Sustainability in Beverage Packaging Technology: Life Cycle Analysis and Waste Management Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Environmental Analysis of the Variants of the Studied System
2.1.1. Purpose and Scope of Variant Analysis
2.1.2. Life Cycle Inventory
2.1.3. Life Cycle Impact Assessment
2.1.4. Interpretation
2.2. Environmental Analysis of End-of-Life Scenarios for the Management of Bottles and Shrink Wrap
3. Results and Discussion
3.1. Results for the Environmental Analysis of the Tested Variants of the Tested System
3.2. Results for the Environmental Analysis of End-of-Life Scenarios of the Studied System
4. Conclusions
- The implementation of recycled materials and the recycling process itself as a method of managing post-consumer materials such as bottles or shrink wrap reduce the potential negative impact on the environment;
- In the tested process system, replacing bottles and heat-shrinkable film with recycled materials reduces its harmfulness to human health and ecosystems by over 80%, and in the case of resources, by over 90%;
- Studies have shown that recycling plastic film waste is a more environmentally friendly solution than landfilling it;
- The use of LCA can be a valuable tool in assessing the environmental impact of packaging production processes, enabling the achievement of specific and measurable benefits in terms of identifying and minimizing their impact on the environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chairat, S.; Gheewala, S.H. Life cycle assessment and circularity of polyethylene terephthalate bottles via closed and open loop recycling. Environ. Res. 2023, 236, 116788. [Google Scholar] [CrossRef] [PubMed]
- Elamri, A.; Zdiri, K.; Harzallah, O.; Lallam, A. Progress in polyethylene terephthalate recycling. In Polyethylene Terephthalate: Uses, Properties and Degradation; Nova Science Publishers: Hauppauge, NY, USA, 2017. [Google Scholar]
- Raj, B.; Rahul, J.; Singh, P.K.; Rao, V.V.K.; Kumar, J.; Dwivedi, N.; Kumar, P.; Singh, D.; Strzałkowski, K. Advancements in PET Packaging: Driving Sustainable Solutions for Today’s Consumer Demands. Sustainability 2023, 15, 12269. [Google Scholar] [CrossRef]
- Moharir, R.V.; Kumar, S. Structural characterization of LDPE films to analyse the impact of heavy metals and effect of UV pre-treatment on polymer degradation. J. Clean. Prod. 2021, 298, 126670. [Google Scholar] [CrossRef]
- Suhrhoff, T.J.; Scholz-Böttcher, B.M. Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—A lab experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Zhang, Y.; Wang, L.; Deng, J.; Gao, Y.; Yu, L.; Zhang, J.; Sun, H. Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environ. Int. 2019, 128, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Abedsoltan, H. A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. Polym. Eng. Sci. 2023, 63, 2651–2674. [Google Scholar] [CrossRef]
- Rabiee, N.; Dokmeci, M.R.; Zarrabi, A.; Makvandi, P.; Saeb, M.R.; Karimi-Maleh, H.; Jafarzadeh, S.; Karaman, C.; Yamauchi, Y.; Warkiani, M.E.; et al. Green Biomaterials: Fundamental principles. Green Biomater. 2023, 1, 1–4. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Schade, A.; Melzer, M.; Zimmermann, S.; Schwarz, T.; Stoewe, K.; Kuhn, H. Plastic waste recycling—A chemical recycling perspective. ACS Sustain. Chem. Eng. 2024, 12, 12270–12288. [Google Scholar] [CrossRef]
- Wojnowska-Baryła, I.; Bernat, K.; Zaborowska, M. Plastic waste degradation in landfill conditions: The problem with microplastics, and their direct and indirect environmental effects. Int. J. Environ. Res. Public Health 2022, 19, 13223. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Wu, Z.; Wang, J.; Li, Y.; Chu, R.; Pei, Y.; Ma, J. Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites. Environ. Pollut. 2022, 306, 119366. [Google Scholar] [CrossRef] [PubMed]
- Canopoli, L.; Coulon, F.; Wagland, S.T. Degradation of excavated polyethylene and polypropylene waste from landfill. Sci. Total Environ. 2020, 698, 134125. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Malshe, V.; Raje, R.; Choudhari, R. Life cycle assessment (LCA) of biodegradable linear low-density polyethylene (LLDPE) manufactured in India. J. Environ. Manag. 2024, 372, 123120. [Google Scholar] [CrossRef] [PubMed]
- Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-in, T.; Nithitanakul, M.; Sarobol, E. Comparative assessment of the environmental profile of PLA and PET drinking water bottles from a life cycle perspective. J. Clean. Prod. 2014, 65, 539–550. [Google Scholar] [CrossRef]
- Dolci, G.; Puricelli, S.; Cecere, G.; Tua, C.; Fava, F.; Rigamonti, L.; Grosso, M. How does plastic compare with alternative materials in the packaging sector? A systematic review of LCA studies. Waste Manag. Res. J. A Sustain. Circ. Econ. 2024, 43, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Walichnowska, P.; Kruszelnicka, W.; Mazurkiewicz, A.; Kłos, Z.; Rudawska, A.; Bembenek, M. An Analysis of Changes in the Harmfulness of the Bottle Packaging Process Depending on the Type of Heat-Shrinkable Film. Materials 2024, 17, 4115. [Google Scholar] [CrossRef] [PubMed]
- Papo, M.; Corona, B. Life cycle sustainability assessment of non-beverage bottles made of recycled High Density Polyethylene. J. Clean. Prod. 2022, 378, 134442. [Google Scholar] [CrossRef]
- Boutros, M.; Saba, S.; Manneh, R. Life cycle assessment of two packaging materials for carbonated beverages (polyethylene terephthalate vs. glass): Case study for the lebanese context and importance of the end-of-life scenarios. J. Clean. Prod. 2021, 314, 128289. [Google Scholar] [CrossRef]
- Valentini, F.; Dorigato, A. Comparative life cycle assessment of plastic and paper packaging for pasta. J. Mater. Cycles Waste Manag. 2025, 27, 937–948. [Google Scholar] [CrossRef]
- 14040:2009 i PN-EN ISO; Environmental Management—Life Cycle Assessment—Principles and Framework. The Polish Committee for Standardization: Warsaw, Poland, 2009.
- 14044:2009 i PN-EN ISO; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. The Polish Committee for Standardization: Warsaw, Poland, 2009.
- Hou, P.; Xu, Y.; Taiebat, M.; Lastoskie, C.; Miller, S.A.; Xu, M. Life cycle assessment of end-of-life treatments for plastic film waste. J. Clean. Prod. 2018, 201, 1052–1060. [Google Scholar] [CrossRef]
- Moazzem, S.; Wang, L.; Daver, F.; Crossin, E. Environmental impact of discarded apparel landfilling and recycling. Resour. Conserv. Recycl. 2021, 166, 105338. [Google Scholar] [CrossRef]
- Herrando, M.; Elduque, D.; Javierre, C.; Fueyo, N. Life Cycle Assessment of solar energy systems for the provision of heating, cooling and electricity in buildings: A comparative analysis. Energy Convers. Manag. 2022, 257, 115402. [Google Scholar] [CrossRef]
- Walichnowska, P.; Mazurkiewicz, A.; Martínez Valle, J.M.; Polishchuk, O. Environmental Analysis of the Impact of Changing Shrink Film in the Mass Bottle Packaging Process. Appl. Sci. 2024, 14, 6641. [Google Scholar] [CrossRef]
- Ige, O.E.; Duffy, K.J.; Olanrewaju, O.A.; Collins, O.C. Measuring the Environmental Impact and Uncertainty Analysis of Portland Cement Production in South Africa: A Recipe 2016 v 1.04 Endpoint Method Approach. In Global Warming—A Concerning Component of Climate Change; IntechOpen: London, UK, 2024; p. 291. [Google Scholar]
- Bałazińska, M.; Kruczek, M.; Bondaruk, J. The environmental impact of various forms of waste PET bottle management. Int. J. Sustain. Dev. World Ecol. 2021, 28, 473–480. [Google Scholar] [CrossRef]
- Joseph, T.M.; Azat, S.; Ahmadi, Z.; Jazani, O.M.; Esmaeili, A.; Kianfar, E.; Haponiuk, J.; Thomas, S. Polyethylene terephthalate (PET) recycling: A review. Case Stud. Chem. Environ. Eng. 2024, 9, 100673. [Google Scholar] [CrossRef]
- Babaremu, K.O.; Okoya, S.A.; Hughes, E.; Tijani, B.; Teidi, D.; Akpan, A.; Igwe, J.; Karera, S.; Oyinlola, M.; Akinlabi, E.T. Sustainable plastic waste management in a circular economy. Heliyon 2022, 8, e09984. [Google Scholar] [CrossRef] [PubMed]
- Faraca, G.; Astrup, T. Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability. Waste Manag. 2019, 95, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Azad, N.; Dutta, D.; Yadav, B.R.; Kumar, S. A critical review and future perspective of plastic waste recycling. Sci. Total Environ. 2023, 881, 163433. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.G.; Furlong, R.A.; McManus, M.C. Developments in the life cycle assessment of chemical recycling of plastic waste—A review. J. Clean. Prod. 2021, 293, 126163. [Google Scholar] [CrossRef]
- Walichnowska, P.; Kruszelnicka, W.; Piasecka, I.; Flizikowski, J.; Tomporowski, A.; Mazurkiewicz, A.; Valle, J.M.M.; Opielak, M.; Polishchuk, O. Analysis of the Impact of the Post-Consumer Film Waste Scenario and the Source of Electricity on the Harmfulness of the Mass Packaging Process. Polymers 2024, 16, 3467. [Google Scholar] [CrossRef] [PubMed]
- Hamed, T.A.; Alshare, A. Environmental impact of solar and wind energy—A review. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1–23. [Google Scholar] [CrossRef]
- Gao, C.; Zhu, S.; An, N.; Na, H.; You, H.; Gao, C. Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint. Renew. Sustain. Energy Rev. 2021, 147, 111255. [Google Scholar] [CrossRef]
Elements Analyzed in the System | Unit | Variant A | Variant B |
---|---|---|---|
PET | kg/FU | 320 | - |
rPET | - | 320 | |
LDPE | 18 | - | |
rLDPE | - | 18 | |
BOPP film for label | 3.6 | ||
HDPE for bottle cap | 9 | ||
Energy from Polish electricity mix | kWh/FU | 155 |
Elements Analyzed in the System | Unit | Scenario I | Scenario II |
---|---|---|---|
rPET | kg/FU | 320 | |
rLDPE | 18 | ||
BOPP film for label | 3.6 | ||
HDPE for bottle cap | 9 | ||
Energy from Polish electricity mix | kWh/FU | 155 | |
End-of-life scenarios | - | recycling | landfill |
Impact Category | Unit | Variant A | Variant B |
---|---|---|---|
Global warming, Human health | DALY | 0.00109 | 0.0002 |
Stratospheric ozone depletion | DALY | 3.40 × 10−6 | 2.32 × 10−8 |
Ionizing radiation | DALY | 3.06 × 10−7 | 3.66 × 10−8 |
Ozone formation, Human health | DALY | 2.14 × 10−6 | 3.22 × 10−7 |
Fine particulate matter formation | DALY | 8.86 × 10−4 | 2.03 × 10−4 |
Human carcinogenic toxicity | DALY | 1.16 × 10−4 | 3.69 × 10−5 |
Human non-carcinogenic toxicity | DALY | 1.31 × 10−4 | 5.91 × 10−5 |
Water consumption, Human health | DALY | 2.56 × 10−5 | 1.30 × 10−6 |
Global warming, Terrestrial ecosystems | species.yr | 3.30 × 10−6 | 5.82 × 10−7 |
Global warming, Freshwater ecosystems | species.yr | 9.01 × 10−11 | 1.59 × 10−11 |
Ozone formation, Terrestrial ecosystems | species.yr | 3.18 × 10−7 | 6.02 × 10−8 |
Terrestrial acidification | species.yr | 7.34 × 10−7 | 1.94 × 10−7 |
Freshwater eutrophication | species.yr | 2.73 × 10−7 | 1.49 × 10−7 |
Marine eutrophication | species.yr | 6.31 × 10−11 | 2.48 × 10−11 |
Terrestrial ecotoxicity | species.yr | 2.49 × 10−8 | 9.47 × 10−9 |
Freshwater ecotoxicity | species.yr | 8.61 × 10−9 | 3.96 × 10−9 |
Marine ecotoxicity | species.yr | 1.90 × 10−9 | 8.69 × 10−10 |
Land use | species.yr | 6.95 × 10−8 | 1.81 × 10−8 |
Water consumption, Terrestrial ecosystem | species.yr | 1.70 × 10−7 | 1.6 × 10−8 |
Water consumption, Aquatic ecosystems | species.yr | 9.38 × 10−12 | 8.75 × 10−13 |
Mineral resource scarcity | USD2013 | 0.264 | 0.00792 |
Fossil resource scarcity | USD2013 | 208 | 14.8 |
Impact Category | Unit | Scenario I | Scenario II |
---|---|---|---|
Global warming, Human health | DALY | 0.00020 | 0.00022 |
Stratospheric ozone depletion | DALY | 2.39 × 10−8 | 2.50 × 10−8 |
Ionizing radiation | DALY | 3.73 × 10−8 | 3.85 × 10−8 |
Ozone formation, Human health | DALY | 3.30 × 10−7 | 3.45 × 10−7 |
Fine particulate matter formation | DALY | 2.05 × 10−4 | 2.07 × 10−4 |
Human carcinogenic toxicity | DALY | 3.76 × 10−5 | 3.87 × 10−5 |
Human non-carcinogenic toxicity | DALY | 8.84 × 10−5 | 1.41 × 10−4 |
Water consumption, Human health | DALY | 1.30 × 10−6 | 1.31 × 10−6 |
Global warming, Terrestrial ecosystems | species.yr | 6.43 × 10−7 | 6.82 × 10−7 |
Global warming, Freshwater ecosystems | species.yr | 1.76 × 10−11 | 1.86 × 10−11 |
Ozone formation, Terrestrial ecosystems | species.yr | 6.23 × 10−8 | 6.35 × 10−8 |
Terrestrial acidification | species.yr | 1.96 × 10−7 | 1.97 × 10−7 |
Freshwater eutrophication | species.yr | 7.69 × 10−7 | 1.16 × 10−6 |
Marine eutrophication | species.yr | 6.84 × 10−10 | 1.10 × 10−9 |
Terrestrial ecotoxicity | species.yr | 9.53 × 10−9 | 9.57 × 10−9 |
Freshwater ecotoxicity | species.yr | 1.73 × 10−8 | 2.58 × 10−8 |
Marine ecotoxicity | species.yr | 3.71 × 10−9 | 5.53 × 10−9 |
Land use | species.yr | 2.03 × 10−8 | 2.16 × 10−8 |
Water consumption, Terrestrial ecosystem | species.yr | 2.07 × 10−8 | 2.07 × 10−8 |
Water consumption, Aquatic ecosystems | species.yr | 4.27 × 10−13 | 4.29 × 10−13 |
Mineral resource scarcity | USD2013 | 0.010 | 0.011 |
Fossil resource scarcity | USD2013 | 15.22 | 15.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walichnowska, P.; Tomporowski, A.; Kłos, Z.; Rudawska, A.; Bembenek, M. Sustainability in Beverage Packaging Technology: Life Cycle Analysis and Waste Management Scenarios. Sustainability 2025, 17, 6594. https://doi.org/10.3390/su17146594
Walichnowska P, Tomporowski A, Kłos Z, Rudawska A, Bembenek M. Sustainability in Beverage Packaging Technology: Life Cycle Analysis and Waste Management Scenarios. Sustainability. 2025; 17(14):6594. https://doi.org/10.3390/su17146594
Chicago/Turabian StyleWalichnowska, Patrycja, Andrzej Tomporowski, Zbigniew Kłos, Anna Rudawska, and Michał Bembenek. 2025. "Sustainability in Beverage Packaging Technology: Life Cycle Analysis and Waste Management Scenarios" Sustainability 17, no. 14: 6594. https://doi.org/10.3390/su17146594
APA StyleWalichnowska, P., Tomporowski, A., Kłos, Z., Rudawska, A., & Bembenek, M. (2025). Sustainability in Beverage Packaging Technology: Life Cycle Analysis and Waste Management Scenarios. Sustainability, 17(14), 6594. https://doi.org/10.3390/su17146594