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Theorem:  

The aggregate GSV measure   IaggrGSV n y f   x  indicates the sum of profit efficiencies of the 

firms in group I at the most favorable non-negative input prices. Specifically:   
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Proof:  

Starting from the average profit inefficiency stated on the right-hand side of the equation posited in 

the Theorem, we can reorganize the expression as: 
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Regarding the minimization problem, note that the cost of the average input vector (i.e., w x ) 

increases as the input prices w increase, whereas the profit function ( ) w  is a decreasing function of w. 

Since f is concave, ( ) w  is convex, and thus the minimization problem has a unique global optimum.  

Differentiating  ( ) w x w  with respect to input prices w, we have the first-order conditions: 

( ) 0 x w , (A5)  

where ( ) w  is the subgradient of the profit function at w. If f is differentiable, then the subgradient 

reduces to the gradient vector: 
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By Hotelling’s lemma (Hotelling 1932):  
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where ( )
x w  is the optimal profit maximizing input vector at prices w. 

Hotelling’s lemma can also be established for non-differentiable functions by using the sub-gradients 

(see e.g., Blume 2008 for details). In that case, ( )
x w  is not unique, but it does not influence the optimal 

solution to the minimization problem in (A4). 

Inserting the right-hand side of (A6) to equality (A5), we have the first-order condition: 

( ) 0 x x w . (A7)  
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Therefore, the optimal solution to the minimization problem of (A4) can be expressed as: 
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Inserting the last expression of (A8) back to (A4), we have: 

 max ( ) ( ) ( )i i Iy n y f aggrGSV


 
      

 


w 0
w x w x . (A9)  

 


