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Abstract: The paper uses the framework of the IPAT equation, as applied to CO2 emission, 

to decompose the various driving forces in the global energy use. Data from recent history 

are superimposed on projections of SRES IPCC scenarios to determine if enough 

sustainable capacity can be built to prevent irreversible ecological deterioration. The 

conclusion from the analysis is that, in agreement with the IPCC 4th report, until  

about 2030 there are no large differences between a sustainable scenario and the one that 

resembles ―business as usual‖. The sharp divergence that follows stems from different 

estimates in population growth and in the percentage of use of fossil fuels in the total 

energy mix. Decomposition of alternative energy options indicate that the rate of increase 

of alternatives such as hydroelectric and nuclear start with a relatively high base but a 

growth rate too short for major contribution to a timely replacement of fossil fuels while 

wind and solar starts from a much lower base but rate of growth, if maintained, that can 

satisfy a timely replacement. 
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1. Introduction 

 

Sustainable Development is now a recognized organizational principle with a Division of the UN 

Development of Economic and Social Development. Google is coming up with 15 million entries with 

a large proliferation of definitions with an increasing tendency to regard it as ambiguous and internally 

self-contradictory [1]. Being a physicist, it is easy to sympathize with these sentiments. However, the 

issue is too important to be buried in philological ceremonies. 
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Within the energy context arguments against attempts to globally change our energy choices to a 

more sustainable alternatives range from denials of major adverse effects of a resulting atmospheric 

increase in CO2 concentration to a fatalistic approach that the issue is much too big for a rationale 

attempt to address it within a time frame that can make a difference. 

Within this spirit—our quantitative framework is based on the IPAT [2,3] equation where I stands 

for Impact, P for Population, A for Affluence and T for Technology. 

For CO2 emission, the identity takes the following form: 
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All the quantities in Equation (1), except for the population, are quantities per year. The Impact 

here is the environmental impact (CO2) and GDP/Population (or as it is more often expressed as 

GDP/Capita) is the measure of Affluence. The rest of the terms refer to the Technology part of the 

acronym. The next term describes an issue that is often referred to as Energy Intensity. For a given 

population change, the policy goals are to minimize CO2 production while at the same time maximize 

the GDP/capita. The thrust of the challenge from global perspective is to minimize the impact while at 

the same time to allow growth of the GDP/Capita term. The present inequity of this term between the 

developed and developing countries is about a factor of 50 with the most populous developing 

countries show economic growth much faster than the developed countries. The global population is 

predicted to stabilize at about 9 billion toward the end of the century [4]. 

Equation (1) was recently reformulated to reflect changes in growth rates. The differential 

formulation takes the following form [5]: 
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where the derivatives are time derivatives and the  terms are elasticities defined as 
XdX

IdI

/

/
where x 

stands for stresses in terms of population, affluence and technology. 

Both forms are often seen as tautological but they have served as a useful starting point for the 

quantification of the driving forces for environmental impact in general and for climate changes  

in particular. 

Table 1 makes a quantitative case for the inclusion of the physical environment as a key restriction 

on economic development. It balances the assimilation and emission of carbon dioxide by living 

organisms. This part of the global carbon cycle shows that there is an imbalance between emission and 

assimilation to the extent that approximates the human contributions, that are not being balanced by 

assimilation. The spectroscopic properties of carbon dioxide ensure that this imbalance changes the 

global energy balance that results in an increase in global temperature. 

In turn the average global temperature is a key physical parameter that enables living organisms to 

survive and flourish with no known equivalence in the entire universe. 
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Table 1. Global assimilation and emission of carbon dioxide into the atmosphere by living 

organisms in units of billion tons /year (Data extracted from the Carbon Cycle shown in 

the NASA Earth Observatory site). 

Assimilation Emission 

 Microorganisms—222 

Marine Biota—185 Marine Biota—185 

Land Biota—449 Land Biota—222 

 Humans—26 

 

Environmental impacts are not limited to Greenhouse gases, they span a vast area of interactions 

that uses the physical environment as a damping ground for waste and as source of raw materials to 

support human developments. Table 1 and similar data on other environmental resources are now 

convincing most people that there are limits to this practice that once these limits are crossed, our 

global existence is at stake. 

The formal beginning of this realization on a global scale can be arbitrarily traced to the United 

Nations Conference on Environment and Development (UNCED) (The Earth Summit) that took place 

in Rio de Janeiro on June 1992. 172 governments took place with participation of 108 heads of states 

and 2,400 representatives of non-governmental organizations (NGO) and 17,000 participants in the 

parallel NGO conference. 

The resulting documents and the follow-up mechanisms have finally succeeded to put global 

environmentally issues on the policy agenda to start a global revolution. One of the objectives of this 

paper is to try to find out how we are doing. 

An attempt to quantify the progress was recently made by developing a scoring system for the 

countries in the world. This effort is being coordinated by Yale and Columbia universities and 

published annually [6]. The Environmental Performance Index (EPI) has two equally weighted  

criteria: (1). Reduction of environmental stresses to human health. (2). Protection of ecosystems and 

natural resources. Six Core policy categories include Environmental Health, Air Quality, Water 

Resources, Biodiversity and Habitat, Productive Natural Resources, and Climate Change. There is no 

global entry. The indexing is done through proximity to targets for the various categories and then 

weighing the contributions of individual categories to the overall criteria. The end result of the scoring 

is a not surprising high correlation with the wealth of the countries: developed countries at the top and 

poor countries at the bottom. 

It is highly desirable, while not yet attainable, to construct an index with absolute criteria as scale 

setters. On the most fundamental levels economic development draws on three classes of resources: 

energy, commodities and labor. Energy and commodities bear directly on the physical environment. 

Sustainability accounting requires Cradle-to-Grave accounting in terms of limits to earth resources to 

sustain availability of ―raw materials‖ and limits of earth resources to accommodate disposal of 

―waste‖. This applies both to energy and material products. Appropriate pricing can regulate some of 

this effort mainly on the supply side. One of the consequences of the Rio conference was to start a 

major auditing effort to quantify environmental impacts. In commodities this effort is currently 

focused on the development of full Life Cycle Assessment (LCA) of Cradle to Grave accounting of the 

environmental impact of each stage of the production, use and disposal; while in energy the effort is 
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focused on energy auditing and carbon footprint accounting. A policy that will move commodities to a 

sustainable mode will require an increased share of used commodities to be recycled. With energy 

physics imposes strict limits on our ability to recycle. 

The present global LCA effort is focused on the creation of Life Cycle Inventory (LCI) [7] that will 

be followed by regulation and legislation to limit impact. This effort is just beginning. The rest of the 

paper will be focused on energy use. 

 

2. Results and Discussion 

 

Energy use analysis of the environmental impact focuses on emission of carbon dioxide as shown in 

Equation (1). Figures 1–5 show the changes in all the terms in Equation 1 from 1993 to 2007 

superimposed on two SRES [8]
 
scenarios that are being used by IPCC [9] as baselines for calculating 

the environmental impact that contributes to climate change. The two scenarios are A2 and B1 both 

derived from the Asian Pacific Integrated Model (AIM). The two scenarios were taken from  

about 40 ―possible‖ scenarios that the SRES calculations follow. The choice of the two scenarios 

follows IPCC in choosing one that approximates business-as-usual (A2) and one that is the most 

environmentally conscious (B1). SRES takes pain to discourage the use of ―bad‖ scenario and ―good‖ 

scenario but in the present context it is inescapable. The A2 storyline and scenario family describes a 

differentiated world with slower adaptation of technological changes that is consolidated into a series 

of economic regions in which income differentiations do not narrow. The B1 storyline describes a 

world with high level of environmental consciousness with globally coherent approach. The actual 

changes from 1993 to present were compiled based on the BP listings [10]. 

Figure 1. Real and projected changes in global CO2 emissions (co2 emissions expressed in 

units of 10
9 
metric tons of carbon); (data taken from the BP database [10] superimposed on 

the projections of two SRES scenarios [8]). 
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Figure 1 shows the actual CO2 emissions between 1993 and 2007 superimposed on the A2 and B1 

projections by SRES. The units are in Billion tons of carbon. All curves were determined by source 

emissions (and projections) not by atmospheric concentrations. 

To introduce the time element in our environmental transition one needs to determine possible end 

point. The IPCC did this in its 4th report by converting the emissions into concentration and using a 

climate sensitivity of 2.5 °C for an expected rise in the average global temperature on doubling the 

atmospheric CO2 concentration from the pre-industrial revolution level of 280 ppmv. I use here the 

optimal assumption that the numbers, shown in Table 1, will stay unchanged for the rest of the century, 

resulting in about half of the anthropogenic carbon dioxide being sequestered by the land and ocean 

components of the carbon cycle while the other half accumulates in the atmosphere. Based on this 

assumption one can estimate that by 2050 both scenarios will exceed the 2 °C average global 

temperature increase of the IPCC’s ―red line‖ in which adaptation can be a viable policy. After  

mid-century, the A2 scenario takes off quickly reaching concentrations that lead to average global 

temperature that exceeds the 4 °C increase in which major extinctions are predicted to take place with 

deadly impacts on the entire ecosystem. In these estimates the sequestered fraction of the emitted 

carbon dioxide is assumed to remain constant. The oceans are estimated to be responsible for  

about 65% of that amount—however, the balance is very delicate. The only region of the ocean that 

sequesters carbon dioxide is the tropics between 14°S–14°N, the rest of the oceans are net  

emitters [11]. The balance is a small net sequestration. Any changes in the partial pressure differences 

of the air-sea interface can change the balance. The same is true of the additional sequestration by 

land—major melting of the permafrost is expected to have a major impact. The time scale for these 

feedback mechanisms is not understood. The effects of major (larger than 2 °C) global temperature 

changes on economic development and energy use are also not being considered in these projections. 

A popular phrase in discussing climate change is that action choices can be grouped in categories that 

can be labeled as mitigation, adaptation or disaster. Figure 1 and the rest of the article will show that 

there is a need for intensive mitigation to start now before adaptation can be a credible long  

term solution. 

Figure 2 shows that the major difference between the A2 and the B1 projections is the population 

increase to about 15 billion by the end of the century, predicted by the A2 scenario, as contrasted with 

the B2 scenario that expects population to peak in mid-century to about 8 billion, slightly declining 

thereafter to about 7 billion. The difference in the projected population increase is the major factor in 

the projected increase in the GDP/Capita that is given in constant US$ as shown in Figure 3 (The real 

segment of the data are given in constant 2,000 US $). Nevertheless, both scenarios predict a major 

average wealth increase that raises some valid eyebrows to the inconsistencies with the disaster 

predictions of Figure 1. This contradiction comes as direct consequence of the inability to include 

feedbacks into the future scenarios. 
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Figure 2. Real and projected changes in global population (data taken from the BP 

database [10] superimposed on the projections of two SRES scenarios [8]). 

 

Figure 3. Real and projected changes in GDP/Capita (Source for the real population and 

GDP is the BP database [10]; data for the GDP are in constant 2000 US$. Projections are 

based on two SRES scenarios [8]). 

 

The amount of energy required to achieve this projected increase in wealth is shown in Figure 4. 

Figure 4 presents the data in form of primary energy use per capita. The fascinating aspect of this 

graph is that the projections for the primary energy use per capita are independent of the scenario. 

Since the A2 scenario projects population to more than double toward the end of the century while the 

projection for the B1 scenario projects only a modest change over present population, the total energy 

needed for the A2 scenario increases proportionally. 
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Figure 4. Real and projected changes in global primary energy use (energy use in units  

of 109 Joules); (data taken from the BP database [10] superimposed on the projections of 

two SRES scenarios [8]. 

 

 

Both scenarios project a continuation of the present trend of major increase in efficiency of using 

energy as reflected in the decrease of energy intensity. This trend is shown in Figure 5. The large 

initial offset between the projections for both scenarios remains approximately constant. 

Figure 5. Real and projected changes in global energy intensity (units expressed  

in 10
9
 Joules/2,000 US$); (data taken from the BP database [10] superimposed on the 

projections of two SRES scenarios [8]). 

 

 

Figure 6 shows the fraction of non fossil fuel energy sources that are presently used and projected to 

be used in the future. The present trend show that this fraction didn’t change much over the  
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last 20 years and in the two scenarios it is projected that by mid-century to slightly increase to  

about 20% of the total energy. From this date on the A2 scenario does not project much change in this 

ratio to the end of the century while the B1 scenario projects an increase to about 50%. This is a major 

difference that together with the projected rise in population are responsible for the difference in 

projected outcome shown in Figure 1—from atmospheric changes that are predicted to result in 

manageable environmental changes as predicted by the B1 scenario to the unmanageable self inflicting 

genocide predicted by the A2 scenario. The rest of the paper will examine if, based on present data, 

this aspect of the prediction is credible. 

Figure 6. Real and projected changes in global use of non fossil fuels (data taken from the 

BP database [10] superimposed on the projections of two SRES scenarios [8]). 

 

The three components that dominate present Non-fossil energy sources are nuclear power, 

hydroelectric and a catch-all category that the World Bank designates as Combustible, Renewable and 

Waste (CRW). The dominant users of CRW are underdeveloped countries that don’t have fossil fuels 

and do not have the resources to import them. In its present form it is not a sustainable alternative to 

global use of fossil fuels. 

Figure 7 shows the history of the global use of nuclear energy and hydroelectric energy. The figure 

shows that present annual growth rate of these energy sources is under 2% (for nuclear this is the 

growth rate after 1987 that followed a period of much more rapid growth). This growth rate will not 

bring us to the 50% non-fossil use required under the B1 scenario or any other scenario that claims to 

stabilize the atmospheric concentration of greenhouse gases. 

Both, the hydroelectric and nuclear power generation method, rely on big projects with long 

construction time. Construction of a ―typical‖ nuclear power plan can take about 10 years and 

construction of the largest and most recent hydroelectric plan, the Three Gorges Dam across the 

Yangtze River in China, has started on December 1994 and is expected to be fully operational  

in 2010–2011. The Power Plant will have 32 generating units with generating power of 700 MW. The 
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total generating capacity (if fully operational year around) is 0.7 EJ. Nobody expects a repeat of such a 

project in the coming century. 

Figure 7. Changes in global use of nuclear and hydroelectric energies (expressed in  

Exa Joules); (data based on the BP database [10]). 

 

 

Direct solar energy conversion methods such as wind power, photovoltaic and photo thermal 

methods, are emerging technologies that presently are buried within the noise in the global statistics of 

energy use. However the statistics is based on past and present use. The future looks a bit brighter. 

Figure 8. Changes in the global accumulated installed capacity of wind turbines [12] 

(based on compilation by Earth Policy Institute with 1980–1994 data from Worldwatch 

Institute, Signposts 2004, CD-ROM (Washington, DC: 2004); 1995 data from Global Wind 

Energy Council (GWEC), Global Wind 2006 Report (Brussels: 2007); 1996–2007 data 

from GWEC, ―US, China & Spain Lead World Wind Power Market in 2007‖). 
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Figure 8 shows the global accumulated installed capacity of wind turbines [12]. The present 

accumulated capacity of 100 Gwatts, if constantly operating (they are not), is equivalent to 3.1 EJ. 

This number is still within the noise. However, the growth rate averaged over the last 20 years  

exceeds 20%. Solar photovoltaic is recording similar growth rates, albeit from a lower level. The 

expected global energy use in 2050 is around 900 EJ. Maintaining this growth rate for another 15 years 

will get us to the 50% required 2050 level. This is very ambitious but not impossible. The present price 

of wind power is competitive with whole sale power prices in the United States [13]. 

 

3. Conclusions 

 

Following recent political jargon, the message that emerges out of the data analysis is—―Yes We 

Can‖. The data show that, based on present technology and present growth rates, global energy 

requirements needed to satisfy economic growth can be implemented on a time scale that allows 

adaptation to the new environmental conditions. Sustainable technologies that are presently expanding 

at a rate that satisfies these requirements include wind conversion, photovoltaic and photothermal 

conversion. This is not an attempt to advocate a single set of solutions for a major substitution of the 

worlds energy sources to a given, sustainable, zero-carbon footprint alternatives. Small scale high rate 

of growth almost never extrapolates to a large constituent of an energy mix unless major changes take 

place. Presently, because of the small scale, availability of raw construction material is not a limiting 

factor—this will change. Global public acceptance for the transition is essential. Price didn’t enter any 

of our considerations here—the reason is that major aspects of the price adjustments will be carried out 

by the fossil fuels and by the developing global attitude that disposal should be an important factor in 

the price structure. In a sense, since the issue is existential and the time is short and there are no 

alternative planets with less expensive disposal policies, the discussion should not be whether to pay 

but only who will pay. This is a question that rests outside the Popperian boundaries of the 

applicability of the scientific method. 
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