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Abstract: The mineralogical characterization of Mars by different exploration missions, 

provides a new image of the earliest conditions that prevailed on the planet surface. The 

detection of extensive deposits of phyllosillicates has been considered to be as a result of 

the production of hydrated silicates through alteration and precipitation under neutral to 

sub-alkaline conditions. Although extensive deposits of carbonates should precipitate 

beneath a thick CO2-bearing atmosphere, only a few outcrops of Mg-rich carbonates have 

been detected on Mars. Paradoxically those carbonates occur in association with geological 

units exposed to acidic paleoenvironments. Given such geochemical conditions on Earth, 

the carbon cycle is intimately associated with life, then, we can assume that the presence or 

absence of microbial communities should have impacted the distribution of those carbonate 

compounds on Mars. In this paper, we suggest three potential geobiological scenarios to 

explain how the emergence of life on Mars would have impacted the carbon cycle and, 

hence, the formation of carbonates on a planetary scale. 
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1. Introduction 

The latter missions to Mars have provided outstanding information about the earliest conditions that 

governed the primordial Martial surface environments. Mars Express and Mars Reconnaissance 

Orbiter (MRO), as well as the grounded Mars Exploration Rovers (MERs), have recovered essential 

mineralogical and geochemical information to reconstruct past conditions on Mars surface [1-3]. 

Interpretation of some planetary data suggest three distinctive periods during which various 

sedimentary materials and geomorphical structures were formed. The two first great episodes ranging 

from Early Noachian to Hesperian (4.5 to 3.4 Ga) were associated to very distinctive mineralogies like 

phyllosilicates and sulfates, respectively [4,5]. Whereas the sulfates have mostly been detected in 

terrains as old as Middle to Late Noachian (<4.0 Ga) in close association with ferric oxides like 

hematite, the phyllosilicate-rich deposits crop out topping the oldest basement ever found on  

Mars [6,7]. The formation of such an extensive set of materials has been explained by a strong hydrous 

alteration of the primary crystalline basement which induced the production of clays on a global scale, 

but other formative mechanisms like hydrothermal or weathering precipitation are also likely mineral 

forming processes which contributed to the phyllosilicate inventory. 

Although the weathering of a silicate crust produce on Earth great quantities of carbonates as  

by-products of the chemical neutralization of the solutions [8,9], on Mars few carbonate evidences 

have been found associated to the phyllosilicate deposits. Some scarce outcrops of carbonates have 

been reported in co-occurrence with phyllosilicates [10] which appear in Late Noachian terrains much 

younger and currently exposed to acidic conditions. The lack of carbonates in the early Noachian 

record have been explained as the result of weathering and chemical precipitation under a 

CO2-depleted atmosphere which promoted neutral to alkaline surface solutions [5]. However, recent 

modeling on the mantle oxidation state for early Mars suggests that CO2 was likely an abundant 

volatile in the Mars atmosphere [11]. Moreover, the detection of nontronites, a Fe3+-bearing clay, 

would suggest that some regions of the crust of Mars was also exposed to oxidizing conditions. 

One alternative explanation to the missing carbonates on the Mars surface could be the acidifying 

effect (see Table 1 for thermodynamical constraints) produced in the solutions by oversaturation of the 

carbon dioxide, which could occur through atmospheric overload during the Early Noachian  

times [11,12]. Under these conditions, dissolution of CO2 [13] would favor global acidification and 

promote carbonate inhibition in the surface regions of the red planet. The same mechanism could 

operate as an incipient process that induces moderate acidification of modern oceans as a consequence 

of anthropogenic CO2 emissions [14]. However, carbonate precipitation would be favored in those 

regions of the Mars crust where the surface solutions were isolated from the atmospheric input of 

volatiles. Such regions would be fractured basalts, Mars regolith, alteration units and fine-grained 

sedimentary deposits. In these geological settings, carbonate crystals could precipitate as a 

consequence of simple chemical neutralization of the surrounding waters (precipitating solutions) 

resulting in sedimentary bodies that, with time, would increase their size and volume.  

In this paper, we evaluate how the carbon cycle could operate on early Mars (~4.5 Ga) under the 

control of an emerging biosphere exposed to a global acidification maintained by CO2 emissions. The 

high concentration of CO2 interacting with an incipient biosphere, which did not take control in the 

geochemical cycling of carbon, would explain the absence of carbonates on the Mars surface, and 
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would explain the possible occurrence of those mineralogies in cryptic areas of the planet. Although, 

this model contemplates the presence of microbial life, we also consider a potential scenario where the 

carbon cycle would operate in a sterile planet. In this context, those mineralogies should have formed 

in the subsurface areas of Mars and would escape from the detection capabilities of the grounded and 

orbiter missions, they would be undetectable for the probes scrutinizing the Mars surface. The possible 

scenarios are built up on the basis of different environmental constraints which are supported by recent 

reports dealing with the early environmental conditions of Mars and based on geochemical data such 

as: (1) the surface of early Mars was exposed to an atmospheric overload exceeding 20 bar [11-13];  

(2) the mantle composition of Mars promoted partial pressures for CO2 higher than 5 bar [11,15,16];  

(3) the high geothermal gradient of the planet maintained surface temperatures well above 298 K [17,18]; 

(4) the low volatile accretion of Early Mars induced shallow continental water bodies [19] subjected to 

slightly oxidizing conditions (Eh > 0) [5]. Under these conditions, the production of phyllosilicates 

occurred in acidic and slightly oxidizing environments, which thermally favored weathering of the 

Martian crust. 

Table 1. Thermodynamical calculations to calculate the saturation index for carbonate 

minerals for a solution bearing SiO2 and equilibrated with an atmosphere enriched on CO2 

with 5 bar that would induce solutions with a pH of 3.5. The resulting solution does not favor 

the precipitation for any of the carbonate mineralogies that might be potentially formed. 

Aqueous species log activity
CO2 (aq) –0.77 
SiO2 (aq) –2.83 

Mg2+ –3.13 
Ca2+ –3.14 
Fe2+ –3.18 

HCO3
– –3.61 

FeHCO3
+ –4.07 

CaHCO3
+ –5.71 

MgHCO3
+ –5.71 

Mineral saturation log Q/K 
Siderite –3.1 
Calcite –5.1 

Aragonite –5.2 
Magnesite –5.5 

2. Carbonate Precipitation on Earth 

2.1. Geological and Biological Aspects of the Carbon Cycle on Earth 

CO2 is a greenhouse gas that plays an important role on the Earth’s climate. The concentration of 

CO2 in the atmosphere is controlled by the balance between gains and losses occurring during the 

transfer of carbon between air and other reservoirs such as the biosphere, the ocean and the Earth’s 

interior. The primary source of carbon/CO2 is outgassing from the Earth’s interior at mid ocean ridges, 

hotspot volcanoes, and subduction-related volcanic arcs. Much of the CO2 released at subduction zones 
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is derived from the metamorphism of carbonate rocks subducting with the ocean crust. Some of the 

outgassed carbon remains as CO2 in the atmosphere, some is dissolved in the oceans, some carbon is 

held as biomass in living or dead and decaying organisms, and some is bound in carbonate rocks. 

Carbon is removed into long term storage by burial of sedimentary strata, especially coal and black 

shales that store organic carbon from undecayed biomass and carbonate rocks like limestone (calcium 

carbonate). Plants, photosynthetic algae and bacteria use energy from sunlight to combine CO2  

from the atmosphere with H2O to form carbohydrates (CH2O). These carbohydrates store energy. 

Oxygen (O2) is a byproduct that is released into the atmosphere. This process is known as 

photosynthesis (Reaction 1).  

CO2 + H2O + sunlight → CH2O + O2 (1) 

Plants (and photosynthetic algae and bacteria) then use some of the stored carbohydrates as an 

energy source to carry out their life functions. Some of the carbohydrates remain as biomass. 

Consumers such as animals, fungi, and bacteria get their energy from this excess biomass either while 

living or dead and decaying. Oxygen from the atmosphere is combined with carbohydrates to liberate 

the stored energy. Water and carbon dioxide are byproducts (Reaction 2). 

O2 + CH2O → energy + H2O + CO2 (2) 

2.2. Carbonate Formation on Earth 

Carbon dioxide is removed from the atmosphere by dissolving in water and forming carbonic acid 

(Reaction 3) which is used to weather rocks, yielding bicarbonate ions, other ions, and clays  

(Reaction 4). Then, calcium carbonate is precipitated from calcium and bicarbonate ions in seawater 

by marine organisms like coral (Reaction 5). Finally, the carbon is stored on the seafloor in layers  

of limestone. 

CO2 + H2O → H2CO3 (carbonic acid) (3) 

H2CO3 + H2O + silicate minerals → HCO3
– + cations (Ca++, Fe++, Na+, etc.) + clays (4) 

Ca++ + 2HCO3
– → CaCO3 + CO2 + H2O (5) 

Almost all deep-sea carbonate-rich sediments are composed of calcite low in magnesium  

(99% CaCO3), which is primarily derived from pelagic skeletal organisms [20,21]. Indeed, carbonates 

in ancient sedimentary rocks are dominantly calcite (CaCO3) and dolomite [CaMg(CO3)2] predicted by 

equilibrium thermodynamics. This is reflected by the observation that about 20% by volume of 

Phanerozoic (0–547 Ma) sedimentary rock is made up of the carbonate minerals calcite and  

dolomite [20]. Over the history of Earth, the primary source of marine carbonate minerals has shifted 

from abiotic precipitation to biogenic sources [21]. Dolostone (sedimentary carbonate rock that 

contains a high percentage of the mineral dolomite), a very common carbonate sedimentary rock, is 

ubiquitous in the geologic record from the Precambrian to the Pleistocene. The rare occurrence of 

dolomite in modern environments constitutes the base of the Dolomite Problem [22,23]. McKenzie 

[22] suggested that the combination of models together with laboratory experiments could explain 
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diverse factors related with formation, such as a kinetic inhibition, and greatly increase our 

understanding of the different mechanisms of carbonates formation on the Earth surface. The variables 

that affect the rate of a chemical reaction are commonly referred to as kinetic factors [24] such as:  

(1) the Mg/Ca ratio [25]; (2) the carbonate ion concentration [26]; (3) the ionic strength of the  

solution [27]; (4) or the sulfate concentration of the solution [28]. 

Obviously, a large number of geochemical factors (e.g., thermodynamics, chemical kinetics, 

hydrology, host-rock mineralogy and texture) interact to form carbonate minerals. Recent studies 

consider a microbial factor in addition to the chemical requirements for the formation of carbonates 

and other authigenic minerals [29-31]. Most of these studies are based on field observations and 

validated by laboratory experiments. The role of microbes in mineral formation has been emphasized 

because inorganic changes in the conditions alone, could not induce mineral precipitation. The ability 

of living organisms to control and direct the precipitation of minerals is an important geo-biological 

process. In any event, a diverse microbial population is generally involved in carbonate precipitation in 

natural environments, including photoautotrophic cyanobacteria, bacteria producing ammonia from the 

oxidation of the organic compounds and hydrogen-oxidizing methanogenic archaea [32-36].  

We should also note the formation of carbonates in extreme hydrocarbon-bearing submarine 

ecosystems [37,38] and in environments associated to hydrothermal systems as has been recently 

documented for Mars [39]. Interestingly, some hydrothermal carbonates have been found associated to 

some acidic mineralogies like jarosite [40,41], which illustrate how variable the geochemical 

conditions can be that drive the mineral precipitation in a limited area.  

3. Control of pH in Surface Waters by Microbial Uptake of CO2 

Carbonate precipitation in surface waters is a common geochemical process that is actively 

mediated by different geobiological processes. Plants and microorganisms are effective geochemical 

pumps extracting CO2 from waters in the form of organic compounds or carbonate  

mineralogies [25,42,43]. In this context, the oceanic CO2 content sourced on the atmosphere and 

submarine hydrothermal centers [44] is efficiently removed by biological activity that, together with 

the crustal neutralization, increase and maintain the pH between 7.5 and 8.1 [45]. On the other hand, 

the pH would decrease to acidic ranges if all the CO2 integrated in both organic and inorganic 

compounds were released to the surface solutions. Therefore, in a sterile Earth, where the 

biogeochemical extraction of CO2 would be inactive, the open water bodies would equilibrate  

at 293 K to a pH below 4 subjected to an atmospheric concentration of CO2 about 10 bar. In this 

situation, the carbonate formation would be restricted to marginal areas where CO2 is eventually 

pumped out by reaction in subsurface regions or marginal water bodies partially closed to the CO2 

sources. Therefore, both pressure and temperature are two essential parameters that control the 

dissolution rate of CO2. In deep oceanic areas, characterized by high pressure and low temperature 

conditions, the CO2 solubility would be much greater than in shallow waters [13] which are directly 

exposed to the atmosphere. As a consequence, it is very likely that an Earth deprived of life would host 

acidic oceans that would prevent the formation of carbonates [46]. 

Venus is an extreme, but interesting comparison, where a great part of the volatile inventory in the 

planet has been relocated to the atmosphere as a consequence of its extreme thermal conditions. In this 
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planet, the atmosphere accommodates about 90 bar of CO2 [47] which roughly doubles the total carbon 

content estimated for the hydrosphere, biosphere and upper crust on Earth [42]. Such 

overconcentration of CO2 would equilibrate the chemistry of a terrestrial-sized hydrosphere with a 

meteoric pH lower than 3 at 293 K. Assuming the same proportion of carbon removal through 

microbial and geological activity in Earth, the CO2 concentration in Venus atmosphere would have 

roughly 510 ppm [48] which would average the pH meteoric and seawater solutions around 4.8 and 8 

respectively (Figure 1). 

Figure 1. Expected ocean pH at 298 K calculated on the basis of atmospheric CO2 

equilibrated with calcite using the polynomial equation shown by Loáciga [48]. 

 

4. Carbonate Distribution on Mars 

By considering the premise that Early Mars (~4.5 Ga) likely had an atmosphere enriched in CO2 

and a crust subjected to a high geothermal gradient [11,12], the production of phyllosilicates by 

weathering, apart from hydrothermalism and volcanism, would be the primary geochemical process 

that would greatly change the geochemistry of the basaltic primordial crust. The acidic leaching 

promoted by warm temperatures (~323 K) and CO2-rich meteoric waters (pH < 3.5) exposed to a dense 

atmosphere (>20 bar) [15] would prevent carbonate formation on the surface, but the precipitation of 

carbonates in CO2-depleted underground environments. Although this CO2 consumption can have 

occurred through abiotic pathways, microbes are excellent catalysts that accelerate, by several orders 

of magnitude, the chemical reaction rates. In this sense, the microbial metabolism creates pH and Eh 

strong gradients which favors the carbonate precipitation in those geological scenarios subjected to 

geochemical undersaturation in carbonates. As a consequence, the formation of carbonate minerals and 

other mineralogies in an early terrestrial planet exposed to acidification would be far different whether 

life emerges or not. Moreover, assuming that life emerged on Early Mars, the carbonate factory may 
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have been far different depending both on the microbial metabolism plus surface waters versus 

underground colonization of Mars. 

Having all the previously expounded context in mind, the apparent lack of carbonates on Mars can be 

understood in terms of different geobiological scenarios where carbonate mineralogies were inhibited on 

the surface or formed in cryptic areas which are restricted to the detection instruments onboard the Mars 

missions. As a result, three different geobiological scenarios in Mars where carbonates might have 

formed can be postulated, these scenarios are discussed in the following sections. 

4.1. Carbonates in a Sterile Mars 

In a sterile world, the main loss of CO2 would be the weathering of the primordial crust in which 

kinetics depend on the temperature of the planet surface. Given that surface carbonates should form 

once the CO2 consumption increases the pH of the surface waters to the chemical threshold of 

carbonate precipitation. The inhibition of carbonates suggest that the crust alteration ceased or never 

compensated the acidic conditions of the meteoric solutions to reach mildly acidic-neutral conditions 

which are necessary to form extensive deposits of these mineralogies. Assuming that surface waters of 

Mars never neutralized completely over the first millions of years, it can be concluded that 

precipitation of carbonates would be possible in those crustal areas under CO2 reaction with the crust 

in some areas. In this case, different subsurface and cryptic areas would be plausible locations to 

neutralize incoming surface solutions. The lower part of the alteration deposits would be a potential 

place for carbonate formation after the neutralization of the acidic surface waters (Figure 2a). They 

would occur below the oxide minerals and phyllosilicates which are formed through the alteration of 

the primary siliceous crust.  

Moreover, the CO2 could also be removed by reacting with the Mars aquifers which are emplaced 

in fractured basaltic materials [49]. However, the alkalinization of solutions can also be promoted in 

the internal fluids trapped in the extensive sedimentary bodies of clay that were formed by strong 

alteration of the early crust of Mars. Inside these deposits, the internal solutions, initially enriched in 

CO2, would gradually be neutralized through the formation of bicarbonate ions until a compensation 

depth allowing solutions to be oversaturated in carbonates.  

4.2. Carbonates on Mars Inhabited with both Surface and Subsurface Life  

The emergence of life on Mars should have impacted the carbon cycle during the earliest planetary 

development to create a new global carbon reservoir. Assuming that Mars life inhabited the surface, 

the only way to explain the apparent lack of carbonates would be the formation of these mineralogies 

in very shallow underground regions of the planet (Figure 2b). Although carbonates would form in the 

same areas as in a planet depleted of life, these mineralogies might occur in shallower areas of the 

crust depending on the predominant metabolism of the microbial communities. A faster CO2 removal 

by microbial uptake would favor a higher alkalinization of the incoming waters which would raise the 

compensation depth for the carbonate oversaturation and, therefore, its precipitation at higher locations 

of the crust. As a result, carbonate formation would occur extensively in those three different locations 

like alteration deposits, aquifer of fractured rocks and sedimentary bodies, at shallower depths than 

those expected for a sterile planet. Despite the fact that autotrophic microbes would remove great 
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quantities of CO2 favoring the neutralization of the surface solutions, the activity of heterotrophs 

would promote a local increase of CO2 and carbonate undersaturation. This effect together with the 

regional increment in the rate of volatile production through volcanic centers might locally modify the 

distribution of alkaline mineralogies in the subsurface areas subjected to greater influx of CO2 to  

the atmosphere. 

Figure 2. Different geobiological scenarios for carbonate formation on early Mars 

assuming acidic conditions for the first millions of years under an atmospheric pressure  

of 20 bar where 5 bar corresponds to CO2. (a) Carbonate formation in a sterile planet.  

(b) Carbonate precipitation through microbial activity inhibited by destruction of early 

habitats; in this case an incipient of pH increase should be expected for surface water 

bodies. (c) Development of the carbonate factory in the subsurface through combined 

heterotophic and chemolithoautotrophic regulation of the carbon cycle. 
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The colonization of surface habitats by microbial communities would maintain a new carbon 

reservoir which would sequester CO2 stored in the atmosphere and hydrosphere in the form of biomass. 

As a consequence, the emergence of a biosphere on the Mars surface habitats would increase the pH in 

the water bodies and would provide organics to the fine-grained sediments that were formed in 

weathering and sedimentary systems. Existence of surface bacteria would favor a faster neutralization of 

waters which should have impact on the mineralogy which likely would favor the emergence of space 

limited oasis were the precipitation of small-sized carbonate patches, undetectable by remote sensing, could 

be possible. Moreover, in this context, it is very likely that, even under acidic conditions, the microbial 

activity can induce the production of small-sized dispersed carbonates in the clayey sedimentary 

matrix through strong pH and Eh microgradients. As these mineralogies can hardly be detected by 

remote sensing, the presence of carbonates biotically and/or abiotically mediated can be missed and the 

paleoenvironments of Mars incorrectly interpreted. Although very recently, Mg-Fe carbonates have 

been identified using the Mars Exploration Rover (MER) Spirit in the Columbia Hills of Gusev  

crater [39], these carbonates probably precipitated from carbonate-bearing solutions under 

hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian 

era [41].  

4.3. Carbonates on Mars Inhabited with Subsurface Life 

An extreme, but also feasible possibility, is the emergence of a cryptic biosphere [50] whose 

activity would activate the carbonate factory in cryptic areas of the Martian crust (Figure 2c). Although 

heterotrophic life has been described as the main biological agent to form carbonates in the subsurface, 

chemolithoautotroph organisms would release components like methane and ethane providing organic 

compounds to the heterotrophic organisms and, thus, favoring the formation of carbonates. Methane 

and ethane consumers, which drive the anaerobic oxidation of methane (AOM) [51,52] through the 

reduction of SO4
2–, currently form carbonates in deep and cryptic regions of ocean and crust. Similar 

biogeochemical processes are mediated by heterotrophic bacteria which have been associated to 

carbonate formation [14,34]. In this case, the microbial activity favors the neutralization of the 

precipitating solutions through complex biogeochemical pathways which involve autotrophic CO2 

uptake, organic compounds degradation and heterotrophic release of CO2 through the reduction of iron 

and/or or sulfur [52] By means of an intricate biogeochemistry, the potential subsurface life may have 

induced the massive production of carbonates that have been accumulated over the first millions of 

years in the cryptic regions of Mars. Although the same process could occur abiotically under 

neutralization of meteoric solutions, the extension and distribution of the subsurface carbonates 

produced by microbes would be much higher than those deposits formed by simple geochemical 

mechanisms. This is the case of some carbonates microbially mediated that have been observed in 

cryptic areas of the Río Tinto acidic environment [53] where carbonates occur in subsurface sites 

exposed to acidic oxidation [54]. 

5. Carbonates and the Emergence of Life on Mars  

Whether or not life arose on Mars, has likely been associated, as on Earth, to the formation of 

carbonates in surface and/or subsurface regions. However, the lack of extensive carbonate deposits 
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originated in surface water bodies suggests that they were inhibited through different geochemical 

factors. One of the reasons could be the acidification of surface waters by a CO2 overconcentration in 

the atmosphere that can be expected in young planetary bodies [11,12]. However, under these 

conditions microbial activity can uptake and store huge quantities of CO2 in the form of organic 

carbon, neutralizing the solutions and generating carbonates. Therefore, the lack of extensive 

carbonates should be associated to the clayey deposits of the Early Noachian and those carbonates may 

not have formed due to three different reasons: (1) Life never arose on Mars and abiotic carbonates 

were inhibited by a peculiar geochemistry; (2) Microbial life colonized the surface waters but did not 

take the chemical control necessary to produce extensive carbonates; (3) Life inhabited the cryptic 

habitats of Mars depositing carbonates in the subsurface. 

These three different scenarios would be plausible under the great paleoenvironmental changes that 

forced Mars to have a transient hydrosphere over the first billion of years of planetary evolution [55]. 

During the same span of time, life on Earth initiated the chemical control of the carbon cycle to neutral 

conditions through a continuous CO2 uptake assisted by the meteoric weathering of the terrestrial crust. 

Under these conditions, the first microbial communities formed carbonates in the shallower regions of 

the oceans which were recorded as silicified deposits associated to extensive volcanosedimentary 

systems [56]. In this way, Earth was provided with a stable hydrosphere which favored the formation 

and coupling of the different biogeochemical cycles. On the contrary, the missing carbonate on Mars 

suggests that its hydrosphere did not likely have enough time to acquire a geochemical mature stage to 

stabilize the geochemical cycling of carbon. Whether this effect was a product of the atmospheric 

chemistry, the climatic change, the inhibition of a biosphere or a simple artifact, is an essential 

question that the exploration of Mars has to face as key elements to understand how to operate the 

carbon cycle in early times, critical for the understanding the distribution of life in the Universe. 
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