantifying water demand, the study was
constrained by the available data. It only considered industrial, agricultural, residential,
and urban public/ecological water uses, excluding other forms of water use across both
human activities and natural ecosystems. Finally, in the simulation and quantification
of water yield service flow, the study was limited by data acquisition and quantification
constraints, incorporating only natural river channels as the flow paths for water yield
service. It did not account for infrastructure such as artificial canals or reservoirs, leading
to an incomplete representation of the flow paths of water yield service in the study area.

Future studies will aim to incorporate multi-source data, including remote sensing data
and statistical datasets, to provide a more comprehensive assessment and quantification of
the supply and demand for water yield service. Additionally, we plan to adopt various
methods to include artificial infrastructure such as water channels and reservoirs in our
models. By incorporating different water flow paths, we aim to better understand the
movement of water resources within the region and across ecosystems. Moreover, we will
focus on analyzing the water flow characteristics within specific regions or ecosystems,
exploring the complex interactions between them.

5. Conclusions
The findings provide valuable insights for the formulation of regional water sustain-

able development policies. The research reveals that from 2000 to 2020, both water yield
supply and demand in the Tumen River Basin showed declining trends, with reductions of
25.8% and 11.4%, respectively. Spatially, supply followed a pattern of “low center, high sur-
rounding”, while demand showed an inverse distribution. Despite substantial water yield
surpluses (ESDR: 0.877–0.896), spatial mismatches dominated the basin’s supply–demand
dynamics, with over 40% of the areas classified as high-supply–low-demand mismatches
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(HL type), primarily concentrated in mountainous and hilly regions. Socioeconomic de-
velopment has increasingly integrated townships into water yield service flow. Initially,
supply-side flows increased before declining, whereas demand-side flows followed the
opposite trend. Notably, population density, especially in conjunction with factors like
GDP and NDVI, emerged as the dominant driver of service flow, reflecting the increasing
anthropogenic pressures on water security.

To address these challenges, we propose the following recommendations. First, in
densely populated areas, it is crucial to develop scientifically grounded population man-
agement policies that take into account both natural and socioeconomic conditions, in
order to alleviate pressure on water resources and reduce supply–demand imbalances.
Second, water resource management systems should be improved by legally implementing
comprehensive water resource plans and conducting systematic scientific assessments and
evaluations. In the development and utilization of water resources, priority should be
given to surface water, while groundwater extraction must be strictly controlled. Regional
water resources should be allocated in a balanced and efficient manner, with an emphasis
on the rational use of non-conventional water sources such as reclaimed water, harvested
rainwater, and mine water. Finally, a differentiated ecological compensation mechanism
should be established, where regions on the demand side provide financial compensation
and support to regions on the supply side. This will ensure that ecological protection
and economic development proceed in parallel, fostering the sustainable development
of regional ecosystems. These measures would promote a sustainable equilibrium be-
tween water resource utilization and water ecosystem protection, ensuring long-term water
security for the Tumen River Basin.
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Appendix A

Table A1. Water demand at the regional and sub-basin scales.

Sub-Basin

Year Total Water Demand (109 m3) Average Water Demand (105 m3/km2)
Ratio (%)2000 2010 2020 2000 2010 2020

Burhatong River 0.153 0.155 0.138 0.368 0.375 0.333 −9.370
Gaya River 0.098 0.089 0.083 0.152 0.138 0.129 −15.590

Hailan River 0.102 0.093 0.087 0.351 0.322 0.299 −14.810
Hongqi River 0.002 0.002 0.002 0.015 0.017 0.018 17.112
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Table A1. Cont.

Sub-Basin

Year Total Water Demand (109 m3) Average Water Demand (105 m3/km2)
Ratio (%)2000 2010 2020 2000 2010 2020

Hunchun River 0.061 0.068 0.058 0.154 0.171 0.146 −5.401
Mjiang River 0.001 0.001 0.001 0.020 0.018 0.018 −6.833

Tumen River Mainstream Basin 0.049 0.048 0.044 0.157 0.153 0.139 −10.979
TRB 0.467 0.457 0.413 0.207 0.202 0.183 −11.406
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