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Abstract: Cycle time management plays an important role in improving the performance 

of a wafer fabrication factory. It starts from the estimation of the cycle time of each job in 

the wafer fabrication factory. Although this topic has been widely investigated, several 

issues still need to be addressed, such as how to classify jobs suitable for the same 

estimation mechanism into the same group. In contrast, in most existing methods, jobs are 

classified according to their attributes. However, the differences between the attributes of 

two jobs may not be reflected on their cycle times. The bi-objective nature of classification 

and regression tree (CART) makes it especially suitable for tackling this problem. 

However, in CART, the cycle times of jobs of a branch are estimated with the same value, 

which is far from accurate. For these reason, this study proposes a joint use of principal 

component analysis (PCA), CART, and back propagation network (BPN), in which PCA is 

applied to construct a series of linear combinations of original variables to form new 

variables that are as unrelated to each other as possible. According to the new variables, 

jobs are classified using CART before estimating their cycle times with BPNs. A real case 

was used to evaluate the effectiveness of the proposed methodology. The experimental 

results supported the superiority of the proposed methodology over some existing methods. 

In addition, the managerial implications of the proposed methodology are also discussed 

with an example. 

Keywords: cycle time; estimation; classification and regression tree; back propagation 

network; wafer fabrication 
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1. Introduction 

Wafer fabrication is a complex and time-consuming process. First, photoresist patterns are  

photo-masked onto the surface of a wafer. Then, the wafer is exposed to short-wave ultraviolet light. 

The unexposed areas are etched away and cleaned. Subsequently, hot chemical vapors are deposited 

onto the desired zones, so that ions can be implanted to form specific patterns at the required depth. 

These steps are repeated hundreds of times, depending on the complexity of the desired circuits and 

connections that are usually measured in fractions of micrometers.  

This study aims to estimate the cycle time of a job in a wafer fabrication factory. The cycle time 

(flow time, manufacturing lead time) of a job is the time required for the job to go through the factory. 

Therefore, it is subject to future demand, capacity constraints, the factory congestion level, the quality 

of job scheduling, and many other factors. As a result, the cycle time of a job is highly uncertain. 

According to the competitive semiconductor manufacturing (CSM) survey, the best-performing wafer 

fabrication factory of memory products achieved an average cycle time of about two days per layer of 

circuitry [1]. Cycle time management activities include cycle time estimation, internal due date 

assignment, job sequencing and scheduling, and cycle time reduction (see Figure 1). In practice, 

shortening the cycle times of jobs is considered an effective way to improve the responsiveness to 

changes in demand [2]. In addition, according to [3], the number of defects per die has a positive 

relationship with the cycle time, which means reducing the cycle time can improve product quality. 

Further, estimating the cycle time of a job helps establish the internal due date for the job. At 

semiconductor manufacturing factories, the quantities allocated to customers are distributed to daily 

time buckets according to the available to promise (ATP), which is calculated according to the 

historical cycle time. For these reasons, estimating and shortening the cycle times of jobs is a very 

important task to maintain a competitive edge in this industry [4].  

Figure 1. Cycle time management activities. 

 

In the literature, various types of methods have been proposed to estimate the cycle time of a job in 

a factory. For example, probability-based statistical methods, such as queuing theory and regression, 

have been proposed. Furthermore, in these studies, some restrictive assumptions were made, such as 

exponential processing time distribution [5]. Recently, Pearn et al. [6] fitted the waiting time of a job 

in a wafer fabrication factory with a Gamma distribution. After adding the waiting time to the release 

time, the cycle time can be derived. This is one of the most important tasks in controlling a wafer 

fabrication factory. However, the fitted distribution became invalid quickly, making some cycle time 

estimates far from accurate [7]. Wu [8] constructed a Petri net to estimate the stage cycle time of  

dual-arm cluster tools with wafer revisiting. Hsieh et al. [9] modeled the response surface between the 

cycle time of normal lots and the percentage of hot lots in semiconductor manufacturing. Chen [10] 

fitted a fuzzy linear regression (FLR) equation to estimate the cycle time of a job in a wafer fabrication 

factory. A precise range of the cycle time was also determined. For the same purposes, Chien et al. [11] 
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fitted a nonlinear regression equation instead. Chen [7] applied classification and regression tree 

(CART) to estimate the cycle time of each job in a wafer fabrication factory. Principal component 

analysis (PCA) was also applied to generate independent variables from the original ones, which then 

served as the new inputs to CART. 

The application of artificial neural networks (ANNs) is also a mainstream in this field. For example, 

a self-organization map (SOM) was developed in Chen [12] to classify the jobs in a wafer fabrication 

factory into a number of categories. Chen [13] and Chang and Hsieh [14] have constructed back 

propagation networks (BPNs) (or feed-forward neural networks, FNNs) to estimate the cycle time of a 

job based on the attributes of the job and the current factory conditions. These studies indicated that 

linear methods are incapable of estimating the cycle time of a job, which supported the application of 

nonlinear methods such as ANNs. In addition, to improve the effectiveness of an ANN approach, 

classifying jobs before (or after) estimating the cycle times have been shown to be a viable strategy.  

To this end, several classifiers were applied, such as k-means (kM) [15], fuzzy c-means (FCM) [16], 

and SOM [12,17]. A common feature of these classifiers is that all attributes of a job are considered at 

the same time. In contrast, there are classifiers that consider only some of the job attributes, such as 

CART and fuzzy inference systems (FISs). The joint use of CART and BPN for estimating the cycle 

time of a job has rarely been discussed in this field. Chen [18] proposed a BPN tree approach in which 

the jobs of a branch are separated into two parts for either part a BPN is constructed to estimate the 

cycle times of jobs. However, Chen’s approach relies on extensive and iterative BPN re-learning. 

Genetic algorithm (GA) or genetic programming (GP) have also been applied to optimize the 

parameters of the existing FISs or ANNs to estimate the cycle time of a job, e.g., Chang et al. [19], and 

Nguyen et al. [20]. 

This study proposes a hybrid principal component analysis (PCA), CART, and BPN approach to 

estimate the cycle time of a job in a wafer fabrication factory. The significance of doing so is six-fold: 

(1) Hybrid algorithms have been shown to be more effective than (pure) algorithms. 

(2) Although variable replacement has been applied to forecasting in many industries, it has not 

been applied to job cycle time forecasting for semiconductor manufacturers. This study applies 

PCA to enhance the forecasting performance of the CART-BPN approach. 

(3) In CART, the cycle times of jobs of a branch are estimated with the same value, which is not 

accurate. In the proposed PCA-CART-BPN approach, a BPN is established for each branch to 

estimate the cycle times of jobs, which is expected to enhance the estimation accuracy. 

(4) Although clusterwise models, such as SUPPORT and treed Gaussian process models, have 

been used in various fields, they have not been applied to estimating the cycle time of a job in a 

manufacturing system. 

(5) Compared with the existing methods, the proposed PCA-CART-BPN approach classify jobs 

based on fewer job attributes, which is relatively easy to implement. It is also possible to assign 

more jobs to a branch. 

(6) The existing classifiers in this field, such as kM, FCM, and SOM, classify jobs based on their 

attributes rather than their compatibilities with the estimation mechanism. However, the 

compatibility with the estimation mechanism is important, and may be more influential to the 

estimation performance. In this regard, CART considers the estimation performance in 

classifying jobs, which makes it more suitable for the same purpose. 
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In the proposed PCA-CART-BPN approach, first the original variables are replaced according to 

the results of PCA analysis. Then, jobs are classified using CART. Finally, a BPN is constructed for 

each category to estimate the cycle times of jobs within the category. 

Table 1 is used to compare the proposed PCA-CART-BPN approach with some existing methods in 

this field. Some methods are easy to use because there have been a lot of software that can seamlessly 

complete all the necessary steps. 

Table 1. A comparison of the proposed methodology with some existing methods. 

Method 
Variable 

Replacement 
Classifier Estimation Method Easiness to Use Accuracy 

BPN [14] - - BPN Easy Moderate 

SOM-BPN [17] - SOM BPN Moderate High 

Pearn et al. [6] - - Gamma Distribution Fitting Easy Low 

SOM-FBPN [12] - SOM FBPN Difficult High 

kM-FBPN [15] - kM FBPN Difficult High 

PCA-CART [7] PCA CART CART Easy Moderate 

The proposed methodology PCA CART BPN Easy High 

The procedure of the proposed PCA-CART-BPN approach is detailed in Section 2, followed by an 

application to a real case in Section 3. Several existing methods were also applied to the same case for 

a comparison. Then, the advantages and/or disadvantages of each method were discussed. The managerial 

implications of the proposed methodology are discussed in Section 4. Finally, Section 5 summarizes 

the findings of this study, and puts forward some directions that can be explored in future studies. 

2. Methodology 

The proposed methodology is composed of five steps, as illustrated in Figure 2. 

Figure 2. The procedure for the proposed PCA-CART-BPN approach. 
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2.1. Variable Replacement Using PCA 

PCA replaces the original variables by new variables that are independent of each other; these new 

variables become new inputs to be used in the CART-BPN that estimates job cycle times. 

PCA comprises four steps: 

(1) Raw data standardization: The original variables may have excessively large numerical 

differences and dimensional conflicts. To standardize the dimensions and differences, apply 

Equations (1) through (3): 
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where ix  and i  denote the mean and standard deviation of job attribute i. 

(2) The correlation matrix R: 
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where X* is the standardized data matrix. The eigenvalues and eigenvectors of R are λ1 ~ λm and  

u1 ~ um, respectively (λ1 ≥ λ2 ≥ … ≥ λm). 
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and the accumulated variance contribution rate is: 
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Choose the smallest p value such that ( )p  ≥ 85% ~ 90%. 

(4) Formation of the following matrixes: 
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2.2. Job Classification Using CART 

CART, introduced by Breiman et al. [21], is a statistical procedure primarily used for object 

classification. The objective is to classify a group of objects into two or more populations. CART can 

handle both categorical and continuous data. CART uses an exhaustive search in splitting with an 

objective to improve the impurity measure, i.e., the reduction in the residual sum of squares. 

The procedure of CART is composed of stages including tree growing, stopping, and pruning. The 

first stage is to grow the tree using a recursive partitioning technique that selects variables and split 

points according to a pre-specified criterion. Criteria to this end include Gini, towing, ordered towing, 

and maximum deviance reduction [21]. 

Tree growing stops if any of the following conditions is satisfied: 

(1) The improvement in the performance measure has become insignificant with more branches. 

(2) A certain number of nodes have been generated. 

(3) The depth of the tree has reached a certain level. 

A large tree may overfit, while a small tree may not reflect the inherent structure of the data.  

Cost-complexity pruning is usually used to tackle this issue. The cost-complexity of a tree T is the sum 

of sum of squared error (SSE) and the penalty on the complexity/size of the tree: 

( ) SSE | |C T T    (9)

2SSE ( )j j
j

CT y   (10)

where jCT  and jy  are the cycle time estimate and actual cycle time of job j, respectively. The results 

of cost-complexity pruning are a nested subset of trees starting from the largest tree and ending with 

the smallest tree (with only a single node). The effectiveness of a subtree can be evaluated by cross-

validation or using another (testing) data. 

In the traditional CART approach, the cycle times of jobs assigned to a branch (b) are estimated 
with the same value ( )by  that is equal to the average of the historical cycle times: 
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where G(b) represents the set of jobs of branch b. However, such a treatment is far from accurate. For 

this reason, in this study, a BPN is constructed for each branch to estimate the cycle times of jobs 

assigned to this branch: 

BPN ( )j by  jz  (12)

where BPNb is the BPN constructed for branch b to estimate the job cycle times; jz  is the vector of the 

new attributes of job j. The comparison of CART, CART-BPN, and the proposed methodology is 
illustrated in Figure 3, in which Δk is the boundary value used to split the data along the new attribute k. 
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Figure 3. Comparison of CART and the proposed methodology. 

 

2.3. Job Cycle Time Estimation within Each Node Using BPN 

2.3.1. Rationale 

In a wafer fabrication factory, the relationship between the cycle time and attributes of a job has 

been shown to be a nonlinear one [11]. Consider the simplest example. Sometimes wafers are 

processed piece by piece, while in other steps tens of wafers are processed as a whole. As a result, the 

relationship between the cycle time and size of a job cannot be fitted with a linear equation. BPN is a 

well-known tool for fitting nonlinear relationships, so is CART. A combination of CART and BPN is 

natural, and has potential for improving the performance of estimating the cycle time of a job. 

Another question is why jobs with similar attributes have very different cycle times. That is because 

most of the attributes of a job were determined when the job was released into the factory. However, 

the cycle time of a job depends on the future conditions of the factory. That may be much different 

even for jobs with similar attributes. That explains the incapability of the existing methods based on 

job classification. 

2.3.2. Procedure 

Subsequently, a BPN is constructed to estimate the cycle times of jobs. The BPN is configured  

as follows. There are K inputs to the BPN including the new attributes of a job. A lot of past studies 

have shown that a BPN with a single hidden layer can achieve a satisfactory approximation 

performance [15–17,22]. In addition, several ways have been proposed in the literature to determine 

the number of neurons in the hidden layer, e.g., [22–24]. In this study, common neural network learning 

parameters, including number of hidden layers, number of hidden layer units, learning rate, and 

learning time, all are determined using a trial-and-error method. The activation/transformation 

functions for the input and hidden layers are the linear activation function and the hyperbolic tangent 

sigmoid function, respectively: 
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jlh  is the outputted signal from hidden-layer neuron l for job j; h
l  is the threshold on hidden-layer 

neuron l; h
klw  is the weight of the connection between input-layer neuron k and hidden-layer neuron l. 

Signals outputted from the hidden-layer neurons are transmitted to the neuron in the output layer in 

the same manner. Finally, the output from the BPN is generated as: 
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o  is the threshold on the output-layer neuron; o
lw  is the weight of the connection between  

hidden-layer neuron l and the output-layer neuron. 

Subsequently, a lot of algorithms can be applied to train a BPN, such as the gradient descent (GD) 

algorithm, the conjugate gradient algorithm, the Levenberg-Marquardt (LM) algorithm, the  

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, and others. For a recent comparison of these 

algorithms, refer to [22]. Among these algorithms, the LM algorithm has a faster convergence speed, 

therefore is applied in the proposed methodology, as described below. 

First, placing the inputs and the BPN parameters in vectors: 

1[ ... ]j jKz zjz  (21)

and 

β = [ hw11 , …, h
KLw , h

1 , …, h
L , ow1 , …, o

Lw , o ] (22)

respectively. Then, the network output jo  can be represented with: 

( , )jo f jz   (23)

Substituting Equation (25) into Equation (14), 
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To find out the optimize values of β, an iterative procedure is used in the LM algorithm: 
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(1) Specify the initial values of β, e.g. β = [1, 1, ... , 1]. 

(2) Replace β by β + δ, where δ = [Δ hw11 , …, Δ h
KLw , Δ h

1 , …, Δ h
L , Δ ow1 , …, Δ o

Lw , Δ o ]: 

( , )jo f jz    (25)

(3) Approximating the right-hand side by its linearization gives: 

( , ) ( , )f f j j jz z J δ    (26)

where:  

( , ) /f j jJ z    (27)

is the gradient vector of f with respect to β. SSE becomes: 

SSE ≈ 


n

j
jCTN

1

)(( – f(zj, β) – Jjδ)2 (28)

(4) The optimal value of δ can be obtained by taking the derivative of SSE with respect to δ and 

setting the result to zero. For details refer to [25]. 

(5) Return to step (2). 

3. Applications 

A real case containing the data of 120 jobs from a wafer fabrication factory located in Taichung 

Scientific Park, Taiwan, was used to evaluate the effectiveness of the proposed methodology (see 

Table 2). There are tens of dynamic random access memory (DRAM) products in the wafer fabrication 

factory. Six attributes of a job, including job size, factory utilization, the queue length on the route, the 

queue length before the bottleneck, work-in-process (WIP), and the average waiting time, are indicated 

with xj = [xj1 xj2 xj3 xj4 xj5 xj6]. The average waiting time is the average of the waiting times of the three 

most recently completed jobs. That measures the extent of delay that each job is likely to face. The six 

attributes were chosen from about twenty candidates after the backward elimination of regression 

analysis. The proposed PCA-CART-BPN approach was implemented on a PC with an Intel Dual CPU 

E2200 2.2 GHz and 2.0G RAM. The BPN was implemented with the Neural Network Toolbox of 

MATLAB 2006a. 

Table 2. The collected data. 

j xj1 xj2 xj3 xj4 xj5 (h) xj6 CTj (h) 

1 24 1223 158 807 99 84.2% 953 
2 23 1225 164 665 142 94.8% 1248 
3 25 1232 154 718 373 88.4% 1299 
4 23 1282 165 813 148 92.9% 976 
5 22 1352 182 760 389 93.1% 1189 
6 24 1293 182 760 69 96.2% 1095 
    ...    

120 22 1319 159 777 326 88.8% 1285 
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At first, a Pareto comparison of percentage of variability explained by each principal component is 

shown in Figure 4. An individual component by itself was able to explain less than 30% of the 

variance; the present study proposed to explain 85%–90% of the variance, and thus p was set to 5. The 

five principal components shown in Figure 4 explained approximately 85% of the total variability in 

the standardized data; therefore, the five-component analysis was a reasonable reduction of dimensions. 

Figure 4. The Pareto analysis chart. 

 

The coordinates of the original data were calculated in terms of the new coordinate system to 

produce component scores. Table 3 shows the component scores, which were used as new inputs to  

the BPN. 

Table 3. New inputs to the BPN. 

j zj1 zj2 zj3 zj4 zj5 

1 0.547 0.855 −1.640 −1.345 −0.591 

2 −0.649 0.361 −0.850 0.047 −1.115 

3 −0.596 −1.170 −1.984 0.388 −1.015 

4 0.218 1.062 −1.090 −0.468 0.885 

5 0.296 −0.073 1.178 1.198 1.764 

6 −1.318 2.127 0.158 0.214 0.305 

   …   

120 0.930 −0.846 −0.677 −0.361 1.238 

Subsequently, the new data were divided into two parts—the training data (the first 90 jobs) and the 

testing data (the remaining 30 jobs) (see Table 2). The training data were not normalized before 

creating the CART tree, but were normalized into [0.1, 0.9] before they were learned by the BPNs. In 

fact, data normalization is not helpful for CART, but is conducive to the fast convergence of the BPN. 

Only the performance to the testing data was evaluated. In addition, four-fold cross validation was 

applied to effectively reduce bias and variability. 
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Subsequently−, CART was applied to classify jobs according to the new attributes. The impurity 

measure in CART was Gini. The popular 1-SE rule was applied for the CART tree pruning. In this 

way, the smallest tree which cross-validation cost was less than the minimum cross-validation cost 

plus the standard deviation of the cross-validation cost was chosen. The results are shown in Figure 5. 

Figure 5. The classification results using PCA-CART. (A) 1st run; (B) 2nd run;  

(C) 3rd run; (D) 4th run. 

A 

B 
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Figure 5. Cont. 

C 

D 

Obviously, the number of job groups is much more than that obtained using the existing classifier 

like kM, FCM, or SOM. The classification results were also different from those using CART alone 

without PCA (see Figure 6). However, some groups contained too few jobs to train a BPN. For this 

reason, only for groups with more than five jobs, BPNs were applied to improve the cycle times. 

Jobs in each group were used to train the BPN of the group. In this study, a trail-and-error method 

was used to test the optimal number of neurons. When the learning rate (η) was 0.1, testing various 

numbers of neurons affected the prediction error. After repeatedly testing five times, when the number 

of hidden layer neurons was set to 8, the minimal prediction error (minimal RMSE) was obtained 

(Figure 7). To define the optimal parameter values of the epochs and learning rate (η) and to obtain the 

best prediction results, the changes in the prediction error when using various combinations of learning 

rates (η) and epochs were analyzed. The results indicated the minimal RMSE was achieved when the 
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epochs were 50,000 and the learning rate (η) was 0.9 (Figure 8). However, that resulted in a very 

lengthy learning process. In addition, when the learning rate (η) was 0.9, setting the epochs to 30,000 

was a favorable choice. For this reason, in the experiment, the learning rate (η) and epochs were set to 

0.9 and 30,000, respectively. 

Figure 6. The classification results using CART alone without PCA. (A) 1st run; (B) 2nd 

run; (C) 3rd run; (D) 4th run. 

A 

B 
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Figure 6. Cont. 

C 

D 

After training, the BPN can be used to estimate the cycle times of jobs in the testing data that 

belong to this group. The estimation accuracy of the PCA-CART-BPN method was evaluated in terms 

of three criteria: the MAE, mean absolute percentage error (MAPE), and root mean squared error 

(RMSE). Table 4 summarizes the results. The performances of the CART, CART-BPN, and  

PCA-BPN methods are shown in Tables 5–7 for a comparison. 
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Figure 7. Various numbers of neurons affected the prediction error. 

 

Figure 8. Effects of the number of epochs. 

 

Table 4. The estimation accuracy of the PCA-CART-BPN method (four-fold cross-validation). 

MAE (h) MAPE RMSE (h) 

First Run 32.8 2.8% 51.7 
Second Run 30.2 2.7% 48.5 
Third Run 37.0 3.3% 54.5 
Fourth Run 35.8 3.2% 54.5 

Average 34.0 3.0% 52.3 

Table 5. The estimation accuracy of the CART method (four-fold cross-validation). 

MAE (h) MAPE RMSE (h) 

First Run 115 9.2% 100 
Second Run 90 7.4% 87 
Third Run 116 9.6% 99 
Fourth Run 132 11.0% 109 

Average 113 9.3% 99 
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Table 6. The estimation accuracy of the CART-BPN method (four-fold cross-validation). 

MAE (h) MAPE RMSE (h) 

First Run 90.1 7.3% 89.3 
Second Run 74.8 5.7% 76.0 
Third Run 41.0 3.4% 55.3 
Fourth Run 77.1 6.2% 82.1 

Average 90.2 7.2% 89.5 

Table 7. The estimation accuracy of the PCA-BPN method (four-fold cross-validation). 

MAE (h) MAPE RMSE (h) 

First Run 41.7 3.7% 60.3 
Second Run 38.6 3.4% 55.8 
Third Run 40.8 3.5% 59.9 
Fourth Run 33.9 2.9% 53.6 

Average 38.7 3.4% 57.4 

To evaluate which method among the multiple linear regression (MLR), BPN, CART, CBR, 

CART-BPN, PCA-BPN, kM-BPN, and PCA-CART-BPN methods was more accurate, the estimation 

performance of the eight methods was arranged, as shown in Table 8, and the RMSE, MAE, and 

MAPE were employed to determine estimation accuracy. However, we did not compare with methods 

based on expert collaboration, such as Chen [7] and Chen [10], because there is no collaboration part 

in the proposed methodology. In addition, some hybrid methods including kM-FBPN [15], FCM-BPN 

and SOM-FBPN [12] are similar in nature to kM-BPN, and therefore were not compared. Further, the 

symmetric-partitioning and incremental-relearning classification and BPN approach proposed by  

Chen [18] was not compared because the execution time was more than 5 min. Only the estimation 

performances to the testing/validation data were compared. 

Table 8. Comparisons of the performances of various methods. 

Performance 

Measure 
MLR BPN CART CBR CART-BPN PCA-BPN kM-BPN PCA-CART-BPN 

RMSE (h) 89.5 144 132 168 75.7 57.4 119 52.3 

MAE (h) 90.2 117 113 140 70.7 38.7 99 34.0 

MAPE 7.2% 9.1% 8.9% 11.2% 5.6% 3.4% 7.7% 3.0% 

(1) As evident from Tables 5 and 6, the most obvious advantage of CART-BPN over CART was 

regarding MAPE, which achieved 10%. The CART-BPN prediction error was smaller, whereas 

the CART prediction error was larger; thus, the CART-BPN predictions were more accurate. 

To validate the more accurate prediction of the CART-BPN, the paired t test was employed. 

H0: When estimating the job cycle time, the estimation accuracy of the CART-BPN method is 

the same as that obtained from using the CART method. 

H1: When estimating the job cycle time, the CART-BPN method is more accurate than the  

CART method. 
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As expected, the CART-BPN forecasting method was superior to the CART method. Table 9 

summarizes the results of a comparative analysis. Therefore, a nonlinear analysis is indeed beneficial 

to the job cycle time estimation problem. 

Table 9. CART-BPN and CART of the paired t test. 

 CART-BPN CART 

Mean 117.32 83.8 
Variance 6779.72 3928.02 

Number of observations 30 30 
Pearson’s Correlation Coefficient  0.2363 

Degree of freedom  29 
t statistic  −2.0193 

P(T ≤ t) one-sided  0.0263 
P(T ≤ t) two-sided  0.0527 

(2) Of these, the PCA-CART-BPN estimation efficacy exceeded that of the statistical regression 

model (MLR) by 41%. To make sure that such a difference is statistically significant, a paired t 

test was used:  

H0: When estimating the job cycle time, the PCA-CART-BPN methodology for estimating 

accuracy is the same as using the statistical regression approach. 

H1: When estimating the job cycle time, the PCA-CART-BPN methodology is more accurate 

than the statistical regression approach. 

The comparison results are summarized in Table 10. As a result, the advantage of the  

PCA-CART-BPN methodology over statistical regression was statistically significant at α = 0.1. 

Table 10. PCA-CART-BPN and regression of the paired t test. 

 PCA-CART-BPN MLR 

Mean 94.53 37.32 
Variance 2609.49 1554.66 

Number of observations 30 30 
Pearson’s Correlation Coefficient  0.0287 

Degree of freedom  29 
t statistic  −4.9247 

P(T ≤ t) one-sided  0.0000156 
P(T ≤ t) two-sided  0.0000312 

(3) When exploring the PCA-CART-BPN and grouping CART-BPN and kM-BPN models, 

utilizing the PCA-CART-BPN method reduced the MAE by 52% and 66%, respectively. 

Therefore, PCA-CART was a better job classifier than kM and CART. 

(4) The most obvious advantage of the proposed methodology over CART was up to 70% in terms 

of MAE. 

(5) The most obvious advantage of the proposed methodology over CART-BPN was up to 52% in 

terms of MAE, which confirmed the effectiveness of variable replacement using PCA. 
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(6) If the differences between the attributes of two jobs could be fully reflected on their cycle 

times, CBR would be very effective. However, the results did not support this viewpoint. 

(7) The same problem happened to kM-BPN. Nevertheless, the performance of kM-BPN was quite 

close to that of the proposed methodology, which can be attributed to the approximation ability 

of BPN. 

(8) The execution times of the eight methods were compared in Table 11. Direct methods like 

MLR were really fast. Iterative methods like CART, CBR, and BPN were a bit slow. 

Nevertheless, training a BPN using the LM algorithm was also efficient. The execution times 

of some hybrid methods (CART-BPN, PCA-BPN, kM-BPN, and PCA-CART-BPN) were 

approximately equal, which supported the reasonability of using the proposed methodology 

instead of CART-BPN, PCA-BPN, or kM-BPN. 

Table 11. The comparison results. 

 Execution Time (s) 

MLR <1 
BPN 16 

CART 5 
CBR 15 

CART-BPN 127 
PCA-BPN 130 
kM-BPN 132 

PCA-CART-BPN 132 

4. Managerial Implications 

Estimating and shortening the cycle time of each job is an important task to maintain a competitive 

edge in the DRAM industry. For example, the famous DRAM maker, Samsung, implemented the short 

cycle time and low inventory (SLIM) method to estimate the cycle times and WIP levels for various 

manufacturing steps, so that a more effective control of the factory was possible. As a result, the 

average cycle times of some DRAM products were reduced from more than 80 days to less than  

30 days, bringing Samsung a benefit of about 1 billion US$ [23]. 

Incorrectly estimating the cycle times of jobs increases the difficulties in projecting the monthly 

output of a wafer fabrication factory [10], which then misleads the production planning personnel in 

making the release plan. If many wafers are incorrectly outputted from a wafer fabrication factory 

during a month with very low average selling prices (ASPs), the wafer fabrication factory will suffer 

considerable losses. To illustrate this, an example is given as follows. There are two products, A and 

B, in the factory. The ASPs of the two products are shown in Table 12. The gross dies and wafer yields 

of the two products are the same: 500 dies per wafer and 95%. The monthly capacity of the factory  

is 10,000 pieces of wafers distributed between the two products according to their ASPs. The actual 

cycle times of the two products are two and three months, respectively. The release plan based on the 

correct cycle times is shown in Table 13. The yearly revenues (months 1 to 12) are 205 million US$.  

If the cycle time of product A is mistaken as three months, the release plan will be Table 14. The 

yearly revenues reduce to 203 million US$, resulting in a loss of two million dollars per year. 
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Table 12. The average selling prices (ASPs) of the two products. 

Month ASP (US$) (Product A) ASP (US$) (Product B) 

−10 4.8 3.5 
−11 3.4 3.4 
−12 2.5 3.5 

1 3.9 3.5 
2 4.2 3.6 
3 2.3 3.5 
4 3.9 3.4 
5 4.5 3.5 
6 4.4 3.5 
7 2.6 3.3 
8 2.2 3.5 
9 4.0 3.5 

10 2.6 3.6 
11 2.8 3.5 
12 4.7 3.4 
+1 2.7 3.5 
+2 3.5 3.5 
+3 4.2 3.3 

Table 13. The correct release plan. 

Month Release (Product A) Release (Product B)

−10 4139 5861 
−11 5236 4764 
−12 5441 4559 

1 3965 6035 
2 5285 4715 
3 5605 4395 
4 5536 4464 
5 4290 5710 
6 3860 6140 
7 5308 4692 
8 4253 5747 
9 4396 5604 

+10 5703 4297 
+11 4379 5621 
+12 4991 5009 
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Table 14. The incorrect release plan. 

Month Release (Product A) Release (Product B)

−10 5236 4764 
−11 5441 4559 
−12 3965 6035 

1 5285 4715 
2 5605 4395 
3 5536 4464 
4 4290 5710 
5 3860 6140 
6 5308 4692 
7 4253 5747 
8 4396 5604 
9 5703 4297 

+10 4379 5621 
+11 4991 5009 
+12 5422 4578 

5. Conclusions and Future Research Directions 

Cycle time reduction continues to be one of the major concerns in controlling a wafer fabrication 

factory. On one hand, long cycle times lead to the accumulation in WIP. On the other hand, the risk of 

wafer contamination also increases when the cycle time of a job is long. Cycle time estimation, which 

is considered as a prerequisite for achieving that, has received much attention.  

In this study, the PCA-CART-BPN approach is proposed to estimate the cycle time of a job in a 

wafer fabrication factory. First, PCA is applied to construct a series of linear combinations of original 

variables to form new variables that are as unrelated to each other as possible. According to the new 

variables, jobs are classified using CART before estimating their cycle times with BPNs. The 

advantage of such a treatment is the consideration of the estimation performance when classifying the 

jobs. To the contrary, in the existing methods such as kM-BPN, SOM-FBPN, and others, job classification 

only considers the differences between the attributes of jobs. 

After evaluating the estimation performance of the proposed PCA-CART-BPN approach with a  

real case: 

(1) The advantage of the proposed PCA-CART-BPN approach over the existing methods was quite 

obvious. Three measures of the estimation accuracy, especially MAE, were improved after 

applying PCA-CART-BPN. 

(2) In addition, PCA, CART, and BPN are all mature methods supported by a lot of optimization 

packages (see Table 15), which is conducive to the joint use of the two methods. 

(3) On the other hand, the efficiency of PCA-CART-BPN was not poorer than that of the existing 

hybrid methods like CART-BPN, PCA-BPN, and kM-BPN. 
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Table 15. Some software packages for implementing PCA, CART, and BPN. 

Method Software 

PCA MATLAB, SAS, SPSS, Stata 
CART CART (Salford Systems), MATLAB, SAS 
BPN Brian, GENESIS, MATLAB (Neural Network Toolbox), NEURON 

In future studies, a collaboration mechanism can be incorporated into the PCA-CART-BPN 

approach, so that multiple experts can estimate the cycle time of a job collaboratively. 
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