Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experiment Design
2.3. Experiment Process
2.4. Statistical Analysis
3. Results
3.1. Influence of Brackish Water Infiltration with Different Total Dissolved Solid Levels on Wetting Front
3.2. Influence of Brackish Water Infiltration with Different Total Dissolved Solid on Moisture Content
3.3. Influence of Brackish Water Infiltration with Different Total Dissolved Solid on Cl− and Na+
3.4. Influence of Different Infiltration Rates with the Same Total Dissolved Solid on Electrical Conductivity and Moisture Content
4. Discussion
4.1. Infiltration Dynamics and the Role of Brackish Water Salinity
4.2. Soil Moisture Distribution and Salt Accumulation Patterns
4.3. Implications for Sustainable Brackish Water Irrigation Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Everard, M. A socio-ecological framework supporting catchment-scale water resource stewardship. Environ. Sci. Policy 2019, 91, 50–59. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, S.Q.; Xia, J.; Chen, Y.N.; Zhang, Y.Y.; Cai, W. Risk assessment of water resource shortages in the Aksu River basin of northwest China under climate change. J. Environ. Manag. 2022, 305, 114394. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Sayed, S.; Abdoulhalik, A.; Moutari, S.; Oyedele, L. Applications of machine learning to water resources management: A review of present status and future opportunities. J. Clean. Prod. 2024, 441, 140715. [Google Scholar] [CrossRef]
- Yaeger, M.A.; Massey, J.H.; Reba, M.L.; Adviento-Borbe, M.A.A. Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: Implications for conjunctive water resource management. Agric. Water Manag. 2018, 208, 373–383. [Google Scholar] [CrossRef]
- Shi, C.F.; Li, L.J.; Chiu, Y.H.; Pang, Q.H.; Zeng, X.Y. Spatial differentiation of agricultural water resource utilization efficiency in the Yangtze River Economic Belt under changing environment. J. Clean. Prod. 2022, 346, 131200. [Google Scholar] [CrossRef]
- Cui, B.J.; Gao, F.; Hu, C.; Li, Z.Y.; Fan, X.Y.; Cui, E.P. The use of brackish and reclaimed waste water in agriculture: A review. J. Irrig. Drain. 2019, 38, 60–68. [Google Scholar]
- Bian, D.H.; Yang, X.H.; Wu, F.F.; Babuna, P.; Luo, Y.K.; Wang, B.; Chen, Y.J. A three-stage hybrid model investigating regional evaluation, pattern analysis and obstruction factor analysis for water resource spatial equilibrium in China. J. Clean. Prod. 2022, 331, 129940. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, Y.L.; Jiang, Y.C.; Luo, Z.W.; Ji, L.; Cai, Y.P. Urban water resources management with energy constraint and carbon emission intensity under uncertainty: A dual objective optimization model. J. Clean. Prod. 2024, 434, 139930. [Google Scholar] [CrossRef]
- Wang, Q.J.; Shan, Y.Y. Review of research development on water and soil regulation with brackish water irrigation. Trans. Chin. Soc. Agric. Mach. 2015, 46, 117–126. [Google Scholar]
- Liu, C.; Cui, B.; Zeleke, K.T.; Hu, C.; Wu, H.; Cui, E.; Huang, P.; Gao, F. Risk of Secondary Soil Salinization under Mixed Irrigation Using Brackish Water and Reclaimed Water. Agronomy 2021, 11, 2039. [Google Scholar] [CrossRef]
- Dawoud, M.A.; Sallam, G.R.; Abdelrahman, M.A.; Emam, M. The Performance and Feasibility of Solar-Powered Desalination for Brackish Groundwater in Egypt. Sustainability 2024, 16, 1630. [Google Scholar] [CrossRef]
- Arshad, M.; Awais, M.; Bashir, R.; Ahmad, S.R.; Anwar-ul-Haq, M.; Senousy, H.H.; Iftikhar, M.; Anjum, M.U.; Ramzan, S.; Alharbi, S.A.; et al. Assessment of wheat productivity responses and soil health dynamics under brackish ground water. Saudi J. Biol. Sci. 2022, 29, 793–803. [Google Scholar] [CrossRef]
- Minhas, P.S.; Ramos, T.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Cucci, G.; Lacolla, G.; Boari, F.; Mastro, M.A.; Cantore, V. Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy. Agric. Water Manag. 2019, 222, 118–124. [Google Scholar] [CrossRef]
- Bi, Y.J.; Lv, P.P.; Wang, Y.M.; Su, R.D.; Kong, X.Y. Effect of brackish water drip irrigation on the growth of zucchini in greenhouse in North China. Fresenius Environ. Bull. 2020, 29, 11042–11048. [Google Scholar]
- Feigin, A.; Ravina, I.; Shalhevet, J. Effect of Irrigation with Treated Sewage Effluent on Soil, Plant and Environment. In Irrigation with Treated Sewage Effluent; Advanced Series in Agricultural Sciences; Springer: Berlin/Heidelberg, Germany, 1991; Volume 17, pp. 59–87. [Google Scholar]
- Selim, T.; Bouksila, F.; Berndtsson, R.; Persson, M. Soil water and aalinity distribution under different treatments of drip irrigation. Soil Sci. Soc. Am. J. 2013, 77, 1144–1156. [Google Scholar] [CrossRef]
- Chen, W.L.; Jin, M.G.; Ferré, T.P.A.; Liu, Y.F.; Xian, Y.; Shan, T.R. Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water. Field Crops Res. 2018, 215, 207–221. [Google Scholar] [CrossRef]
- Yang, G.; Li, F.D.; Tian, L.J.; He, X.L.; Gao, Y.L.; Wang, Z.L.; Ren, F.T. Soil physicochemical properties and cotton (Gossypium hirsutum L.) yield under brackish water mulched drip irrigation. Soil Till. Res. 2020, 199, 104592. [Google Scholar] [CrossRef]
- Yin, C.Y.; Zhao, J.; Chen, X.B.; Li, L.J.; Liu, H.; Hu, Q.L. Desalination characteristics and efficiency of high saline soil leached by brackish water and Yellow River water. Agric. Water Manag. 2022, 263, 107461. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Li, Z.; Xie, L.M.; Pan, Y.Y.; Wang, R.Q.; Zhang, Z.M.; Zhang, M.X. Brackish water promote the ecological restoration of estuarine wetland. Ecol. Eng. 2023, 187, 106843. [Google Scholar] [CrossRef]
- Brown, J.J.; Das, P.; Al-Saidi, M. Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. Sustainability 2018, 10, 1364. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Fu, G.H. Utilization of gentle salty water resource in China. Geogr. Geo-Inf. Sci. 2004, 20, 57–60. [Google Scholar]
- Liu, W.Q.; Xu, X.Y.; Lu, F.; Cao, J.R.; Li, P.; Fu, T.F. Three-dimensional mapping of soil salinity in the southern coast area of Laizhou Bay, China. Land Degrad. Dev. 2018, 29, 3772–3782. [Google Scholar] [CrossRef]
- Liu, W.Q.; Lu, F.; Xu, X.Y.; Chen, G.Q.; Fu, T.F.; Su, Q. Spatial and temporal variation of soil salinity during dry and wet seasons in the Southern coastal area of Laizhou Bay, China. Indian J. Mar. Sci. 2020, 49, 260–270. [Google Scholar]
- Tahtouh, J.; Mohtar, R.; Assi, A.; Schwab, P.; Jantrania, A.; Deng, Y.; Munster, C. Impact of brackish groundwater and treated wastewater on soil chemical and mineralogical properties. Sci. Total Environ. 2019, 647, 99–109. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.H.; Li, H.Q.; Wang, T.Y.; Chen, R. Effects of nitrogen application and brackish water irrigation on yield and quality of cotton. Agric. Water Manag. 2022, 264, 107512. [Google Scholar] [CrossRef]
- Liu, W.Q.; Lu, F.; Chen, G.Q.; Xu, X.Y.; Yu, H.J. Site-specific management zones based on geostatistical and fuzzy clustering approach in a coastal reclaimed area of abandoned salt pan. Chil. J. Agric. Res. 2021, 81, 420–433. [Google Scholar] [CrossRef]
- Lu, R.K. Methods for Soil Agrochemical Analysis; Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Li, N.; Kang, Y.H.; Li, X.B.; Wan, S.Q. Response of tall fescue to the reclamation of severely saline coastal soil using treated effluent in Bohai Bay. Agric. Water Manag. 2019, 218, 203–210. [Google Scholar] [CrossRef]
- Litalien, A.; Zeeb, B. Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci. Total Environ. 2020, 698, 134235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Zhao, H.; Rong, H. Effect of brackish water content on water and salt transport law in saline-alkali soil irrigation. Yangtze River 2021, 52, 198–202+208. [Google Scholar]
- Bi, Y.J.; Wang, Q.J.; Xue, J. Infiltration characteristic contrast analysis of fresh water and saline water. Trans. Chin. Soc. Agric. Mach. 2010, 41, 70–75. [Google Scholar]
- Wang, Q.J.; Xie, J.B.; Zhang, J.H.; Wei, K.; Sun, Y.; Li, Z.Y. Effects of magnetic field strength on magnetized water infiltration and soil water and salt movement. Trans. Chin. Soc. Agric. Mach. 2020, 51, 292–298. [Google Scholar]
- Zhu, C.L.; Yang, H.L.; Feng, G.X.; Han, L.; Wang, C.; Zhai, Y.M.; Feng, B.P.; Zhao, T. Effect of vertically rotary sub-soiling tillage and saline water irrigation on water and salt movement in soil. J. Irrig. Drain. 2024, 43, 1. [Google Scholar]
- Zhang, Y.H.; Li, X.Y.; Šimůnek, J.; Shi, H.B.; Chen, N.; Hu, Q.; Tian, T. Evaluating soil salt dynamics in a field drip-irrigated with brackish water and leached with freshwater during different crop growth stages. Agric. Water Manag. 2021, 244, 106601. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhang, T.B.; Liang, Q.; Hu, X.L.; Cheng, Y.; Yan, S.H.; Feng, H. Effects of saline water irrigation with different concentrations on soil water and salt distribution and growth of winter wheat. J. Siland Water Conserv. 2024, 38, 378–386. [Google Scholar]
- Song, B.L.; Yao, M.J.; Li, H.R.; Wang, Y.S.; Wang, C.; Zheng, Y.Y.; Wang, J.L.; Hao, W.P. Effects of brackish water irrigation on rhizosphere microorganism of winter wheat in the North China Plain. Soil Fertil. Sci. China 2023, 3, 149–158. [Google Scholar]
- Niu, W.Q.; Xue, W.L. Effects of total dissolved solid degrees on soil infiltration under moistube-irrigation. Trans. Chin. Soc. Agric. Mach. 2014, 45, 163–172. [Google Scholar]
- Shalhevet, J. Using water of marginal quality for crop production: Major issues. Agric. Water Manag. 1994, 25, 233–269. [Google Scholar] [CrossRef]
- Liu, B.X.; Wang, S.Q.; Liu, X.J.; Sun, H.Y. Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain. Geoderma 2022, 422, 115954. [Google Scholar] [CrossRef]
Mechanical Composition | Soil Layer (cm) | Average | ||||
---|---|---|---|---|---|---|
0–15 | 15–30 | 30–45 | 45–60 | 60–75 | ||
Clay (0~0.002 mm)% | 17.24 | 14.33 | 10.04 | 9.85 | 10.67 | 12.43 |
Silt (0.002~0.02 mm)% | 72.15 | 73.61 | 74.23 | 76.97 | 77.83 | 74.96 |
Sand (0.02~2 mm)% | 10.61 | 12.06 | 15.73 | 13.18 | 11.50 | 12.62 |
Soil Texture | Silty Loam | Silty Loam | Silty Loam | Silty Loam | Silty Loam | Silty Loam |
Bulk Density (g cm−3) | 1.54 | 1.55 | 1.46 | 1.46 | 1.56 | 1.51 |
Soil Layer (cm) | EC (μS·cm−1) | Ion Content (mg kg−1) | |||||
---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Ca2+ | Cl− | SO42− | ||
0–15 | 88.3 | 8.16 | 9.56 | 2.09 | 6.49 | 12.1 | 47.7 |
15–30 | 162.0 | 37.3 | 21.0 | 0.40 | 3.66 | 12.1 | 47.7 |
30–45 | 190.0 | 49.3 | 29.1 | 0.71 | 2.48 | 12.0 | 57.2 |
45–60 | 187.0 | 62.6 | 40.5 | 0.66 | 2.57 | 12.1 | 71.5 |
60–75 | 202.0 | 54.0 | 33.1 | 0.55 | 2.57 | 11.8 | 95.3 |
Item | EC (ms cm−1) | Ion Content (mg L−1) | TDS (g L−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | |||
Groundwater | 32.5 | 5454.0 | 451.0 | 177.0 | 630.0 | 14,740.0 | 1730.0 | 433.0 | 26.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Lu, F.; Han, W. Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay. Sustainability 2025, 17, 1956. https://doi.org/10.3390/su17051956
Liu W, Lu F, Han W. Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay. Sustainability. 2025; 17(5):1956. https://doi.org/10.3390/su17051956
Chicago/Turabian StyleLiu, Wenquan, Fang Lu, and Weitao Han. 2025. "Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay" Sustainability 17, no. 5: 1956. https://doi.org/10.3390/su17051956
APA StyleLiu, W., Lu, F., & Han, W. (2025). Sustainable Marginal Water Resource Management: A Case Study of Brackish Water Irrigation on the Southern Coast of Laizhou Bay. Sustainability, 17(5), 1956. https://doi.org/10.3390/su17051956