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Abstract: This study investigates whether the environmental Kuznets curve (EKC) 

relationship is supported for a measure of biodiversity risk and economic development 

across the United States (US). Using state-level data for all 48 contiguous states, 

biodiversity risk is measured using a Modified Index (MODEX). This index is an 

adaptation of a comprehensive National Biodiversity Risk Assessment Index. The 

MODEX differs from other measures in that it is takes into account the impact of human 

activities and conservation measures. The econometric approach includes corrections for 

spatial autocorrelation effects, which are present in the data. Modeling estimation results 

do not support the EKC hypothesis for biodiversity risk in the US. This finding is robust 

over ordinary least squares, spatial error, and spatial lag models, where the latter is shown 

to be the preferred model. Results from the spatial lag regression show that a 1% increase 

in human population density is associated with about a 0.19% increase in biodiversity risk. 

Spatial dependence in this case study explains 30% of the variation, as risk in one state 

spills over into adjoining states. From a policy perspective, this latter result supports the 

need for coordinated efforts at state and federal levels to address the problem of 

biodiversity loss. 

Keywords: biodiversity risk; environmental Kuznets curve; United States;  

spatial econometrics 
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1. Introduction 

As with numerous other countries and regions [1], there is increasing concern over the rapid loss of 

biodiversity in the United States (US) [2]. The importance of this “biodiversity crisis” (Mooney [3]) at 

both national and international levels is seen through connections to ecosystem services. Biodiversity 

crosses different organizational levels of genes, species, and ecosystems to support the functionality of 

ecosystems [4,5]. There is an increasing body of research linking the functionality of ecosystems to 

human welfare and the maintenance of sustainable social and economic systems that depend upon 

those ecosystems [3]. Diverse species interactions within the structural characteristics of ecosystems 

support the flow of services that provide benefits to human societies. Broad categories of service flows 

include: provisioning (e.g., food, fiber, and pharmaceuticals); regulating (flood control, disease control 

and water purification); and cultural (aesthetic, spiritual, and recreational) [1]. Social and economic 

systems interact and affect biodiversity through landscapes (e.g., from degraded habitats to protected 

wilderness areas, and watersheds for urban water supplies), myriad production and consumption 

choices [6,7], the laws we enact (e.g., the US Endangered Species Act [8], and the international 

Convention on Biodiversity [3]), and the values we hold (e.g., amenity, option and existence values for 

species protection) [9,10]. 

Biologists and conservationists have expended significant effort to understand the factors that 

account for the decline in biodiversity, and communicate their importance in a policy context [3,11]. 

Understanding the empirical relationship between biodiversity risk and economic growth measures can 

help ground these efforts. The environmental Kuznets curve (EKC) hypothesis postulates an inverted 

U-shaped relationship between some environmental degradation measure (graphed on the vertical axis) 

and some measure of economic growth or welfare, such as the level of per capita income (graphed on 

the horizontal axis). In other words, under the EKC hypothesis environmental degradation is initially 

expected to rise with increases in economic development and then fall after per capita income passes 

beyond a certain critical threshold (or income “turning point”). Mixed empirical evidence in support of 

the EKC hypothesis has sometimes been construed to imply that countries (or states and regions) can 

simply grow their economy out of environmental degradation [12,13]. Yet, many authors are highly 

skeptical of this idea because of the mixed pattern of evidence supporting the EKC, that many 

estimated income turning points are at extremely high level, and broader notions of ecological 

thresholds and environmental carrying capacities [14]. 

The accumulated evidence from a number of meta-analyses [15-17] shows that the absence or 

presence of an EKC relationship systematically varies across the type of environmental degradation 

measure investigated, as well as a number of data and study methodology characteristics. Whether an 

EKC relationship holds for biodiversity risk, especially across states within any single large country 

like the US, remains an open empirical question. The mixed results from the meta-analyses suggest 

that some measures of environmental degradation are complex in nature and hard to measure, such as 

transboundary pollution and biodiversity risk. In addition, the presence of measurement issues coupled 

with the fact that biodiversity risk may be a complex environmental bad, may be the basis for not 

expecting an EKC relationship for biodiversity risk [17].  

This study develops a state-level multivariate index for the US, titled here as the Modified Index 

(MODEX). The MODEX is modified from the national biodiversity risk assessment index (NABRAI), 
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developed by Reyers et al. [18] and Reyers and James [19], to handle geographic units (e.g., states or 

regions) within a single country. The objective is to investigate the EKC hypothesis for a broad 

measure of biodiversity risk in the US. Using state-level data for this constructed biodiversity risk 

index, the econometric modeling also corrects for spatial issues, and controls for a variety of economic 

and political factors. Estimation results provide no evidence to support the EKC hypothesis for 

biodiversity risk in the US. The results, however, demonstrate the significance of spatial spillover 

effects in explaining biodiversity risk among US states.  

2. Background 

The concept of an EKC, within the field of environmental and resource economics, was initiated 

with the work of Grossman and Krueger [20] and Shafik and Banyopadhyay [21]. They adapted the 

hypothesis from Kuznets [22], who had postulated an inverted U-shape relationship between income 

inequality and economic development [23]. Grossman and Krueger [20] used panel data from  

42 nations to find an EKC relationship for different measurements of air quality and economic 

development. In some of the earliest studies, Selden and Song [24] found evidence to support an EKC 

relationship for sulphur dioxide (SO2), while Grossman and Krueger [25] found that water pollution 

declines monotonically with per capita income, while carbon emissions rise with per capita income. 

Since these early studies, environmental and resource economists and others have conducted 

numerous empirical EKC studies across a wide range of environmental pollution or degradation 

measures. As select examples, Deacon and Norman [26], and Merlevede et al. [27], conducted EKC 

studies relating to air pollution. Paudel et al. [28] examined water pollution, Barbier [29] and Culas [30] 

examined deforestation, and Rupasingha et al. [31] examined hazardous waste and toxins. While  

less common than cross-national studies, a number of EKC studies have been conducted for spatial  

data (e.g., counties, states or regions) within a single country. For example, Wang et al. [32] examined 

hazardous waste sites in the US and found evidence to support an EKC relationship. With well  

over 100 empirical studies from 1992–2009 and with almost 900 estimated relationships, a series of 

meta-analyses have been published over the last decade [15-17], each building on the previous data set. 

The meta-analyses show that the absence or presence of an EKC relationship, and any expected 

income turning point (decoupling), depends significantly on the type and measure of environmental 

degradation or risk measure, scale and location, data characteristics and chosen estimation methods.  

A number of theoretical reasons have been hypothesized to cause the EKC observed for select 

environmental degradation and pollution measures. These include: income elasticity of environmental 

quality demand [33]; scale, technological and composition effects in an economy [34]; the pollution 

haven hypothesis [35] for polluting industries or firms; and a migration hypothesis [36] where relatively 

higher income and mobile households move away from accumulating environmental degradation. 

However, accompanying this growth in the EKC literature have been sharp criticisms related to 

inconsistencies or ambiguities in the theoretical modeling, as well as concerns over econometric and 

statistical analyses.  

The empirical question of an EKC relationship for biodiversity measures has largely been studied 

using simple indices of population stock values. The results are mixed. Dietz and Adger [37] examined 

the determinants of the number of species across a number of tropical countries and find no evidence of 
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an EKC relationship between per capita income and biodiversity loss. McPherson and Nieswiadomy [38] 

investigate the EKC hypothesis for the percent of threatened species using cross-sectional data from  

113 countries and find an N-shaped relationship between threatened birds and the level of per capita 

income (while controlling for spatial autocorrelation). They found no evidence, however, to support 

the EKC relationship for threatened mammals. Lantz and Martinez-Espineira [39] use panel data on 

bird populations in five different habitats from nine provinces in Canada and find evidence to support 

the EKC hypothesis for three of the five bird population habitat types. 

A broader biodiversity risk index, like the one applied in this study, can be constructed by considering 

three key variables, namely, stock, pressure and response variables [40]. A stock variable typically refers 

to a state’s biological richness or endemism. Pressure variables indicate a threat or danger to biodiversity. 

A response variable indicates a state’s efforts towards conservation. The National Biodiversity Risk 

Assessment Index (NABRAI) [18,19] and its variants consider human pressure and response variables 

along with stock variables. Mozumder et al. [41] examined the EKC hypothesis for a cross-section of 

countries using three versions of the comprehensive NABRAI index. After controlling for variables 

such as trade, foreign direct investment, foreign aid and number of tourists in their econometric model, 

they found no evidence to support an EKC relationship for biodiversity risk. An unanswered empirical 

question is whether an EKC relationship for biodiversity risk exists within a single country, such as in 

the case of the US (where access to data for a more complex index is relatively good). If so, an EKC 

result could imply that at least some nations may be able to show internal evidence of reducing the 

problem of biodiversity loss within a given pattern of economic development. 

The construction of a broad biodiversity risk for the US raises spatial data concerns. The data 

collected for the biodiversity risk measures are based on political boundaries, i.e., states, while the 

geographical distributions of species do not closely follow those political borders. Instead species’ 

distributions are determined by ecological and geophysical factors that can transcend political 

boundaries. The presence of spatial dependency implies that biodiversity risk in one state can spill over 

into neighboring states. These arguments are seen in some related EKC studies, notably those by 

McPherson and Nieswiadomy [38] on threatened birds and mammal species in 113 countries, and 

species imperilment investigations by Pandit and Laband [42]. These econometric studies identify the 

need to address and test for potential spatial autocorrelation, as the factors that determine biodiversity 

risk are likely to extend beyond arbitrary political boundaries like state borders. In a similar context, 

Maddison [43] contends that pollution emissions behavior of countries could be related to behaviors 

that exist in neighboring countries. He investigated the EKC hypothesis for four pollutants (sulphur 

dioxide, nitrogen oxides, volatile organic compounds and carbon monoxide) in 135 countries using 

data for the years 1990 and 1995. Using four specifications of the spatial weights matrix, tests showed 

the presence of spatial autocorrelation. He specified a first-difference model to examine the EKC 

hypothesis for each pollutant, and did not find evidence to support the EKC relationship. However, the 

results showed that spatial spillover effects were present. Building from these previous studies, this 

study explicitly accounts for spillover effects using spatial econometric or statistical methods.  
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3. Data Sources 

Data for the 48 contiguous US states analyzed in this study were obtained from several sources. 

Table 1 summarizes the descriptive statistics for the variables used in the econometric modeling. The 

analysis uses 2007 as the reference year; in some case, data is for a proximal Census year or a year in 

close range.  

Table 1. Variable Definitions and Descriptive Statistics. 

Variable Description Mean Min. Max. Std. 

LNMODEX Log of MODEX, MODEX = 2PR/(RE + ST) −0.968 −1.885 0.000 0.348 

LNPOPDENSE 
Natural logarithm of population density (number 
of persons per square mile) in a state in 2007 

4.494 1.676 6.899 1.205 

PFOREST 
Percentage of industrial activity in a state 
accounted for by forestry in 2007 

0.002 0.0002 0.010 0.002 

PMINE 
Percentage of industrial activity in a state 
accounted for by mining in 2007 

0.026 0.0002 0.300 0.054 

PCONST 
Percentage of industrial activity in a state 
accounted for by construction in 2007 

0.046 0.029 0.086 0.010 

LNSQMILES 
The natural logarithm of the land area in a state 
measured in square miles 

10.684 7.342 12.500 1.058 

PERCAP Mean state per capita income 2007 dollars 36,324 24,147 58,071 6,598 

COASTAL 
Dummy variable equal to 1 if a state has a coast 
and 0 otherwise 

0.437 0 1 0.501 

SENATE 
The number of times a state Senator voted in 
favor of key environmental protection issues in 
the US Congress in 2007 

53.395 0 93 31.977

HOUSE 

The number of times a state Representative 
voted in favor of key environmental protection 
issues in the US House of Representatives  
in 2007 

54.895 0 100 26.153

Information on threatened and endangered species was collected from the US Department of 

Interior’s, Fish and Wildlife Service [44]. Data on the major uses of land in the US were obtained from 

the US Department of Agriculture’s, Economic Research Service [45]. Urban growth information was 

obtained from Nowak and Walton [46]. The human population and per capita income data were obtained 

from the US Department of Commerce’s, Census Bureau [47]. The percentage of industrial activity 

accounted for by mining, forestry and construction were constructed with data from the US Department 

of Commerce’s, Bureau of Economic Research [48]. The League of Conservation Voters [49] provided 

data on votes cast on major environmental issues by Senators and Representatives in the US Congress. 

Data on species density, endemic species, and the number of species were collated from Stein [50]. The 

amount allocated to each state under the Pittman-Robertson Wildlife Restoration Act by the US 

Department of Interior [51], for 2007, was used as a proxy for the total conservation budget.  

Data on genetic resources and reference collections were obtained from the Museum of Southwestern 

Biology (University of New Mexico) multi-collection database [52]. This includes the total number of 

plant, animal and microbial genetic resource collections and the total number of reference collections 
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found in museums. State-level data used to construct the MODEX were collected from a variety of 

sources. A detailed description of each of the variables used in constructing the MODEX is provided  

in Table 2. 

Table 2. Variables, Definitions, Sources and Explanation of the Variables Used in 

Constructing the MODEX. 

Variable Definition Source Explanation 

th 
% threatened and 
endangered 
species 

US Dept. of the Interior/Fish 
and Wildlife Service [44] 

The percentage of total mammal, bird, 
reptile, amphibian and higher plant species 
that are endangered or threatened. 

pd 
human 
population index 

US Census Bureau [47] 
Human population density (number of 
people per square mile). 

hd 
High disturbance 
intensity 

US Dept. of Agriculture’s, 
Economic Research  
Service [45], Nowak and 
Walton [46] 

The percentage of total land acreage used 
for cropland, grassland pasture and range, 
urban areas, urban growth and logged areas. 

cb 
Natl. 
conservation 
budget 

US Dept. of the Interior/Fish 
and Wildlife Service [44] 

The amount allocated to each state under 
the Pittman-Robertson Wildlife Restoration 
Act for fiscal year 2007 divided by the 
gross domestic product per capita. 

pl Protected land 
US Department of 
Agriculture/Economic 
Research Service [45] 

The percentage of land that include areas in 
national and state park systems and national 
wilderness and primitive areas plus about 
2.5 million acres in New York classified as 
State forest preserves. Estimates exclude 
large water bodies and parks in urban areas. 

gr 
Genetic resource 
allocations 

Museum of Southwestern 
Biology at the University of 
New Mexico [52] 

The total number of plant, animal and 
microbial genetic resource collections. 

re 
Reference 
collections 

Museum of Southwestern 
Biology at the University of 
New Mexico [52] 

The total number of reference collections 
found in museums. 

sd Species density Stein [50] 

Calculated as the number of species per 
1000 hectares of land. Species include  
6 taxa groups—plants, animals, birds, 
reptiles, amphibians and fishes. 

en 
% endemic 
species 

Stein [50] 
Species that is unique or restricted to a 
particular state. 

ld 
Low disturbance 
intensity 

US Dept. of Agriculture, 
Economic Research  
Service [45] 

The percentage of total land that include 
uses not inventoried as well as marshes, 
open swamps, bare rock areas, desert, 
tundra, and other land generally of low 
value for agricultural purposes. 
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4. Methods 

The construction of the MODEX, the biodiversity risk index used in this study, follows  

Reyers et al. [18] and Reyers and James [19] who formulated a broad multivariate biodiversity risk 

index, the NABRAI. They use the NABRAI to rank 28 countries in 1999 and 103 countries in 1998 in 

terms of their biodiversity risk on a scale from zero to one, where zero is the lowest risk and one is the 

highest risk. In the construction of the NABRAI, these studies first classify variables into three 

categories: stock (ST), pressure (PR) and response variables (RE). PR variables include percentage of 

land area exposed to high disturbance level, percentage threatened species and population density. RE 

variables include conservation budget, percentage land area protected, number of genetic resource 

allocations, reference collections and conventions. The ST variable includes the percentage of land 

area exposed to low density, endemic species and species density. By adding up the values of the 

various components of PR, ST and RE, Reyers et al. [18] construct the initial version of the NABRAI 

using the formula: 

NABRAI  PR / (RE  ST )  (1)

Reyers and James [19] later construct the upgraded and improved index, denoted by NABRAI*  

as follows:  

NABRAI*  2PR / (RE  ST )  (2)

where PR, RE and ST are the total pressure value, total response value and total stock value, 

respectively. The numerator in the upgraded formula is multiplied by two in order to afford it the same 

weight as the denominator.  

In constructing the NABRAI*, all component variables are ranked from one to the highest value 

and these ranks are then used to calculate the pressure, response and stock values as follows: 

PR  (th  pd  hd) / 3  (3)

RE  (cb  pl  gr  re  co) / 5  (4)

ST  ld(sd  en) / 2  (5)

where: th = percentage threatened species rank, pd = human population index, hd = high disturbance 

intensity rank, cb = national conservation budget rank, pl = protected land rank, gr = genetic resource 

allocations rank, re = reference collections rank, co = biodiversity convention rank, sd = species density 

rank, en = percentage endemic species rank, and ld = low disturbance intensity rank. In order to afford 

comparisons on a unit interval, NABRAI* is normalized to lie between 0 and 1. 

The MODEX has a similar construction as NABRAI* except that it is modified to compare 

biodiversity risk of political units within a country. NABRAI*, the upgraded index, was chosen over 

NABRAI because the former is unitless [19]. Compared to the NABRAI* the biodiversity convention 

rank was omitted in the MODEX because the rank applies to sovereign countries and not to states 

within a country. Like the NABRAI*, the MODEX is normalized to lie between 0 (low biodiversity 

risk) and 1 (high biodiversity risk) allowing comparisons on the unit interval. A low value of 

biodiversity risk (MODEX), implies that a particular US state has a combination of low pressure 

values and high response and stock values. On the other hand, a high biodiversity risk (MODEX) 
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implies that a particular state has a combination of high pressure values and low response and stock 

values by virtue of the way the index is constructed.  

Table 3 below shows the calculated MODEX value and per capita income for the various states. In 

general, spatial patterns are suggested by Table 3. States with similar per capita income and MODEX 

values seem to be clustered together. In other words, states that are closer to each other generally 

exhibit more similar values than those far apart. As select examples, western states such as California, 

Oregon and Washington have MODEX and per capita income values that are similar. In the eastern 

US, Florida, Georgia and North Carolina also exhibit similar MODEX and per capita income values. 

Table 3. Comparison of MODEX and 2007 Per Capita Income for US States. 

State MODEX Income Per Capita State MODEX Income Per Capita 

Alabama 0.494 29,426 Nebraska 0.482 37,991 
Arizona 0.317 33,300 Nevada 0.305 40,657 
Arkansas 0.421 27,810 New Hampshire 0.254 37,829 
California 0.412 42,319 New Jersey 0.481 44,834 
Colorado 0.332 40,742 New Mexico 0.466 30,624 
Connecticut 0.509 51,139 New York 0.341 48,869 
Delaware 0.572 58,071 North Carolina 0.352 36,398 
Florida 0.423 33,702 North Dakota 0.357 35,454 
Georgia 0.341 34,792 Ohio 0.486 33,829 
Idaho 0.234 30,442 Oklahoma 0.264 28,851 
Illinois 1.000 40,142 Oregon 0.395 38,751 
Indiana 0.469 33,317 Pennsylvania 0.307 35,337 
Iowa 0.493 36,243 Rhode Island 0.575 36,516 
Kansas 0.603 34,571 South Carolina 0.295 28,676 
Kentucky 0.698 29,986 South Dakota 0.394 36,791 
Louisiana 0.253 33,022 Tennessee 0.492 34,012 
Maine 0.152 30,248 Texas 0.499 38,055 
Maryland 0.564 38,788 Utah 0.281 32,413 
Massachusetts 0.441 47,388 Vermont 0.247 34,383 
Michigan 0.253 32,940 Virginia 0.415 41,608 
Minnesota 0.295 41,060 Washington 0.401 40,218 
Mississippi 0.419 24,147 West Virginia 0.306 24,970 
Missouri 0.403 32,532 Wisconsin 0.265 35,178 
Montana 0.190 27,991 Wyoming 0.219 39,807 

Certainly, there may be other approaches to constructing a composite biodiversity index. Although 

not pursued here, alternatives to constructing other composite indices (although not specific to 

biodiversity), are seen in two recent EKC papers (Jha and Murthy [53]; and Paudel and Schafer [54]). 

Jha and Murthy [53] employed a principal components method to create an environmental degradation 

index (EDI) using six environmental degradation indicators: biodiversity destruction, deforestation, 

fresh water depletion, build up of toxic and non-toxic wastes, paper consumption, and natural resource 

erosion to study the EKC relationship for a cross-section of countries. Paudel and Schafer [54] 

developed a social capital index (SCI) using principal components analysis with variables such as 

number of business associations, professional organizations, public golf courses and bowling centers. 
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The SCI is then used as an explanatory variable to study the EKC relationship for Louisiana using 

parish-level data. The focus here is on using the MODEX in an EKC investigation of biodiversity in 

the US; this index is a modification of the NABRAI, which has been developed and discussed in the 

ecology and biodiversity conservation literature.  

Using the MODEX constructed with US data for the year 2007 (or the nearest available year 

between 2002 and 2011), the following econometric analysis of an EKC relationship for biodiversity 

risk is limited to a cross-sectional snapshot. Still this measure of biodiversity risk, like the NABRAI 

index, is more dynamic (if tracked over significant periods) than alternative measures. Biodiversity 

risk can increase or decrease over time because pressure and response activities fluctuate over time 

thus making it vary over time. On the other hand, pure biodiversity measures involving the number of 

species or percentage change of any particular species category (plant, birds and mammals) are 

typically static or declining over time. These dynamic effects cannot be estimated because the different 

data sources required did not permit for a time varying MODEX.  

5. Modeling Considerations 

The specification of the econometric model is based on prior EKC studies that use some measure of 

environmental degradation as the dependent variable, and per capita income, its squared and cubic 

terms are included as independent variables. Additional covariates, Z, are also included (or controlled 

for) in many EKC studies. The following econometric model is specified to investigate the EKC 

hypothesis for biodiversity risk: 

LNMODEXi = β0 + β1PERCAPi + β2PERCAPi
2 + β3PERCAPi

3 + Z′γ + εi (6)

where i indexes states, LNMODEXi is the natural logarithm of MODEXi, PERCAPi is the per capita 

income (measured in thousands of dollars), and εi is the stochastic error term assumed to be normally 

distributed. Equation (6) enables tests for various relationships between LNMODEX and per capita 

income variables as follows: 

(i) β1 = 0, β2 = 0, and β3 = 0 implies a flat pattern or no relationship. 

(ii) β1 > 0, β2 = 0, and β3 = 0 implies a monotonically increasing relationship or a linear relationship. 

(iii) β1 < 0, β2 = 0, and β3 = 0 implies a monotonically decreasing relationship  

(iv) β1 > 0, β2 < 0 and β3 = 0 implies an inverted U-shaped relationship, i.e., the EKC hypothesis. 

(v) β1 < 0, β2 > 0 and β3 = 0 implies a U-shaped relationship. 

(vi) β1 > 0, β2 < 0 and β3 > 0 implies a cubic polynomial or N-shaped figure. 

(vii) β1 < 0, β2 > 0 and β3 < 0 implies a relationship opposite to the N-shaped curve. 

The choice of covariates, Z, in Equation (6) is driven by a mix of theory and empirical findings  

of numerous EKC studies. Land conversion and deforestation have negative effects on plant and 

animal species [55]. Road construction and other infrastructure development contribute to species 

imperilment [56]. The variables PCONST (percent of industrial activity accounted for by 

construction), PMINE (percent of industrial activity accounted for by mining activities), and 

PFOREST (percent of industrial activity accounted for by forestry) are included to control for human 

activities such as deforestation, mining, and construction activities that encroach on the habitats of 

many plant and animal species.  
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The variable LNPOPDENSE (the natural log of population density) is included to control for 

population density in each state. Kerr and Currie [57] show that population density (as measured by 

persons per square mile) in a geographical region is positively related to the percent of threatened 

and/or endangered plant and animal species. The variable LNSQMILES (the natural log of the square 

mile of each state) partially controls for how land mass is related to the number of plant and animal 

species. Pandit and Laband [58] asserted that in many cases it is reasonable to believe that land area 

and the number of plant and animal species are negatively related: larger land areas may span a greater 

number of different ecosystems.  

The spatial weights matrix takes into account only the length of a border shared by neighboring 

states, but does not include the length or in anyway account for the coastal border (ocean/sea). Coastal 

regions are also more prone to additional pressure activities such as fishing and off-shore oil drilling. The 

dummy variable COASTAL, which equals one if the state has a coast zero otherwise, is included to 

capture these effects. This is viewed as a separate effect from the more general possibility of unobserved 

spatial spillovers between states. The socio-political regime may influence the income-environment 

relationship via the type of environment policies formulated and implemented by policymakers [59]. 

Two variables are included to control for socio-political regime. The variables SENATE and HOUSE 

represent votes in favor of key environmental protection issues of Senators and Representatives, by 

state, in the US Senate and the House of Representatives, respectively. Based on this discussion, the 

term Z′γ in Equation (6) is defined as:  

Z′γ = 4PCONSTi + 5PMINEi + 6PFORESTi + 7LNSQMILESi 
(7)

+ 8LNPOPDENSEi + 9COASTALi + 10SENATEi + 11HOUSEi 

In conformity with the above discussion, it can be hypothesized that 4 > 0, 5 > 0, 6 > 0, 7 < 0,  

8 > 0, 9 < 0, 10 < 0, and 11 > 0. 

5.1. Spatial Autocorrelation 

In this study, spatial autocorrelation may be caused by the fact that political boundaries and the 

geographical distribution of species don’t coincide. Spatial autocorrelation exists if the residuals from 

different geographical units are spatially correlated because they contain common omitted 

environmental or physical and economic factors [60]. The most common method used to correct for 

spatial autocorrelation is the spatial error model (spatial autoregressive process in the error term), 

which is formulated as ([61], pp. 34–35): 

y = Xβ + ε (7a)

ε = λW + u → ε = (I − λW)−1u (7b)

where W is a spatial weights matrix, λ is the autoregressive coefficient, X is an N × K matrix of 

exogenous variables associated with the K × 1 parameter vector, β, and u is an error term assumed to 

be homoscedastic and serially uncorrelated. Another common spatial regression model is the spatial 

lag model (spatial autoregressive dependent variable), which can account for the direct spatial effects 

of neighboring states. In this case, the classical linear model is specified as follows: 

y = ρWy + Xβ + ε = (I − ρW)−1Xβ + (I − ρW)−1ε (8)
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where ρ is the coefficient of the spatially lagged dependent variable. Both the spatial error model and 

the spatial lag model will be explored here. Spatial autocorrelation models require the specification of 

a spatial weights matrix among several options. The simplest spatial weights matrix is to assign values 

to each element in the matrix such that wij = 1 if states i and j share a common border and wij = 0 
otherwise [62]. With N = 48 states in the data set the spatial weights matrix is 48 × 48 consisting of 

2,304 elements of zeroes or ones. The spatial weights matrix used here has cells that contain the length 

of a given state’s border that is shared by another state. This can be considered the Rook criterion 

(locations sharing a boundary) and is commonly used in the literature to capture spatial effects. 

5.2. Endogeneity 

Endogeneity is a serious concern, especially in the context of MODEX. Several variables including 

population density and per capita income appear on both sides of Equation (6), as both explanatory 

variables themselves and as components in the construction of the composite index (MODEX). In 

addition, it is conjectured that the variables representing the percentage of industrial output devoted to 

mining, forestry and construction could be endogenous as well. This is potentially a problem due to the 

possibility of a simultaneity bias caused by endogeneity between the constructed MODEX index and 

per capita income, construction, mining and forestry variables. Per capita income generally depends  

on gross domestic product (GDP), which in turn can be positively related to increased industrial 

production (including mining, forestry, construction and other activities). In other words, per capita 

income, construction, mining and forestry may be jointly determined. In the case of simultaneity bias, 

OLS estimates are biased and inconsistent. However, endogeneity is an empirical question. To answer 

that question, a simple regression test of endogeneity, which is asymptotically equivalent to the 

Hausman test, is employed ([63], p. 287). This test involves two steps: (1) compute the residuals from 

a regression of endogenous variables on instruments (i.e., other predictor variables except per capita 

income, construction, mining and forestry); and (2) use these residuals in an OLS regression and test 

the joint hypothesis that the coefficients on the residuals are zero.  

6. Results 

Statistical analyses were undertaken using the software package Stata. First, the test results for 

endogeneity (F = 2.68) showed that the null hypothesis cannot be rejected at the 5% level; this 

indicates that per capita income, forestry, mining and construction variables are exogenous. Second, 

Geary’s c [64] and Moran’s I [65], two diagnostic tests, were undertaken to verify the presence or 

absence of spatial autocorrelation in the variable LNMODEX. The results of these tests are presented 

in Table 4.  

Table 4. Spatial Autocorrelation Tests for LNMODEX. 

Test Statistic Mean St. Dev. Z-value p-value 
Moran’s I  I = 0.168 −0.021 0.110 1.729 0.042 
Geary’s c  c = 0.719 1.000 0.149 −1.880 0.030 
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As shown in Table 4, the z-value for Moran’s I test is positive and significant, which indicates the 

presence of positive spatial autocorrelation in LNMODEX. The z-value for Geary’s c test is negative 

and also significant, which also indicates the presence of positive autocorrelation. So states with 

similar MODEX values are generally adjacent to each other. As a result, the basic OLS model was also 

re-estimated correcting for spatial autocorrelation.  

Table 5 presents the results of three models: Model 1—OLS regression; Model 2—spatial error 

regression; and Model 3—spatial lag regression. The spatial econometric models (2 and 3) are estimated 

because tests indicate that spatial autocorrelation is present. Results indicate that the spatial lag effect 

(Model 3) is significant at the 1% level, but the spatial error effect (Model 2) is not significant. Model 3 

is also shown to have the highest adjusted R2. On the basis of these results, Model 3 is the preferred 

model. As shown in Table 5, none of the covariates are statistically significant in Model 1. In Models 2 

and 3, the estimated coefficients for the covariates PCONST and LNPOPDENSE are significant at the 

10% and 5% levels, respectively. The variable LNPOPDENSE has the expected positive sign. The 

variable PCONST, surprisingly, has a negative sign. It is speculated that this may be due to the relative 

(construction measured as a percentage of total industrial activity) nature of this measure, rather than 

an absolute measure of construction activity. 

Table 5. Estimation Results for all Three Models. 

Variable Model 1 OLS 
Model 2  

Spatial Error Model 
Model 3 

Spatial Lag Model 

CONSTANT 
−0.4768 
(−0.09) 

−5.6621 
(−1.67) * 

−4.4069 
(−1.02) 

PERCAP 
−0.0137 
(−0.04) 

0.362 
(1.47) 

0.2816 
(0.88) 

PERCAP2 
0.0011 
(0.12) 

−0.0087 
(−1.38) 

−0.0066 
(−0.81) 

PERCAP3 
−0.00001 
(−0.17) 

0.00007 
(1.34) 

0.00005 
(0.78) 

PCONST 
−6.5654 
(−1.14) 

−7.3738 
(−1.70) * 

−8.3550 
(−1.79) * 

PFOREST 
4.1445 
(0.11) 

27.7855 
(0.96) 

32.4470 
(1.00) 

PMINE 
−1.6462 
(−1.28) 

−1.0406 
(−1.06) 

−1.335 
(−1.28) 

LNPOPDENSE 
0.084 
(0.98) 

0.1680 
(2.56) ** 

0.01876 
(2.38) ** 

LNSQMILES 
−0.0530 
(−0.61) 

−0.1031 
(−1.58) 

−0.0998 
(−1.39) 

SENATE 
−0.0021 
(−0.88) 

−0.0096 
(−0.521) 

−0.0013 
(−0.71) 

HOUSE 
−0.0034 
(−0.46) 

0.0013 
(−0.42) 

−0.0032 
(−1.01) 

COASTAL 
−0.0802 
(−0.46) 

−0.0934 
(−0.71) 

−0.1701 
(−1.170) 
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Table 5. Cont. 

Variable Model 1 OLS 
Model 2  

Spatial Error Model 
Model  

Spatial Lag Model 

λ  
0.0001 
(1.54) 

 

ρ   
0.0004 

(2.73) *** 
N 48 48 48 

Adj. R2 0.1 0.11 0.4 
Notes: * Indicates significance at the 10% level; ** indicates significance at the 5% level; and  
*** indicates significance at the 1% level. Numbers in parenthesis are the corresponding z-statistics 
for the spatial lag and error models, and the t-statistic for the OLS model. 

Focusing on the preferred model, Model 3, the estimated spatial lag coefficient (ρ) is statistically 

significant at the 1% level, which indicates that a 1% increase in biodiversity risk in a neighboring 

state leads to a 0.04% increase in risk in the home state. Furthermore, 30% of the variation in 

biodiversity risk is accounted for by spatial dependence [Adjusted R2 = 0.40 in the spatial lag model 

(Model 3) and 0.10 in the OLS model (Model 1)].  

With respect to the EKC hypothesis, estimated coefficients on the linear, squared and cubic per 

capita income terms are not statistically significant from zero in Model 3 (or in any of the other 

models). Thus, the null hypotheses of β1 = 0, β2 = 0, and β3 = 0 cannot be rejected which implies  

that there is no directional relationship, or turning points, between biodiversity risk and per capita 

income. Thus, using state-level US data, there is no empirical evidence that continued growth in the 

per capita income of US states ultimately will results in reduced biodiversity risk. Rather there is 

evidence of a decoupling of biodiversity risk and per capita income—a lack of an EKC relationship for 

biodiversity risk.  

A number of other statistical issues that were addressed in this study are heteroscedasticity, 

multicollinearity and outliers. It is a challenge to correct for both heteroscedasticity and spatial 

autocorrelation concurrently. From an econometric standpoint, the presence of heteroscedasticity 

and/or spatial autocorrelation does not bias the OLS coefficient estimates, but the estimates will be 

inefficient. The troubling aspect, however, is that the standard errors will be biased leading to 

inaccurate statistical inference. The Breusch-Pagan [66] test was performed in order to test for the 

presence of heteroscedasticity. 

The results of the Breusch-Pagan test revealed that the null hypothesis of homoscedasticity cannot 

be rejected at the 5% level (P-value = 0.60). Further diagnostic tests performed on the model results 

presented indicate that multicollinearity and outliers are absent. 

Finally, though not presented here, as a robustness check a specification with only per capita 

income variables as explanatory variables was also estimated for all three models. Consistent with our 

primary conclusions on the EKC hypothesis, the estimated coefficients on the linear, squared and cubic 

per capita income terms were not statistically significant. 
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7. Discussion 

This study investigated whether there is empirical evidence for the EKC hypothesis for biodiversity 

risk in the US. Using state-level data for the 48 contiguous states, OLS, spatial error and spatial lag 

models were estimated. Spatial econometric models were used because tests indicate that spatial 

dependence is present in the data on biodiversity risk. This is consistent with the notion that 

biodiversity risk is unlikely to adhere closely to simple political boundaries, such as state lines. The 

evidence showed that population density contributed significantly to biodiversity risk. This is 

consistent with expectations, and it is certainly not surprising that states with higher population 

densities are at more risk of biodiversity loss. Also the spatial lag effect is highly significant, but the 

spatial error effect is not significant. Furthermore, in the former model, most of the variation in 

biodiversity risk is accounted for by the spatial component. On the basis of these findings, the spatial 

lag model is the preferred model. Thus, the evidence is also consistent with the expectation from 

previous studies [38,42] that biodiversity risk in one political unit spills over into adjacent units (states 

in this case study). From a policy standpoint, this result supports the arguments for coordinated efforts 

at the state and federal levels to arrest the decline in biodiversity.  

The econometric evidence showed no support for the EKC hypothesis for biodiversity risk in  

the US, (i.e., per capita income variables are not statistically significant determinants of biodiversity 

risk). This result is robust across all three model specifications and is consistent with those of 

Mozumder et al. [41]. In their multi-country study, using several versions of the NABRAI [18,19], 

Mozumder et al. [41] also find that per capita income variables were not statistically significant, and 

there was no evidence for an EKC relationship for biodiversity risk across nations. The focus here has 

been on a national-level EKC investigation using a modification (MODEX) of the NABRAI, which 

was developed in the ecology and biodiversity conservation literature; valid future research 

investigations into the biodiversity-economic growth relationship might explore both alternative 

applications (e.g., other nations or regions), as well as alternative index construction [53,54] for a 

composite biodiversity measure. 

In closing, as studies accumulate, it is perhaps natural to question the relevance of each additional 

empirical EKC study. Yet, over the last several decades a number of sources have argued or 

implied [12,13] that society will simply be able to grow itself out of significant environmental problems, 

and cite select EKC evidence to support the more general argument. Indeed, there is certainly some 

empirical evidence of EKC relationships, found in the literature and available meta-analyses [15-17] for 

some environmental degradation measures (e.g., local air and water pollutants). However, the results for 

more complex degradation measures such as biodiversity risk and transboundary pollutants (like CO2) 

appear to show no systematic evidence to support the EKC hypothesis [16,17]. That is, the EKC 

relationship should not serve as any kind of referent or assumed case. As such, the relevance of  

the current results are that attempts to reduce biodiversity risk in the US and elsewhere [41] would  

appear to require specific policy actions, rather than relying on any assumption or expectation of 

simply growing out of the problem. Further, due to anticipated spatial effects, it may be expected that 

successful policy actions will have to be coordinated across adjoining political units.  

The more general policy lesson, which extends beyond this US case study (where available data is 

relatively rich), is that biodiversity risk is unlikely to adhere to simple political boundaries, and the 
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consequent need to account for spatial effects in risk reduction efforts and analyses. This includes both 

national and international contexts. For example, as Mooney ([3], p. 32) recently argued in an 

international context, the focus on national sovereignty and jurisdiction in the international Convention 

on Biodiversity (crafted at the United Nations Rio Convention in 1992), without full consideration of 

the spatial effects of activities across “other states or areas beyond the limits of national jurisdictions,” 

has severely limited its effectiveness as an international convention. 
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